Realistic and Intuitive Haptic Feedback for Communication in Virtual and Real-World Environments

Thumbnail

Event details

Date 14.03.2017
Hour 14:1515:15
Speaker Dr. Heather Culbertson, Department of Mechanical Engineering - Stanford University - USA
Location
Category Conferences - Seminars

The haptic (touch) sensations felt when interacting with the physical world create a rich and varied impression of objects and their environment. Humans are capable of gathering a significant amount of information through touch with their environment, allowing them to assess object properties and qualities, dexterously handle objects, and communicate social cues and emotions. Humans are spending significantly more time in the digital world, however, and are increasingly interacting with people and objects through a digital medium. Unfortunately, digital interactions remain unsatisfying and limited, representing the human as having only two sensory inputs: visual and auditory.

This talk will focus on the investigation of haptic devices and rendering algorithms to provide humans with touch information when communicating through a computer. I will present a background on the sense of touch, and illustrate how we can leverage this knowledge in order to design haptic devices and rendering systems that allow the human to communicate through the digital world in a natural and intuitive way. I will highlight contributions I have made in furthering haptic realism in virtual reality through the creation of highly realistic virtual objects. These objects are created by modeling high-frequency acceleration, force, and speed data recorded during physical interactions and displaying the appropriate haptic signals during rendering. I will then describe advances I have made in novel wearable haptic devices for communicating information to a human using intuitive and natural cues.
 
Bio:
Heather Culbertson is a Postdoctoral Research Fellow in the Department of Mechanical Engineering at Stanford University where she works in the Collaborative Haptics and Robotics in Medicine (CHARM) Lab. She received her PhD in the Department of Mechanical Engineering and Applied Mechanics (MEAM) at the University of Pennsylvania in 2015 working in the Haptics Group, part of the General Robotics, Automation, Sensing and Perception (GRASP) Laboratory. She completed a Masters in MEAM at the University of Pennsylvania in May of 2013, and earned a BS degree in mechanical engineering at the University of Nevada, Reno in 2010.
 

Practical information

  • Informed public
  • Free
  • This event is internal

Organizer

  • Prof John Botsis - IGM Seminar

Contact

  • Prof John Botsis

Event broadcasted in

Share