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 What is a crash?  In the jump-diffusion model of Merton (1976), a crash is a rare event – a 

single adverse draw from a Poisson counter, with a vanishingly small probability of multiple 

adverse draws within a single day.  While this model may be successful at capturing outliers in 

daily returns, it does not appear to capture the intradaily evolution of major market downturns.  

The 23% drop in the S&P 500 index on Monday, October 19, 1987 from the preceding Friday’s 

closing level did not occur within five minutes, for instance; it took all day to achieve the full 

decline.  Indeed, papers such as Tauchen and Zhou (2011) that use bipower variation to decompose 

realized variance into diffusive and jump components suggest there were no jumps at all on 

October 19.  Instead, it was a draw of two standard deviations from a day that happened to have 

an unusually high intradaily realized volatility of 12%. 

 While the increasing availability of high-frequency data generated some exploration of 

intradaily volatility evolution, including in stock markets, there has been little direct estimation of 

stochastic processes with stochastic volatility and jumps using intradaily data.  Papers such as 

Andersen and Bollerslev (1997) focus on volatility dynamics; in particular, reconciling GARCH-

based volatility evolution estimates from daily versus intradaily data.  As described in Andersen 

(2004), the recognition that realized variance effectively summarizes intradaily volatility 

information and sidesteps the issues of fitting pronounced diurnal volatility patterns and 

announcement effects shifted the focus of most intradaily research to realized variance.  Whether 

jumps are important has been assessed indirectly in this literature, using the bipower variation 

approach of Barndorff-Nielsen and Shephard (2004, 2006) to assess intradaily jump contributions 

to realized variance.  That approach maintains the Merton (1976) presumption that jumps are rare.   

 This indirect evidence and more direct parametric estimates by Stroud and Johannes (2014) 

on intradaily data indicate a fundamental mismatch between jump magnitudes from intradaily 

versus from daily stock market data.  Bates (2006, 2012), for instances, estimates daily jump 

standard deviations at about 3%, excluding the 1987 crash.  Intradaily jump standard deviations 

inferred from bipower variation are an order of magnitude smaller:  about 0.5% in Tauchen and 

Zhou.  Stroud and Johannes estimate comparable intradaily magnitudes:  0.2% - 0.4% for the 

standard deviation of unexpected jumps in 5-minute returns, and similar magnitudes for 

predictable announcement effects.  Such estimates require multiple intradaily jumps to explain the 

occasional 4-10% daily return magnitudes, which is inconsistent with the rare-jump hypothesis.   
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 This paper develops an affine multifactor stochastic volatility/jump model for the intradaily 

evolution of S&P 500 futures that potentially reconciles intradaily and daily results.  The key 

feature of the model is “self-exciting” synchronous and correlated jumps in intradaily stock returns 

and volatility – essentially a stochastic-intensity and multifactor generalization of the Duffie, Pan 

and Singleton (2000) volatility-jump model.  Every intradaily jump substantially increases the 

probability of more intradaily jumps in volatility and in returns; and these can accumulate into the 

major outliers in daily returns that we occasionally observe.  The model is estimated on 15-minute 

S&P 500 futures returns over 1983-2008 via the Bates (2006, 2012) approximate maximum 

likelihood (AML) filtration methodology, taking into account special features of intradaily futures 

data.  The methodology provides direct estimates of the frequency and distribution of intradaily 

jumps, as well as estimates of the intradaily evolution of volatility and jump intensities.  The 2009-

2016 period is used for out-of-sample tests of the model. 

 While assorted nonaffine continuous-time models have been proposed and estimated 

predominantly on daily stock market data,1 affine models have a couple of advantages for 

exploring how crashes develop.  First, affine models are closed under time aggregation.  An affine 

model fitted to intradaily returns generates an affine model for daily returns, which can then be 

tested against observed daily data. 

Second, affine models are well suited to the current research focus on decomposing 

realized variance into diffusive and jump components.  Quadratic variation and its subcomponents 

–integrated diffusive variance, the number and magnitude of jumps – are latent affine processes 

that can be directly estimated using the AML methodology.    This paper derives the conditional 

characteristic function of daily quadratic variation for the proposed intradaily model, assesses how 

well it approximates the conditional characteristic function of daily realized variances from 15-

minute returns, and uses it for various diagnostics of those realized variances. 

                                                 
1Chernov et al (2003) estimate diffusive log variance models on daily stock market data.  The models have 
substantial volatility feedback, which is similar to the self-exciting jumps feature here.  Stroud and Johannes (2014) 
have jump-diffusive models for intradaily log variance, but with constant jump intensities rather than self-exciting 
jumps.  Calvet and Fisher (2008) propose a tightly parameterized Markov Chain model for daily log variance that 
also lacks volatility feedback.  Aït-Sahalia et al (2015) and Fulop et al (2015) have affine models with stochastic 
volatility and self-exciting volatility jumps, which they estimate on daily stock market data.  
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 I explore three issues.  First is the specification issue of identifying the appropriate time 

series model, using an extensive 1983-2008 history of S&P 500 futures that includes extreme stock 

market movements in October 1987 and in the fall of 2008.  I find that multifactor models with 

self-exciting but short-lived volatility spikes substantially improve model fits both in-sample and 

out-of-sample.   

 Second is the issue of time aggregation:  how well do various proposed affine models 

estimated using 15-minute returns capture the statistical properties of daily returns and daily 

measures of intradaily realized variance?  Any estimation methodology applied to 15-minute 

returns is perforce focused on fitting the conditional distributions of those data.  Not all high-

frequency phenomena remain important at longer horizons, however.  Examining how well the 

models fit daily returns and realized variances are major goals of this paper, and serve as additional 

tests of model specification.    

 Third, I explore the informational content of realized variance, which is a noisy signal of 

intradaily variance when intradaily jumps are present.  A priori, directly estimating (filtering) 

underlying volatility from the full set of observed intradaily returns should be more accurate than 

using any summary statistics such as realized variance or bipower variation based upon those same 

data.  However, directly using intradaily returns involves significant costs, both in time and in 

requiring explicit modeling of phenomena such as minimum tick sizes and diurnal variance 

fluctuations.  I therefore examine the magnitude of the informational loss when filtering latent 

volatility solely from observed daily realized variance, within the framework of explicit affine 

parametric models and a filtration methodology that identify how such filtration should be 

conducted. 

 Section 1 of the paper describes the intradaily and overnight data, the multifactor models 

and estimation methodology, and how well the models fit.  Section 2 contains additional 

diagnostics using intradaily realized variance, while Section 3 concludes.  Overall, the multifactor 

affine models with volatility spikes do a reasonably good job of matching the properties of 

intradaily and daily S&P 500 futures returns, especially as more factors are added.  Furthermore, 

the most general 3-factor model captures the occasionally extreme observations of realized 

variance reasonably well; and those are when extreme daily stock market returns occur.  The 
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models do underpredict the frequency of small realized variance observations, indicating that some 

specification error remains. 

1. Data and models 

1.1. Data 

 S&P 500 futures began trading at the Chicago Mercantile Exchange (CME) on April 21, 

1982, using the open-outcry pit trading prevailing at the CME at that time for all futures contracts.  

Initial trading hours were 9 AM to 3:15 PM Central Standard Time, with CME pit trading typically 

extending 15 minutes beyond trading at the New York Stock Exchange (NYSE).2  On September 

30, 1985, the NYSE and CME shifted the opening time by a half-hour, to 8:30 AM CST.  Starting 

in December 1990, both the NYSE and CME instituted fewer trading hours on trading days 

adjacent to Christmas, the Fourth of July, and Thanksgiving.   

 In 1992, the CME introduced after-hours electronic trading through its Globex trading 

platform.  In 1997, the CME introduced “E-mini” (ES) S&P 500 futures contracts, which were 

1/5th the size of regular S&P 500 (SP) futures contracts and traded exclusively on Globex, 

including during the day.  Trading activity switched increasingly to electronic trading via Globex, 

which accounted for 84% of CME group volume by 2011.3 

  The CME provides data in two formats:  “End-of-Day” daily summaries and “Time and 

Sales” data.  The former contains open, high, low, close, and settlement prices, as well as volume 

and open interest, while the latter contains the time and price of every daily transaction in which 

the price changed from the previous transaction.  Bid and ask prices are also recorded when the 

bid price is above or the ask price is below the price of the previous transaction.  No information 

is provided for the pit-traded contract regarding the volume of transactions at a particular price, 

but is provided for the E-minis.  I acquired both sets of data for the original full-sized S&P 500 

futures SP contract for January 3, 1983 through December 31, 2013, and for the entire history of 

the E-mini ES contract from September 7, 1997 through June 31, 2016.  I discarded the bid and 

ask data, and also transactions that were subsequently cancelled.  The SP data over 1983-2008 are 

                                                 
2 The CME and NYSE closed at the same time over October 23 through November 6, 1987, in the aftermath of the 
1987 stock market crash. 
3 CME Group, “Twenty Years of CME Globex,” June 21, 2012. (http://www.cmegroup.com/education/files/globex-
retrospective-2012-06-12.pdf).  
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used for parameter estimation, whereas the E-mini data over 2009-2016 are used for out-of-sample 

testing.4 

 S&P 500 futures contracts typically mature on the third Friday of March, June, September 

and December – except for March 2008 contracts, which matured a day earlier because of Good 

Friday.  Of the available maturities, I selected the shortest maturity with nine or more days until 

the third Friday, that being the most actively traded contract according to the “End of Day” volume 

data.  For instance, I used data for March 1983 futures maturing on March 18, 1983 up to the close 

of trading on Wednesday, March 9.  Prices of June 1983 contracts were then used for computing 

overnight futures returns from Wednesday to Thursday, and for intradaily and overnight returns 

from Thursday, March 10 to the close of trading on Wednesday, June 8. 

 I constructed intradaily 15-minute log-differenced futures prices broadly along the lines of 

the 5-minute futures returns in Chan et al (1991) and Andersen and Bollerslev (1997), by taking 

the last observed future price in every 15-minute interval.  15-minute returns were used instead of 

5-minute primarily to triple optimization speed on this large data set, but also to span some of the 

short-duration price limit constraints on futures returns over 1989-2002 that are discussed below.  

For after-hours trading, I extended the time window by one minute, typically up through 3:16 PM 

CST, because trades were often recorded shortly after trading had officially ended.  Overnight 

futures returns were constructed as the difference between the log of the futures price at the end of 

the first 15-minute trading session (typically 8:30 – 8:45 AM CST) and the log of the futures price 

of comparable maturity at the end of the preceding day.  This approach allows some time for the 

incorporation of overnight news into the futures price, during the especially volatile initial fifteen 

minutes of trading.  Furthermore, skipping the first 15 minutes when computing overnight returns 

spans possible constraints on opening futures prices from the price limit system instituted by the 

CME in 1989.  The final data set consists of 6,557 overnight returns and 168,297 intradaily returns, 

from December 31, 1982’s closing price through December 31, 2008. 

                                                 
4 Comparison of the end-of-period times of SP and ES trades indicates little divergence over 1998-2008 (12.5 versus 
2.5 seconds on average to the end of each 15-minute period), but increasing divergence thereafter.  The SP time gap 
rose from 25 seconds in 2009 to 135 seconds in 2013, while 15-minute intervals without transactions occurred 
increasingly frequently:  5 in 2011, 37 in 2012, and 166 in 2013.  The ES time gap, by contrast, averaged about 1.4 
seconds over 2009-2013.  Absolute divergences in end-of-period SP and ES log futures prices were typically only 2-
3 basis points throughout 1998-2013, but were occasionally larger during volatile days or on days adjacent to 
holidays. 
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 The CME’s price limit system was created in response to the stock market crash of October 

19, 1987, and paralleled the NYSE’s “circuit breaker” system.  The CME’s price limits typically 

involved four prespecified constraints:  a relatively tight initial band relative to the previous day’s 

short-maturity S&P 500 futures settlement price that temporarily constrained both upward and 

downward moves at the open, and three progressively lower price limits (Levels 1 through 3) that 

temporarily constrained downward moves during the day.  Hitting a price limit triggers a specific 

time interval during which the price limit remains in effect, followed by a two-minute trading halt 

if the price limit is binding (“locked limit”), followed by the resumption of trading with a new and 

lower price limit in effect.  For instance, price change constraints over 1989-1996 were 5, 12, 20, 

and 30 points, respectively, over which time the S&P 500 index rose from 300 to 700.  The 5-point 

opening limit lasted only until 8:40, with a trading halt from 8:40 to 8:42 if binding.  A 12-point 

downward move triggered an interval lasting 30 minutes or until 2:30 PM CST, during which time 

futures contracts could be traded at or above the limit but not below.  If the price limit was binding 

at the end of the interval, a two-minute trading halt was declared, followed by the resumption of 

trading with the 20-point lower limit in place.  Hitting the 20-point downward limit started another 

interval of 30 minutes or until 2:30, followed by a trading halt (if still binding) and the 30-point 

limit taking effect for the remainder of the day.  Separate rules applied if the futures price was 

locked limit at the close of the preceding day.   

 Limits on the opening price change were removed on October 15, 1997, as part of a revision 

in the circuit breaker system.  The levels of permissible downward price changes changed over 

time, partly because of the rise and fall in the level of the S&P 500.  In addition, the price 

constraints were significantly widened on May 13, 2001 to roughly 5%, 10%, and 15% of the end-

of-quarter S&P 500 level, with roughly 20% being the maximal permissible daily price movement.  

These limits were relaxed further in January 2008 to 10%, 20% and 30%, respectively, to be 

consistent with the Dow Jones-based percentages used on the NYSE.  (A 5% price limit remained 

on after-hours trading on Globex.)  These revisions in 2001 and 2008 considerably reduced the 

frequency of trading halts, with an apparent absence of such halts in intradaily data over 2003-

2008.5  Even the 10.4% intradaily drop in the December 2008 futures price on October 15, 2008, 

                                                 
5John Nyhoff at the CME kindly provided me with a list of dates and times when the S&P 500 futures price limits 
were hit.  Stroud and Johannes (2014) note that the GLOBEX-traded E-mini contract hit its overnight limit on 
October 24, 2008. 
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to 898.5 from October 14’s settlement price of 1002.3, did not exceed the 120-point limit that the 

CME had set on September 30, 2008 as the 10% limit for the fourth quarter of 2008.       

 The corresponding time intervals triggered by hitting a price limit were also shortened to 

roughly 15 minutes in 1996, and to roughly 10 minutes in 1997.  However, longer halts could 

ensue contingent upon trading halts at the NYSE.  The major such incident was the tripping of all 

three levels of NYSE circuit breakers on October 27, 1997. 

 Trading at the CME also halted sometimes because of exogenous events in New York or 

Chicago.  For instance, the explosion of a Con Edison transformer in New York delayed the open 

of the NYSE and CME on December 27, 1990.  On April 13, 1992, the accidental flooding of 

utility tunnels in Chicago shut down the CME, but not the NYSE.6  Both the NYSE and CME 

closed following the attacks on September 11, 2001, and did not reopen until September 17. 

 Price limits can artificially constrain observed futures returns.  Consequently, I extended 

the time interval whenever a price limit was hit until that limit had expired and was no longer 

potentially binding on the futures price.  Similarly, I extended time intervals whenever trading was 

suspended until trading had resumed, and computed returns over the expanded interval.  For 

instance, the CME suspended trading at 11:15 AM CST on October 20, 1987, the day after the 

1987 stock market crash;7 and the December 1987 futures price rebounded when the trading 

resumed at 12:05 PM.  I combined returns over 11:15 AM to 12:15 PM into a single one-hour 

interval, with an associated log-differenced futures price of 13.76%.8  There were 103 instances 

over 1983-2008 of expanded time intervals, out of 174,859 total observations. 

   

  

                                                 
6 A list of market closings at the NYSE is available at http://www.nyse.com/pdfs/closings.pdf. Additional CME 
trading suspensions were identified by searching the data for periods without reported trades, and matching them 
against news reports. 
7 See Carlson (2006, p.11). 
8 Andersen and Bollerslev (1997) follow Chan et al (1991) in omitting data over October 15 through November 13, 
1987. They also linearly interpolate prices when data are missing, yielding roughly identical successive 5-minute 
returns. 
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1.2. Models  

 I model the continuous-time process for the log futures price ௧݂ ൌ ln  ௧ underlyingܨ

observed intradaily and overnight S&P 500 futures returns as a potentially multifactor affine jump-

diffusion of the form  

 
݀ ௧݂ ൌ ݐ଴݀ߤ ൅෍ൣሺߤ௜ െ ½ሻ ௜ܸ௧݀ݐ ൅ ඥ ௜ܸ௧݀ ௜ܹ௧൧

ூ

௜ୀଵ

൅ ෍ ൫ߛ௝݀ ௝ܰ௧ െ ௝௧ߣ ത݇௝݀ݐ൯

௃

௝ୀଵି௄

	

݀ ଵܸ௧ ൌ ሺߙ െ ଵߚ ଵܸ௧ሻ݀ݐ ൅ ඥߪ ଵܸ௧݀ ௏ܹ௧ ൅ ௏ଵ݀ߛ ଵܰ௧	

݀ ௜ܸ௧ ൌ െߚ௜ ௜ܸ௧݀ݐ ൅ ௏௜݀ߛ ௜ܰ௧ for ݅ ൐ 1, 

(1) 

where ௜ܹ௧ and ௏ܹ௧ are Wiener processes with correlation ߩ, the ௝ܰ௧’s are Poisson counters with 

stochastic intensities ߣ௝௧ that depend linearly upon the variance state variables, and ത݇௝ ൌ ఊೕ݁	ܧ െ

1 is the expected percentage jump size. 

  

 A key empirical issue is how many state variables are necessary to adequately summarize 

the evolution of futures prices.  Potential specifications are categorized as SVJ(I,J,K) models, 

where I is the number of underlying state variables ࢂ௧ ൌ ሺ ଵܸ௧, … , ூܸ௧ሻ′ that determine diffusive 

variance and jump intensities; J is the number of synchronous jump processes for futures prices 

and variance state variables; and ܭ ൑ 1 is the number of jump processes for futures prices only. 

 

Furthermore, the underlying state variables are divided into a core jump-diffusive variance 

state variable ଵܸ௧ and additional pure-jump state variables ௜ܸ௧ that capture transient variance 

shocks.  Log futures jump distributions are modeled as in Duffie, Pan and Singleton (2000; 

henceforth DPS) as ߛ௝ ൌ ௏௝ߛ௝ߩ ൅  ௏௝൯ is the exponentially distributed jumpߛ൫̅݌ݔܧ~௏௝ߛ  , where	௙௝ߛ

in spot variance conditional upon ݀ ௝ܰ௧ ൌ ,௙௝ߛ௙௝~ܰሺ̅ߛ ,1 ௝ߜ
ଶሻ is an independent normal shock, and 

 ௝ captures the degree to which synchronous jumps in futures prices and variance covary.  Theߩ

Poisson counter ଴ܰ௧ identifies futures price jumps (with a ଵܸ௧-sensitive jump intensity) that are 

unaccompanied by volatility jumps – an extension that substantially improves overall fits.   

 

The multifactor specification for ࢂ௧ in equation (1) allows considerable flexibility in how 

S&P futures and total diffusive spot variance can evolve.  Whereas univariate models such as DPS 
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must have invariant jump distributions to be affine, multivariate models allow the distributions of 

jumps in stock market returns and in total diffusive spot variance to vary as the components of ࢂ௧ 

change.  Those components can have different degrees of persistence, and different correlations 

with the contemporaneous stock market returns from which they are estimated. 

 

 Affine models such as (1) imply that the joint cumulant generating function of returns 

௧ାఛݕ ൌ ௧݂ାఛ െ ௧݂ and future spot variances ࢂ௧ାఛ conditional upon current ࢂ௧ is affine in ࢂ௧, 

|࣒,ሺΦܨܩܥ  ௧ܸ, ߬ሻ ൌ lnൣܧe஍௬೟శഓା࣒ᇱࢂ೟శഓ | ௧൧ࢂ  

ൌ ሺτ;Φ,࣒ሻܥ ൅  .௧ࢂሺτ;Φ,࣒ሻᇱࡰ
(2) 

 ሺ߬;∙ሻ solve a system of ordinary differential equations, with known analytical solutionsࡰ ሺ߬;∙ሻ andܥ

for two broad cases:  the stochastic-intensity models of Bates (2000) without variance jumps, and 

the constant-intensity model of Duffie, Pan, and Singleton (2000) with variance jumps.  The more 

general specifications in which volatility jumps affect the intensity of future jumps – e.g., the “self-

exciting” volatility-jump models of Carr and Wu (2008) and Andersen, Fusari and Todorov (2015) 

– lack known analytical solutions for ܥሺ߬;∙ሻ and ࡰሺ߬;∙ሻ, which must be evaluated numerically. 

 Self-exciting jumps are plausibly a major explanation for the intradaily development of 

major daily outliers.  I consequently use intermediate volatility-jump models with jump intensities 

 
௝௧ߣ ൌ ൜

	 ௝ଵߣ ଵܸ௧∗ for	݆ ൑ 1
௝଴ߣ ൅ ௝ଵߣ ଵܸ௧∗ ൅ ௝௝ߣ ௝ܸ௧∗ for ݆ ൐ 1. 

(3) 

The jump intensities ߣ௝௧ for each Poisson counter ௝ܰ௧ are assumed constant within each intradaily 

or overnight period, reset at the end of every period, and depend upon the spot variance levels ࢂ௧∗ 

prevailing at the start of the period.  This allows jumps to be self-exciting across periods, while 

retaining the analytic tractability of the constant-intensity DPS model.  The recursive structure in 

(3) for ݆ ൐ 1 allows the initiation of additional self-exciting volatility components ௝ܸ௧ to depend 

upon the level of core volatility ଵܸ௧. 

 By iterated expectations, the joint conditional cumulant generating function of future 

returns ݕ௧ାఛ ൌ ௧݂ାఛ െ ௧݂ and future spot variances ࢂ௧ାఛ conditional upon observing past data ࢅ௧ ൌ

ሼݕଵ, … ,  ௧ሽ is of the formݕ
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,௧ࢅ|࣒,ሺΦܨܩܥ  ߬ሻ ൌ lnܧሼexpሾΦݕ௧ାఛ ൅ ௧ାఛሿࢂ′࣒ |  	௧ሽࢅ

ൌ ;࣒,ሺΦܥ ߬ሻ ൅ ݃௧|௧ሾࡰሺΦ,࣒; ߬ሻሿ 
(4) 

where ݃௧|௧ሺ࣒ሻ ≡ ln࣒݁ൣܧ
ᇲࢂ೟ห  ௧ conditional upon dataࢂ ௧ሿ is the cumulant generating function ofࢅ

 ሺ∙ሻ for the SVJ(I,J,K) models are given in theࡰ ሺ∙ሻ andܥ ௧.  The precise functional forms ofࢅ

Appendix. 

1.3 Rounding models and filtration 

 Because SP S&P 500 futures had a price tick size of 0.05 through October 31, 1997, and 

0.10 thereafter,9 observed intradaily futures returns are not drawn from a continuous distribution.  

Indeed, 5% of all intradaily 15-minute returns over 1983-2008 are exactly zero despite intervening 

intraperiod price changes,10 while 42% are over a range of ±5 price ticks.  Consequently, the above 

continuous-time models are assumed to represent the underlying conditional distribution of futures 

returns; and those returns are rounded to the futures returns actually observed.11  The scaled 

probability of an observed log futures return ݕ௧ାఛ ൌ lnሺܨ௧ାఛ/ܨ௧ሻ	over a horizon of length ߬ is 

computed via Fourier inversion as the integrated conditional density of all future realizations 

falling within ±½ price tick of the observed ܨ௧ାఛ: 

 

௧ܲାఛ ൌ
ܾ݋ݎܲ ቂݕ௧ାఛ ∈ ቀݕ௧ାఛ, ௧ାఛቁݕ ௧ቃࢅ|

௧ାఛݕ െ ௧ାఛݕ
 

ൌ
1
ߨ2

න ݁஼ሺ௜஍,଴;ఛሻା	௚೟|೟ሾࡰሺ௜஍,଴;ఛሻሿ
ஶ

ିஶ
	
݁ି௜஍௬೟శഓ െ ݁ି௜஍௬೟శഓ

௧ାఛݕ െ ௧ାఛݕ
	݀Φ	

for	ݕ௧ାఛ ൌ ln ൬
௧ାఛܨ െ ߝ½

௧ܨ
൰ , ௧ାఛݕ ൌ ln ൬

௧ାఛܨ ൅ ߝ½
௧ܨ

൰ , and ߝ ൌ one	price	tick. 

(5) 

Parameters are then estimated by maximizing the log likelihood function ln ܮ ൌ ∑ ln ௧ܲାఛ௧ , using 

the AML filtration methodology discussed below for recursive updating of ݃௧|௧ሺ∙ሻ.  The computed 

probabilities are scaled by ݕ௧ାఛ െ  ௧ାఛ to make the results comparable in magnitude to logݕ

likelihood values based upon conditional probability densities. 

                                                 
9 The E-minis had a tick size of 0.25 throughout 1997-2016. 
10 There were on average 30 price changes per period for those intradaily periods with a futures return of zero. 
11 See Campbell, Lo, and MacKinlay (1997, Section 3.3.2) for an overview of rounding models. 
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 The conditional moment generating function ܩ௧|௧ሺ࣒ሻ ൌ expሾ݃௧|௧ሺ࣒ሻሿ that summarizes 

what is known about ࢂ௧ at time t can be updated recursively over time via a straightforward 

extension of the Approximate Maximum Likelihood (AML) methodology in Bates (2006, 2012): 

 
௧ାఛ|௧ାఛሺ࣒ሻܩ ൌ

1
ߨ2 ௧ܲାఛ

න ݁஼ሺ௜஍,࣒;ఛሻା ௚೟|೟ሾࡰሺ௜஍,࣒;ఛሻሿ
ஶ

ିஶ

݁ି௜஍୷ െ ݁ି௜஍௬

ݕ െ ݕ
	݀Φ.	

 

(6) 

Derivatives of Eq. (6) provide the noncentral posterior moments of ࢂ௧ାఛ conditional upon adding 

the latest datum ݕ௧ାఛ to the data set : 

 
ൣܧ ௜ܸ,௧ାఛ

௡ หࢅ௧ାఛ൧ ൌ
߲௠ܩ௧ାఛ|௧ାఛሺ࣒ሻ

߲߰௜
௡ ቤ

࣒ୀ଴

. (7) 

  

 As in Bates (2006, 2012), the distribution of the latent ௜ܸ௧’s conditional upon information 

 ௧ are modeled as independent and conditionally gamma, with joint conditional cumulantࢅ

generating function 

 
݃௧|௧ሺ࣒ሻ ൌ െ෍ݒ௜௧lnሺ1 െ ௜௧߰௜ሻߢ

ூ

௜ୀଵ

. (8) 

For an additional datum ݕ௧ାఛ, Equations (5) to (7) are used to update the posterior moments  

ൣܧ  ௜ܸ,௧ାఛหࢅ௧ାఛ൧ ≡ ෠ܸ௜,௧ାఛ|௧ାఛ ൌ ௜,௧ାఛݒ௜,௧ାఛߢ

ൣݎܸܽ ௜ܸ,௧ାఛหࢅ௧ାఛ൧ ≡ ௜ܲ,௧ାఛ|௧ାఛ ൌ ௜,௧ାఛߢ
ଶ  .௜,௧ାఛݒ

(9) 

From these are computed the parameters ሺߢ௜,௧ାఛ, ݅  for	௜,௧ାఛሻݒ ൌ 1,… ,  that summarize the ܫ

conditional CGF ݃௧ାఛ|௧ାఛሺ࣒ሻ for ࢂ௧ାఛ.  The algorithm is initiated using moment-matching 

unconditional gamma distributions for the initial ࢂ଴. 
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1.4 Intradaily and overnight seasonals 

 The effective length of any time interval of course differs for overnight and intradaily 15-

minute returns.  In addition, there are intradaily variations in trading activity and volatility, as well 

as day-of-the-week effects for intradaily and overnight effects.  Finally, the actual length of a given 

trading day occasionally varies because of late openings or early closings – especially the half-day 

trading that began in December 1990 on specific days adjacent to Christmas, the Fourth of July, 

and Thanksgiving. 

  Wednesday was arbitrarily selected as the benchmark day, with Tuesday close to 

Wednesday close representing one full business day.  The effective division between overnight 

returns (including the first 15 minutes of intradaily market trading) and intradaily returns (for the 

remainder of the day, typically until 3:16 PM CST) was estimated as variance proportions ሺ1 െ

ௗ݂௔௜௟௬, ௗ݂௔௜௟௬ሻ, respectively.  Calendar time t increases on day n, time segment m by a daily amount 

252߬௡௠ constructed as follows: 

 

252߬௡௠ ൌ

ە
ۖ
۔

ۖ
൫1ۓ െ ௗ݂௔௜௟௬൯expሺࢼைே′ࢊ௡ைேሻ	overnight	ሺm	ൌ	0ሻ																																

ௗ݂௔௜௟௬
exp	ሾ݂ሺ݉,ܯ௡ሻሿ

∑ exp	ሾ݂ሺ݉,ܯ௡ሻሿ
ெ೙
௠ୀଵ

expሺࢼூ஽′ࢊ௡ூ஽ሻ 	intradaily		ሺm	൐	0ሻ

5 െ ௗ݂௔௜௟௬ exp൫ߚெ௢௡ௗ௔௬൯ for	Sept.	10	‐17,	2001	ሺclose	to	openሻ

 (10) 

where ࢊ௡ைே are day-of-the-week, holiday, and weekend dummies for overnight returns; ࢊ௡ூ஽ are 

day-specific dummies for intradaily returns, including a half-day indicator for holiday-adjacent  

shortened trading days; and ܯ௡ is the number of 15-minute segments available on day n after the 

opening segment. 

 
 The function ݂ሺ݉,ܯ௡ሻ follows Andersen and Bollerslev (1997) in using Gallant’s (1981) 

flexible Fourier form approach to estimate the intradaily variance pattern: 

 
݂ሺ݉,ܯ௡ሻ ൌ ܾଵ

݉
௡ሺ݉ሻ݃ݒܣ

൅ ܾଶ
݉ଶ

௡ሺ݉ଶሻ݃ݒܣ
൅ ܾ௔௛1ሺ݉ ൌ ݄ܽሻ

൅෍൤ܿ௣ܿݏ݋ ൬2݌ߨ
݉
௡ܯ

൰ ൅ ݀௣݊݅ݏ ൬2݌ߨ
݉
௡ܯ

൰൨

ଶ

௣ୀଵ

 

(11) 
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where ݃ݒܣ௡ሺ݉ሻ ൌ ሺܯ௡ ൅ 1ሻ/2, ݃ݒܣ௡ሺ݉ଶሻ ൌ ሺܯ௡ ൅ 1ሻሺܯ௡ ൅ 2ሻ/6, and 1ሺ݉ ൌ ݄ܽሻ is an 

indicator of the after-hours trading segment, typically at ݉ ൌ  ௡.12ܯ

 As discussed above, there were 102 occasions over 1989-2002 when intradaily futures 

returns were constrained by endogenous price limits or exogenous market closings.  In such cases, 

I aggregated log futures returns over additional periods until the trading constraint or market 

closing was no longer in effect, and treated the yearly time interval associated with that aggregate 

log return as the sum of the spanned ߬௡௠’s.  This approach is equivalent when filtering volatility 

to treating the subintervals of that full interval as missing observations. 

 Table 1 contains the Vjump1b estimates of the parameters affecting intradaily and 

overnight variance patterns, while Figure 1 shows the composite effect.  Results from other models 

were almost identical.  Overnight trading (including trading in the first 15 minutes of Wednesday 

morning) typically accounts for 18.7% of the return variance from Tuesday close to Wednesday 

close.  Intradaily trading over the remainder of Wednesday accounts for the remaining 81.7%.  

These patterns are roughly comparable for other days of the week.  As shown in Figure 1 and in 

the Table 1 estimates, there is a U-shaped weekly pattern to overnight return variance and an 

inverse U-shaped pattern to intradaily variance, with the sum of the two imparting a roughly flat 

but slightly increasing trend in business-day variance across the week.  Holidays during the week 

or as part of a holiday weekend substantially increase the variance of “overnight” returns that span 

those holidays. 

 Figure 2 shows the intradaily variance pattern for separate 15-minute returns over 8:45 AM 

through 3:16 PM, excluding the initial 8:30 – 8:45 interval.  The roughly U-shaped intradaily 

pattern replicates Andersen and Bollerslev’s (1997) Figure 6b, which was estimated on 5-minute 

S&P 500 futures returns using a GARCH model.  Variance peaks in the afternoon at 2:15 – 2:30 

PM CST and falls off thereafter, especially in the after-hours 3 – 3:15 PM trading segment.  

Andersen and Bollerslev emphasize that it is critical to account for this periodic intradaily pattern, 

which if ignored would strongly affect estimates of variance mean reversion.  Accounting for this 

intradaily periodicity is also important when estimating jump risk.  Substantial distributional 

mixing is occurring, with opening and closing returns having roughly double the variance (40% 

                                                 
12 There was no after-hours session on October 23 through November 6, 1987. 
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higher volatility) of mid-day returns.  Failing to account for this distributional mixing would 

exaggerate the conditional leptokurtosis of 15-minute returns, and boost the estimated magnitudes 

of intradaily jump risk. 

1.4 Volatility and jump parameter estimates 

Table 2 contains estimates of the other jump-diffusion parameters that describe how diffusive spot 

variances ࢂ௧ evolve, and the distributions of jumps.  Five models are considered, all sequentially 

nested: 

Model Variance processes Jumps in log futures prices 

SVJ1 One-factor diffusive process for ଵܸ௧ Normally distributed jumps, with ଵܸ௧-
dependent jump intensity. 

Vjump1a One-factor jump-diffusion Jumps are correlated with ଵܸ௧ jumps, and 
have a ଵܸ௧-dependent jump intensity. 

Vjump1b One-factor jump-diffusion Two jumps:  one uncorrelated with ଵܸ௧ 
jumps, one correlated.  Both have ଵܸ௧-
dependent intensities.  

Vjump2 Two-factor additive variance 
process.  ଵܸ௧ follows a jump-
diffusion, while ଶܸ௧ is a pure-jump 
volatility spike process. 

Three jumps, with the last two correlated 
with ଵܸ௧ and ଶܸ௧ jumps, respectively. 

Vjump3 Three-factor additive variance 
process.  ଵܸ௧ follows a jump-
diffusion, while ଶܸ௧ and ଷܸ௧ are pure-
jump volatility spike processes. 

Four jumps, with the last three correlated 
with ଵܸ௧, ଶܸ௧, and ଷܸ௧ jumps, respectively. 

 Comparing the models in Table 2 and in Figure 3 indicates two important sources of overall 

improvement in fit.  First is the issue of accurately modeling high-frequency price changes of 0-5 

ticks, which account for 42% of the data.  Of primary importance is the introduction in model 

Vjump1b of a second futures jump component ଴ܰ௧ that is uncorrelated with variance jumps.  This 

futures jump component is estimated as a high-frequency small-amplitude jump component in 

Vjump1b, and is even higher in frequency and smaller in amplitude for the more general Vjump2 

and Vjump3 models (Table 2, Panel C).  While observationally equivalent for daily returns to just 

scaling up diffusive variance ܸ ଵ௧, the ܰ ଴௧ futures jump component helps model the 15-minute price 

changes of 0-5 ticks more precisely.   
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 Second is the impact of the 1987 crash.  Better modeling of intradaily developments on 

October 19 and 20 accounts for almost a quarter of the full-sample improvement in log likelihood 

of the most general Vjump3 model versus SVJ1.  The more general models also fit the fall of 2008 

progressively better, indicating the two largest stock market crises over 1983-2008 are 

substantially influencing parameter estimation.  Turbulent markets at other times (the first Gulf 

War, fall 1997, fall 1998, post-9/11/2001) do not appear to have had as distinct an impact on log 

likelihood fits.  However, log likelihoods are generally increasing throughout the full 1983-2008 

sample.   

 The more general models also have better fits over the out-of-sample 2009-16 period.  The 

progressively better fits of the Vjump1b, Vjump2 and Vjump3 models out-of-sample are entirely 

attributable to better modeling of 0-5 tick price movements. 

 The multifactor Vjump2 and Vjump3 models have progressively richer descriptions of 

variance dynamics relative to the nested Vjump1b model.  In particular, these two models indicate 

that substantial and self-exciting volatility spikes are an important component of volatility 

evolution.  In the Vjump2 estimates, ଶܸ௧ is typically near zero and has a ଵܸ௧-dependent intensity 

that averages out to ߣଶ଴ ൅ ሺܧଶଵߣ ଵܸ௧ሻ = 48 jumps per year.  If a variance jump occurs of average 

size 0.07, ܸ ଶ௧ increases to ሺ. 265ሻଶ and the jump intensity increases by ߣଶଶ̅ߛ௏ଶ ൌ 1486 jumps/year, 

or 6 jumps/day.  This increase in jump intensity implies that ߣଶଶ̅ߛ௏ଶ/ሺߚଶ െ ௏ଶሻߛଶଶ̅ߣ ൌ 3.0 

additional variance jumps are expected from every average-sized jump in ଶܸ௧.
13  Furthermore, the 

positively skewed exponential distribution can have ଶܸ௧ jumps that are two or three times the 

average jump magnitude ̅ߛ௏ଶ, with corresponding projections of six or nine additional variance 

jumps.  The associated futures price jumps are roughly mean-zero, with a standard deviation of 

0.36% and a strongly negative correlation (-.92) with the magnitude of the variance jumps.  The 

ଶܸ௧ spikes resulting from variance jumps are highly transient, with an estimated half-life of roughly 

1/3 day.   

 The Vjump3 model decomposes variance jumps into small, medium, and large sizes, with 

different properties and different associations with the futures returns from which they are filtered.  

                                                 
13 This calculation is based upon a continuous-time stochastic intensity ߣଶ௧ ൌ ଶ଴ߣ ൅ ଶଵࣅ ଵܸ௧ ൅ ଶଶߣ ଶܸ௧, with reversion 
rate ߚଶ െ  ௏ଶ for ଶܸ௧.  The increase in expected future jumps (from an increase in expected future jumpߛଶଶ̅ߣ
intensities) is approximately equal to but less than the number when jump intensities are constant within periods. 
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The moderately frequent ଶܸ௧ jumps of average size 0.070 in the Vjump2 model are divided further 

in the Vjump3 model into frequent jumps in ଶܸ௧ of average size 0.022, and more rare jumps in ଷܸ௧ 

with average size 0.076.  The ଶܸ௧ jumps have little self-propagation, die off rapidly within the day 

(half-life of 0.08 days), and primarily add additional and transient noise to the combined spot 

variance process ଵܸ௧ ൅ ଶܸ௧.  The large and relatively rare ଷܸ௧ jumps have a -0.76 correlation with 

associated log futures jumps ߛଷ~ሾെ0.2%, ሺ1.0%ሻଶሿ, indicating they are inferred from the largest 

15-minute or overnight futures returns.  ଷܸ௧ reverts towards zero with a half-life of 1.6 days, 

implying some spillover across days.  Sequences of ଷܸ௧ jumps typically initiate from near-zero 

values of ଷܸ௧, with a ଵܸ௧-dependent intensity that averages out to ߣଷ଴ ൅ ሺܧଷଵߣ ଵܸ௧ሻ = 7.4 jumps per 

year.  Conditional upon initiation, each average-sized ଷܸ௧ jump generates an expected additional 

4.9 jumps, through its impact on expected future jump intensities. 

 Define ௜ܸ௧
௧௢௧ as the total impact of the state variable ௜ܸ௧ upon diffusive and jump variance, 

using the variance factor loadings of Table 2, Panel D.  Figure 4 graphs the incremental 

contributions of those total variance components to end-of-day total spot volatility ሺ ଵܸ௧
௧௢௧ ൅ ଶܸ௧

௧௢௧ ൅

ଷܸ௧
௧௢௧ሻ½ over 1983-2016.  The total estimated number of jumps each day (close to close) is also 

graphed, using a filtration procedure described in Bates (2006, Appendix A.4) for each intradaily 

and overnight period.  The graph indicates that major but substantially transient volatility spikes 

from ଷܸ௧ jumps tend to occur when core volatility ඥ ଵܸ௧
௧௢௧ is relatively high.  Furthermore, the 

volatility spikes are typically the outcome of multiple synchronous jumps in log futures prices and 

underlying volatility.  For instance, the -32.7% change in the log futures price on October 19, 1987 

from the previous Friday’s closing value was the result of an estimated 34 jumps in ଷܸ௧.  The 

+5.7% and +17.4% returns on October 20 and 21 were the outcome of 97 and 52 jumps in ଷܸ௧, 

respectively.  The turbulent and predominantly falling market in the fall of 2008 was similarly the 

result of multiple intradaily and overnight jumps in ଶܸ௧ and ଷܸ௧ that accompanied predominantly 

negative stock market jumps. 

 Figure 5 shows the intradaily evolution of the three factors over October 12-30, 1987.  A 

declining stock market over the week of October 12-16, including an accelerating drop on Friday, 

October 16, set the stage for the stock market crash of October 19.  A volatility spike began 

developing late on Friday afternoon, and was stimulated further by the futures price opening 5.8% 

down on the morning of October 19.  Substantial intradaily drops over October 19 generated 
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further substantial estimated increases in the volatility-spike factor ඥ ଷܸ௧
௧௢௧, which ended the day at 

roughly 193% annualized (2.1% per quarter-hour).  Major market turbulence on October 20 

contributed to further estimated increases in ඥ ଷܸ௧
௧௢௧, which peaked at 282% annualized (3.1% per 

quarter-hour) at midday before ultimately declining in the afternoon and on October 21.  S&P 500 

futures prices opened 13.7% down on October 22, prompting another short-lived volatility burst 

that decayed as the market rebounded and stabilized. 

1.5 Return diagnostics 

 Whether the above models are broadly capturing the conditional distributions of returns 

can be examined by looking at the normalized returns ݖ௧ାఛ ൌ ܰିଵൣܨܦܥ൫ݕ௧ାఛหࢅ௧, દ෡൯൧, where 

 ሺ൉ሻ is the conditional cumulative distribution function derived from the specified models andܨܦܥ

computed by Fourier inversion of the associated conditional characteristic functions.  Under 

correct model specification, these residuals are independent draws from a ܰሺ0,1ሻ distribution.  

Table 3 reports in-sample summary statistics for the ݖ’s from various models, while Figure 6 

presents related normal probability plots.  Normalized returns are computed at two horizons:  for 

intradaily and overnight returns conditional upon past data, and for future daily returns (close-to-

close) conditional upon past intradaily and overnight data up through the close of the preceding 

day.     

 Table 3 and Figure 6 indicate that the multifactor models are doing an increasingly good 

job in-sample of capturing conditional distributions at the intradaily/overnight frequencies used 

when estimating the models.  The first four moments in all cases are roughly those of a standard 

normal distribution, although there are statistically significant deviations in all cases.  The graphs 

in the first column of Figure 6 show that the multifactor models Vjump2 and Vjump3 help capture 

intradaily outliers, which are often substantially sequential.  Both models do well for |z|-values 

less than 4, but have some difficulty in capturing the extreme tails (|z| > 4).  The Vjump2 model 

underpredicts extreme negative returns while the Vjump3 model overpredicts those returns; and 

both models underpredict extreme positive returns (z>4) in Figure 6. 

 The Table 3 statistics for daily data indicate that the one-factor variance models Vjump1a 

and Vjump1b have difficulty in capturing the stock market crash of October 19, 1987.  Whereas 

the Vjump1b model partially explains any single 15-minute intradaily outlier, the probability under 



18 
 

that model of observing the sequence of outliers that culminated in the overall -32.7% change in 

log futures prices is low – the equivalent to observing a -7 standard deviation draw from a standard 

normal distribution.  By contrast, the 2-factor model Vjump2 successfully captures the 1987 outlier 

as a volatility spike that is plausible under the (in-sample) parameter estimates.  The Vjump3 model 

does even better at capturing that one day – at the expense of a generally worse fit for negative 

daily returns (z<0) in Figure 6. 

 Autocorrelation estimates for ݖ and |ݖ| are also given in Table 3, as tests of the 

independence implications of a correctly-fitted model.  All models have a small but statistically 

significant negative autocorrelation in intradaily/overnight normalized returns – a result reflecting 

a small negative autocorrelation in the original log-differenced futures prices.  Autocorrelations in 

absolute normalized returns are reduced (although still statistically significant) under the Vjump2 

and Vjump3 models, indicating the multifactor models capture intradaily volatility dynamics 

better.  At the daily horizon, the autocorrelation in normalized returns is smaller, and is not 

statistically significant.  All models have a statistically significant -7% autocorrelation in daily 

normalized absolute returns |ݖ|, indicating room for improvement in the models’ implications for 

daily volatility dynamics. 

2. Realized variance 

2.1 Data description 

Define  

 
ܴ ௡ܸ ൌ ෍ൣln൫ܨ௡,௠൯ െ ln൫ܨ௡,௠ିଵ൯൧

ଶ
ெ೙

௠ୀଵ

 (12) 

as the daily realized variance on date n from ܯ௡ sequential intradaily time intervals that begin 15 

minutes after pit trading in the S&P 500 futures contract opens, and are typically 15 minutes in 

duration.  Because the effective length of the intradaily trading period varies on a daily basis, it is 

desirable to rescale realized variance by the aggregate intradaily time interval 

 
252߬௡ ൌ ෍ 252߬௡௠

ெ೙

௠ୀଵ

ൌ ௗ݂௔௜௟௬ expሺࢼூ஽
ᇱࢊ௡ூ஽ሻ 

(13) 



19 
 

where expሺࢼூ஽
ᇱࢊ௡ூ஽ሻ are the intradaily day-of-the-week effects reported in Table 1, and 252 

converts the time units from yearly to daily.  In particular,  

 
௡݈݋ݒܴ ൌ ඨ

ܴ ௡ܸ

252߬௡
 (14) 

is the realized volatility on a daily (24-hour) basis that can be compared to conditional volatility 

assessments from daily close-to-close returns.  The major impact of the daily 252߬௡ rescaling is 

to eliminate the impact of half-days adjacent to holidays, which would otherwise look like realized 

volatility inliers. 

 Table 4 describes characteristics of various transforms of realized volatility, while Figures 

7A and 7B graph realized variance and volatility.  Realized variance is an extremely skewed and 

leptokurtic random variable, with especially pronounced outliers during October 19-22, 1987.  By 

contrast, a log transform for volatility (or variance) appears substantially better behaved: 

substantially less pronounced skewness and excess kurtosis in Table 4, and more discernable 

persistence in Figure 7B.  Indeed, Figure 7B appears to offer significant support for the 2-factor 

log variance process estimated on daily data by Chernov, Gallant, Ghysels and Tauchen (2003), in 

contrast to the affine specifications explored here.  However, as discussed in Appendix A.3, this 

paper’s extended DPS volatility-jump model implies a heavy-tailed distribution for realized 

variance, which is potentially compatible with the occasional extreme outliers in Figure 7A. 

 A Box-Jenkins analysis indicates realized variance follows an ARMA(3,1) process, using 

a Bayes information criterion for model selection.  The statistical reliability of the least-squares 

ARMA estimation methodology is questionable given the extreme nonnormality of realized 

variance data.  Nevertheless, the result is supportive of the Vjump3 model, which implies an 

ARMA(3,2) process for realized variance. 

2.1 The Fourier transform of realized variance  

 As illustrated in Andersen, Bollerslev and Diebold (2007), the realized variance literature 

relies heavily upon the asymptotic convergence of realized variance to quadratic variation as the 

sampling frequency increases.  Over short intervals of length ߬, squared log returns are 

approximately the intraperiod quadratic variation:  
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ሺ ௧݂ାఛ െ ௧݂ሻଶ ൎ න ሺ݀ ௦݂ሻଶ

௧ାఛ

௦ୀ௧
 

ൌ න ቌ෍ ௜ܸ௦݀ݏ

ூ

௜ୀଵ

൅ ෍ ௝ߛ
ଶ݀ ௝ܰ௦

௃

௝ୀଵି௄

ቍ
௧ାఛ

௦ୀ௧
. 

(15) 

The mean and variance of the divergence are of order ܱሺ߬ଶሻ for jump-diffusions with finite-

activity jumps, such as those considered in this paper.  Consequently, the divergence of daily 

realized variance computed using ܶ/߬ intradaily squared log returns from intradaily quadratic 

variation has mean and variance of order ܱሺ߬ሻ, yielding asymptotic convergence.   

Quadratic variation is an affine random variable for affine processes.  The joint Fourier 

transform of integrated future ሺ݀ ௦݂ሻଶ and of future ࢂ௧ାఛ conditional upon current ࢂ௧ is 

exponentially affine in ࢂ௧, with an analytical form derived in Appendix A.3 for the processes in 

this paper.  This joint Fourier transform provides an approximate joint cumulant generating 

function for intradaily realized variance and of end-of-day spot variances conditional upon the data 

௡,ெ೙ࢅ
 available at the end of the previous day:  

 ln ௡,ெ೙ࢅ|೙శభ,ಾ೙శభࢂ௜஍ோ௏೙శభା௜࣒ᇱ݁ൣܧ
൧

ൎ ,ொ௏ሺ݅Φܥ ࣒݅; ࣎௡ାଵሻ ൅ ݃௡,ெ೙
ሾܦொ௏ሺ݅Φ, ࣒݅; ࣎௡ାଵሻሿ, 

(16) 

where ࣎௡ାଵ ൌ ൫߬௡ାଵ,଴	, … , ߬௡ାଵ,ெ೙శభ
൯
ᇱ
 is the vector of overnight and intradaily time intervals on 

date ݊ ൅ 1, and  ݃௡,ெ೙
ሺ࣒ሻ ≡ ln࣒݁ൣܧᇱࢂ೙,ಾ೙ห ௡,ெ೙ࢅ

ሿ is the joint cumulant generating function given 

above in Equation (7) for the end-of-day spot variances ࢂ௡,ெ೙
 conditional upon data ࢅ௡,ெ೙

 through 

the end of the day.  The accuracy of this approximation is examined below, for the 15-minute 

sampling frequency used in this paper. 

 The joint cumulant generating function (16) provides several additional diagnostics of the 

merits of the proposed affine processes.  First, it is possible to recursively generate filtered 

estimates ࢂ෡௡|௡
௧௢௧  of total end-of-day latent variance from daily observations of intradaily realized 

variance, using the same AML methodology used above with intradaily returns.  While daily 

realized variance perforce contains less information than the intradaily returns from which it is 
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computed, the information loss may possibly be viewed as tolerable relative to the significant costs 

of developing a microstructure model consistent with those intradaily returns.   

The magnitude of the information loss for total end-of-day spot variance is reported in 

Table 5, conditional upon the returns-based parameter estimates of Table 2.  Returns-based 

filtration has an 18% lower error (average conditional variance of residuals) than RV-based 

filtration under Vjump2 model, and 31% lower under the Vjump3 model.  However, the theoretical 

filtration ܴଶ’s are close:  56% versus 48% for the Vjump2 model, and 85% versus 79% for the 

Vjump3 models.  Realized variances can indeed subsume most of the information of intradaily 

returns. 

 Second, analytical or numerical derivatives of the joint cumulant generating function (16) 

provide conditional forecasts of future realized variances.  Table 6 compares next-day realized 

variance forecasts with those from two other methodologies:  ARMA models fitted to daily 

realized variance data, and the HAR-RV-J regressions of Andersen, Bollerslev, and Diebold (2003, 

Table 2B), who use bipower variation to decompose realized variance into diffusive and jump 

components: 

 
ܤ ௡ܸ ൌ

ߨ
2ሺ252߬௡ሻ

෍หln൫ܨ௡,௠൯ െ ln൫ܨ௡,௠ିଵ൯หหln൫ܨ௡,௠ାଵ൯ െ ln൫ܨ௡,௠൯ห

ெ೙

௠ୀଶ

 

௡ܬ ൌ maxሺ0, ௡ଶ݈݋ݒܴ െ ܤ ௡ܸሻ. 

(17) 

   Over the full 1983-2008 interval, filtered realized variance forecasts outperformed the 

ARMA approach.  The superior performance was especially pronounced for the Vjump3 model, 

whose ܴଶ of 0.271 substantially exceeded the ARMA’s ܴଶ of 0.130.  The ABD approach applied 

to 15-minute returns did even better in-sample, with an ܴଶ of 0.306. 

 However, the ABD regression approach lacks subsample stability.  Out-of-sample 

performance over 2009-13 is abysmal, while an HAR-RV-J model fitted as in ABD (2003) to the 

1990-2002 period does well over the quieter 2009-13 period but much worse over the full 1983-

2008 period.  The problem is the extreme outliers in 1987, which heavily affect regression fits and 

performances in-sample versus out-of-sample.  The ARMA(3,1) and Vjump time series models 
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categorize outliers better, and forecast substantially better than the ABD approach during the 

quieter out-of-sample 2009-13 period. 

Finally, how well the proposed models match the overall conditional distributions of RV 

realizations can be evaluated via normal probability plots, in the same fashion used above in Figure 

6 for intradaily and daily returns.  Normalized residuals ݖ௡ାଵ
ோ௏ ൌ ܰିଵൣܨܦܥொ௏൫ܴ ௡ܸାଵหࢅ௡,ெ೙

, Θ෡൯൧ 

were generated using quadratic variation CDFs evaluated by Fourier inversion of a transform of 

Eq. (15), evaluated at ࣒ ൌ ૙.  Their statistical properties are summarized in Table 7, while the 

corresponding normal probability plots are in Figure 8.  As a further diagnostic, comparable 

statistics and normal probability plots were generated from 100 runs of simulated intradaily data 

over 1983-2008, using model-specific parameter estimates and estimated time gaps. 

Three results stand out.  First, quadratic variation’s theoretical CDFs (green dotted line in 

Figure 8) match realized-variance CDFs from simulated data (solid red line) for median and above-

median RV values, but not for below-median values.  Quadratic variation is an imperfect 

approximation to 15-minute realized variance, especially with regard to the frequency of RV 

inliers.  However, QV-based conditional CDF’s accurately capture the theoretical frequency of 

RV outliers from simulated data; and those outliers are when extreme daily stock market returns 

are observed. 

Second, the more general models match the conditional distributions better, when 

compared with simulation-based benchmarks that correct the biases of the QV-based CDF’s.  The 

Vjump2 model substantially reduces the frequency of RV inliers and outliers, relative to the 

Vjump1b model.  The Vjump3 model captures RV outliers event better than the Vjump2 model, 

but does slightly worse with regard to RV inliers.  In all cases, however, the RV realization of 

ሺ26.9%ሻଶ on October 20, 1987 remains a major positive outlier. 

Finally, even the most general Vjump3 model has substantial and statistically significant 

deviations from simulation benchmarks, in Table 7 and Figure 8.  While these affine models 

capture the conditional distributions of daily returns reasonably well, as indicated in Figure 6, there 

appears to be significant room for improvement in their predictions for the overall conditional 

distributions of realized variances – especially the frequency of RV inliers.  The Vjump3 model 



23 
 

does do a reasonably good job of capturing median, above-median, and extreme RV realizations, 

however.  

3. Option pricing implications 

 

4. Summary and conclusions 

 Finite-activity jump-diffusion models such as Merton (1976) posit that log-differenced 

asset prices are drawn from a mixture of distributions, with major daily outliers the outcome of a 

draw from a higher-volatility distribution.  This model can be viewed as positing instantaneous but 

instantaneously transitory spikes in intradaily and daily volatility.  The intradaily evidence does 

not support this description of volatility evolution.  Instead, large daily market movements are the 

accumulation over the day of a series of rapid and self-exciting intradaily increases in conditional 

volatility, typically accompanied by a falling market.  Volatility can accelerate rapidly from 

relatively low levels, and can subside quickly from high levels; but the shifts take time to develop 

within a given day, and can spill over into subsequent days.  These short-lived volatility spikes 

affect both diffusive and jump volatility, with the former more important.  The initiation of a 

volatility spike is more likely when core volatility is already high.     

 Furthermore, intradaily jumps tend to be small, with the largest ones in the Vjump3 model 

having a standard deviation of 1%.  While these can look large at a 15-minute horizon, they are 

small relative to the 4-6% daily returns occasionally observed, let alone the 28% drop in December 

S&P 500 futures prices on October 19, 1987.  It is the accumulation of higher diffusive volatility 

and more frequent modest intradaily jumps that generates the major daily outliers occasionally 

observed.  These outliers are accompanied by sharp increases in observed realized variance. 

 The central intradaily dynamic proposed and estimated in this paper is self-exciting 

intradaily volatility spikes that accompany modest and predominantly negative stock market 

jumps.  Such models have not to my knowledge been previously estimated on intradaily data; but 

somewhat similar models that have been estimated on daily data.  Probably the closest to this paper 

in spirit and results is Chernov et al (2003)’s two-factor diffusive log volatility process.  They find 

that daily stock market outliers are generated by the second volatility factor, which possesses 
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considerable volatility feedback and is negatively correlated with stock market returns.  Aït-

Sahalia et al (2015) and Fulop et al (2015) estimate stock market processes with self-exciting 

synchronous volatility and stock market jumps, using daily data.  The generally lower number of 

state variables in those specifications precludes the volatility spikes estimated in this paper.  Stroud 

and Johannes (2014) estimate multifactor models with synchronous volatility and stock market 

jumps on 24-hour S&P 500 E-mini futures data over 2007-9; but their models have constant-

intensity rather than self-exciting jumps.   

 Like the realized variance literature – the bipower variation approach of Barndorff-Nielsen 

and Shephard (2004, 2006), or the more recent “threshold” approach of Mancini (2009) and 

Andersen, Fusari, and Todorov (2015) – the AML methodology in this paper can estimate the 

diffusive and jump components of quadratic variation and realized variance on any day.  The major 

difference is that the realized variance literature focuses on the level and composition of intradaily 

realized variance, whereas this paper focuses more on variance dynamics.  While the issue of 

whether an identifiable jump occurred within a given day is of some use in rejecting the hypothesis 

of no jumps, a single intradaily jump typically contributes little to overall daily variance.  Its 

importance lies more in its dynamic implications: a signal that future overall intradaily volatility 

from both diffusive and jump sources is likely to rise substantially.  It was such successive 

intradaily volatility increases that generated the market moves exceeding 10% in magnitude in 

1997 and 2008.  
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Appendix 

A.1 Joint characteristic functions for futures prices and spot variance 

 The fundamental building blocks for the multifactor and multi-jump models in this paper 

are based on the single-factor Duffie, Pan, and Singleton (2000) model, which has constant-

intensity synchronous correlated jumps in the log futures prices ௧݂ and underlying spot variance 

௧ܸ.  Let ݔ௧ be some additional latent characteristic of interest; e.g., the accumulated number or size 

of jumps, or quadratic variation and its integrated-variance and squared-jump components.  Each 

of these characteristics follows a pure-jump process, implying ሺ ௧݂, ௧ܸ ,  ௧ሻ evolve asݔ

 ݀ ௧݂ ൌ ሾߤ଴ ൅ ሺߤଵ െ ½ሻ ௧ܸሿ݀ݐ ൅ ඥ ௧ܸ݀ ௧ܹ ൅ ሺ݀ߛ ௧ܰ െ  ሻݐത݇݀ߣ

݀ ௧ܸ ൌ ሺߙ െ ߚ ௧ܸሻ݀ݐ ൅ ඥߪ ௧ܸ݀ ௏ܹ௧ ൅ ௏݀ߛ ௧ܰ	

௧ݔ݀ ൌ ௫ߤ ௧ܸ݀ݐ ൅ ௫݀ߛ ௧ܰ. 

(A.1) 

௧ܹ and ௏ܹ௧ are Wiener processes with correlation ߩ, ௧ܰ is a Poisson counter with constant 

intensity ߛ ,ߣ௏~݌ݔܧሺ̅ߛ௏) is the exponentially distributed jump in spot variance conditional upon a 

jump, and ߛ ൌ ௙ߛ ൅ ,௙ߛ௙~ܰሺ̅ߛ  ௏ forߛ௃ߩ ௙ߜ
ଶሻ is the correlated jump in log futures prices conditional 

upon a jump, with expected percentage jump size ത݇ ൌ ఊ݁ܧ െ 1 ൌ ݁ఊഥ೑ା½δ೑
మ
/൫1 െ ௏൯ߛ௃̅ߩ െ 	1.  

Specific processes for ݔ௧ will be discussed further below. 

 The generalized Fourier transform for future ࢠ௧ାఛ ൌ ሺ ௧݂ାఛ, ௧ܸାఛ,  ௧ାఛሻ and complexݔ

ሺ઴,࣒,   ௧ isࢠ ሻ conditional upon currentࣈ

;ሺτܨ  ઴,࣒, ௧ሻࢠ|ࣈ ≡ ሾexpሺ઴ܧ ௧݂ାఛ ൅ ࣒ ௧ܸାఛ ൅ ௧ାఛሻݔࣈ | ௧ሿࢠ

ൌ expሾ઴ ௧݂ ൅ ௧ݔࣈ ൅ ,࣒,ሺ߬;઴ܥ ሻࣈ ൅ ,࣒,ሺ߬;઴ܦ ሻࣈ ௧ܸ ൅ ,࣒,ሺ߬;઴ܧߣ  .ሿ	ሻࣈ
(A.2) 

ሺ൉ሻܨ௧݀ܧ ሺ൉ሻ solves the backward Kolmogorov equationܨ ൌ 0	associated with (A.1), implying that 

 ൉ሻ solve the following system of ordinary differential equations	ሺ߬;ܧ ൉ሻ and	ሺ߬;ܦ ,൉ሻ	ሺ߬;ܥ

subject	to	ܥሺ0;	൉ሻ ൌ ൉ሻ	ሺ0;ܧ ൌ 0 and ܦሺ0;	൉ሻ ൌ ࣒: 
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ఛܥ  ൌ ଴઴ߤ ൅ ܦߙ

ఛܦ ൌ ܰሺ઴, ሻࣈ ൅ ܦሺ઴ሻܯ ൅½ߪଶܦଶ 

ఛܧ ൌ ఊೣ൧ࣈ઴ሺఊ೑ାఘ಻ఊೇሻା஽ሺఛ;൉ሻఊೇା݁ൣܧ െ 1 െ઴ത݇ 

(A.3) 

where ܰሺ઴, ሻࣈ ൌ ½઴ଶ ൅ ሺߤଵ െ½ሻ઴ ൅ ሺ઴ሻܯ and ࣈ௫ߤ ൌ ઴ߪߩ െ  is used when estimating ࣈ  .ߚ

the latent characteristic ݔ௧ାఛ െ  ൉ሻ is14	ሺ߬;ܦ	௧, and is otherwise set to zero.  The solution forݔ

 
,࣒,ሺ߬;઴ܦ ሻࣈ ൌ

2ܰሺ઴, ሻࣈ ൅ ࣒ሾܯሺ઴ሻ ൅ ܴሺ߬,઴, ሻሿࣈ

ܴሺ߬,઴, ሻࣈ െ ሺ઴ሻܯ െ ଶ࣒ߪ
 (A.4) 

where 

 
ܴሺ߬,઴, ሻࣈ ൌ ,ሺ઴ߛ ሻࣈ

݁ఊሺ઴,ࣈሻఛ ൅ 1
݁ఊሺ઴,ࣈሻఛ െ 1

 and 

,ሺ઴ߛ ૆ሻ ൌ ඥܯሺ઴ሻଶ െ ,ଶܰሺ઴ߪ2  .ሻࣈ

(A.5) 

The solution for ܥሺ߬;	൉ሻ is  

,࣒,ሺ߬;઴ܥ  ሻࣈ ൌ ଴Φ߬ߤ െ
߬ߙ
ଶߪ

ሾܯሺ઴ሻ െ ,ሺ઴ߛ ૆ሻሿ

െ
ߙ2
ଶߪ

ln ቊ1 ൅ ሾܯሺ઴ሻ െ ,ሺ઴ߛ ૆ሻሿ
1 െ ݁ఊሺ઴,૆ሻఛ

,ሺ઴ߛ2 ૆ሻ
ቋ

െ
ߙ2
ଶߪ

ln ቈ1 െ
ଶ࣒ߪ

ܴሺ߬,઴, ሻࣈ െ ሺ઴ሻܯ
቉. 

 
 

(A.6) 

The solution for ܧሺ߬;	൉ሻ depends upon the specification of the jump distribution ߛ௫ of ݔ௧.  

For the benchmark model with ࣈ ൌ 0 that is used when filtering and estimating models, 

 
,࣒,ሺ߬;઴ܧ 0ሻ ൌ ݁઴ఊഥ೑ା½઴

మఋ೑
మ
ቊ
ܾ
݀
߬ െ ݁ ln ቈ1 ൅

ܿ൫݁ିఊሺ઴,૆ሻఛ െ 1൯
ܿ ൅ ݀

቉ቋ െ ൫1 ൅઴ത݇൯߬ 

≡ ሺ߬;઴,࣒ሻܪ	 െ ൫1 ൅઴ത݇൯߬ 

(A.7) 

where 

                                                 
14 If jumps have stochastic intensity ߣ௧ ൌ ߣ ൅ ଵߣ ௧ܸ, then ܦሺ߬;	൉ሻ solves ܦఛ ൌ ܰ ൅ܦܯ ൅½ߪଶܦଶ ൅  .൉ሿ	ሺ൉ሻ;ܦఛሾܧଵߣ
This is of cubic rather than quadratic order when ࣈ ൌ 0, and has an implicit but not explicit solution for ܦሺ߬;	൉ሻ, 
precluding rapid evaluation.  Such models typically are solved numerically; e.g., Carr and Wu (2008). 
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 ܾ ൌ ሾܯሺ઴ሻ െ ,ሺ઴ߛ	 ૆ሻሿ ൅  ଶ࣒ߪ

ܿ ൌ ሼെݏሾܯሺ઴ሻ ൅ ,ሺ઴ߛ ૆ሻሿ െ ,௏ܰሺ઴ߛ2̅ ሻሿሽࣈ ൅ ࣒ሼെߪݏଶ

െ ሺ઴ሻܯ௏ሾߛ̅ െ ,ሺ઴ߛ	 ૆ሻሿሽ 

݀ ൌ ሼݏሾܯሺ઴ሻ െ ,ሺ઴ߛ	 ૆ሻሿ ൅ ,௏ܰሺ઴ߛ2̅ ሻሿሽࣈ ൅ ࣒ሼߪݏଶ

൅ ሺ઴ሻܯ௏ሾߛ̅ ൅ ,ሺ઴ߛ	 ૆ሻሿሽ 

݁ ൌ
௏ߛ2̅

௏ߛ2̅
ଶܰሺ઴, ሻࣈ ൅ ݏሺ઴ሻܯ௏ߛ2̅ ൅ ଶݏଶߪ

	and 

ݏ ൌ 1 െ  .௏઴ߛ௃̅ߩ

(A.8) 

When ݔ௧ is the accumulated number or size of jumps, or the integrated variance, ܧሺ߬;	൉ሻ takes the 

following forms: 

,࣒,ሺ߬;઴ܧ ௫ߛ ௫ߤ ௧ݔ  ሻࣈ

௧ܰ 0 1 ݁ܪࣈሺ߬;઴,࣒ሻ െ ൫1 ൅઴ത݇൯߬ 

න ݀ߛ ௦ܰ

௧

଴
ሺ߬;઴ܪ ߛ 0  ൅ ሻ࣒,ࣈ െ ൫1 ൅઴ത݇൯߬ 

න ௦ܸ݀ݏ
௧

଴
ሺ߬;઴,࣒ሻܪ 0 1  െ ൫1 ൅઴ത݇൯߬ 

 

For quadratic variation ݔ௧ ൌ ׬ ሺ ௦ܸ݀ݏ ൅ ଶ݀ߛ ௦ܰሻ
௧
଴ , or its squared-jump subcomponent, the 

jump size ߛ௫ ൌ ଶߛ ൌ ൫ߛ௙ ൅ ௏൯ߛ௦௩ߩ
ଶ
.  This has a heavy-tailed distribution when ߛ௏ is exponentially 

distributed, with infinite values for the moment generating function ܧ	ሾ݁కఊ
మ
ሿ when ߦ is real and 

positive.  Quadratic variation is consequently also heavy-tailed for the DPS process, although the 

conditional characteristic function and moments of all orders exist.  Integrating successively over 

the independent Gaussian and exponential distributions of ߛ௙ and ߛ௏, the generalized transform of 

the jump components is  

  



30 
 

,࣒,௃ሺ઴ܨ  ሻࣈ ≡ ܧ exp ቂ઴൫ߛ௙ ൅ ௏൯ߛ௦௩ߩ ൅ ௏ߛ࣒ ൅ ௙ߛ൫ࣈ ൅ ௏൯ߛ௦௩ߩ
ଶ
ቃ 

ൌ
௏ߛሻࣈሼexpሾܽሺܧ

ଶ ൅ ܾሺ઴,࣒, ௏ߛሻࣈ ൅ ܿሺ઴, ሻሿሽࣈ

ට1 െ ௙ߜ2
ଶࣈ

 

ൌ
݁௖ሺ઴,ࣈሻ

௏ߛ2̅
ඨ
െߨ
௦௩૛ߩ ࣈ

ݓ	 ቆ݀ሺࣈሻ
ܾሺ઴,࣒, ௏ߛሻ̅ࣈ െ 1

ሻࣈ௏ඥܽሺߛ2̅
ቇ 

(A.9) 

where 

 
ܽሺࣈሻ ൌ

௦௩ଶߩ ࣈ

1 െ ௙ߜ2
૛ࣈ

 

ܾሺ઴,࣒, ሻࣈ ൌ ࣒ ൅
௦௩ሺ઴ߩ ൅ ሻࣈ௙ߛ2̅

1 െ ௙ߜ2
૛ࣈ

 

ܿሺ઴, ሻࣈ ൌ
௙ߜ½

ଶ઴ଶ ൅ ௙઴ߛ̅ ൅ ௙ߛ̅
ଶࣈ

1 െ ௙ߜ2
૛ࣈ

 

݀ሺࣈሻ ൌ ܵ݅݃݊ሼ݉ܫሾܽሺࣈሻሿሽ ൌ േ1 

(A.10) 

and ݓሺࢠሻ for complex-valued z is the Fadeeva or plasma-dispersion function (equation 7.1.3 in 

Abramowitz and Stegun (1972, p.297)).  It is a scaled version of the complex complementary error 

function (ݓሺࢠሻ ൌ ࢠି݁
మ
 ሻሻ, and can be evaluated using algorithm 680 of Poppe and Wijersࢠሺെ݂݅ܿݎ݁

(1990).15  Equation (A.9) is well-defined for complex-valued ࣈ provided ܴ݁ሾܽሺࣈሻሿ ൏ 0 – which is 

not true for small positive real values of ߦ.  The jump term ܧሺ߬;઴,࣒,  ሻ in (A.2) and (A.3) that isࣈ

used for estimating latent quadratic variation or its squared-jump component given parameter 

estimates can then be computed numerically; e.g., by trapezoidal integration: 

 
,࣒,ሺ߬;઴ܧ ሻࣈ ൌ න ;ݏሺܦ,௃ሺ઴ܨ ൉ሻ, ሻࣈ

ఛ

௦ୀ଴
ݏ݀ െ ൫1 ൅઴ത݇൯߬ 

ൎ
߬
2
ሾܨ௃ሺ઴,࣒, ሻࣈ ൅ ,࣒,ሺ߬;઴ܦ,௃ሺ઴ܨ ,ሻࣈ ሻሿࣈ െ ൫1 ൅઴ത݇൯߬. 

(A.11) 

 

                                                 
15Poppe and Wijers’ algorithm is accurate to 14 significant digits, whereas the complex-valued Faddeva function 
ZERFE in IMSL is accurate to only 10 digits.  Furthermore, ZERFE does not appear to be fully reliable for all 
values of ࣈ, when compared with direct numerical integration over the exponential density of ߛ௏. 



31 
 

A.2 Multiple state variables  

 Because all state variables ௜ܸ௧ are assumed to evolve independently intraperiod, log 

characteristic functions are the sum of the log characteristic functions associated with each ௜ܸ௧.  

Define દ௜
ௗ௜௙௙ ൌ ሺߤ௜, ,௜ߙ ,௜ߚ ,௜ߪ ;௜ߩ  ௫௜ሻ as the diffusive parameters associated with the varianceߤ

process ௜ܸ௧ and latent characteristic ݔ௜௧, and define દ௝
௝௨௠௣ ൌ ൫̅ߛ௏௝, ,௝ߩ ,௙௝ߛ̅  ௝൯ as the jumpߜ

parameters associated with jump process ௝ܰ௧.  Define  ܥ௜ሺ߬;઴,࣒௜, ,௜ሺ߬;઴,࣒௜ܦ ௜ሻ andࣈ  ௜ሻ asࣈ

equations (A.6) and (A.4) evaluated at parameter values દ௜
ௗ௜௙௙.  For ݅ ൐ 1, ሺߙ௜, ,௜ߪ ௜ሻߩ ൌ ૙ and 

௜ܥ ൌ 0.    Define ܧ௝൫τ;઴,࣒௝, ݆ ௝൯ forߦ ൐ 0 as the relevant above expression for ܧ൫τ;઴,࣒௝,  ௝൯ߦ

evaluated at (દ௝
ௗ௜௙௙, દ௜

௝௨௠௣ሻ.  Finally, let ܧ଴ሺτ;઴, ૆଴ሻ be the solution in the simpler special case 

associated with jump process ଴ܰ௧, for futures jumps that are unaccompanied by volatility jumps 

Because jump intensities are assumed constant intraperiod, the generalized Fourier transform for 

future ࢠ௧ାఛ ൌ ሺ ௧݂ାఛ, ,௧ାఛࢂ ࢞௧ାఛሻ conditional upon current  ࢠ௧ is a multifactor extension of (A.2): 

;ሺτܨ  ઴,࣒, ௧ሻࢠ	|ࣈ 	≡ ሾexpሺ઴ܧ	 ௧݂ାఛ ൅ ௧ାఛࢂ′࣒ ൅ |ᇱ࢞௧ାఛሻࣈ  ௧ሿࢠ

ൌ exp ൥઴ ௧݂ ൅ ଴઴߬ߤ ൅ ᇱ࢞௧ࣈ ൅෍ሾܥ௜ሺ߬;઴,࣒௜, ௜ሻࣈ ൅ ,௜ሺ߬;઴,࣒௜ܦ ௜ሻࣈ ௜ܸ௧ሿ
ூ

௜ୀଵ

 

	൅	ߣ଴ଵ ଵܸ௧ܧ଴ሺ߬;઴, ૆଴ሻ 	൅෍൫ߣ௝଴ ൅ ௝ࣅ
௧൯ࢂ′

௃

௝ୀଵ

,௝൫߬;઴,࣒௝ܧ  .௝൯቏ࣈ

 

(A.12) 

A.3 Time aggregation 

The key modification in this paper relative to Duffie et al (2000) is to allow jump intensities to 

vary across periods, while maintaining the DPS assumption of a constant intraperiod jump 

intensity.  By iterating expectations over (A.12) progressively backwards in time, the multiperiod 

conditional cumulant generating function takes the affine concatenated form 

 ln ઴ሺ௙೅ି௙೟ሻା࣒݁ൣܧ
ᇲࢂ೅ାࣈᇲሺ࢞೅ି࢞೟ሻ|ࢂ௧൧

ൌ ଴઴ሺܶߤ െ ሻݐ ൅෍ܥ௧,்
௜ ሺ઴,࣒, ሻࣈ ൅ ்,௧ܦ

௜ ሺ઴,࣒, ሻࣈ ௜ܸ௧

ூ

௜ୀଵ

. 
(A.13) 
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Its components satisfy the backwards recursion 

 
்,௧ܦ
ଵ ൌ ,ଵ൫߬௧;઴ܦ ்,௧ାଵܦ

ଵ , ଵ൯ࣈ ൅ ,଴ሺ߬௧;઴ܧ଴ଵߣ ଴ሻࣈ ൅෍ߣ௝ଵܧଵሺ߬௧;઴,ܦ௧ାଵ,்
ଵ , ௝ሻࣈ

௃

௝ୀଵ

 

்,௧ܦ
௜ ൌ ,௜൫߬௧;઴ܦ ்,௧ାଵܦ

௜ , ௜൯ࣈ ൅ ,௜൫߬௧;઴ܧ௜௜ߣ ்,௧ାଵܦ
௜ , ݅	ݎ݋݂	௜൯ࣈ ൐ 1 

்,௧ܥ
௜ ൌ ்,௧ାଵܥ

௜ ൅ ,௜൫߬;઴ܥ ்,௧ାଵܦ
௜ , ௜൯ࣈ ൅ ,௜൫߬;઴ܧ௜଴ߣ ்,௧ାଵܦ

௜ , ௜൯ࣈ ݎ݋݂ ݅ ൒ 1 

(A.14) 

subject to the terminal condition ሺ்ܥ,்
௜ , ்,்ܦ

௜ ሻ ൌ ሺ0,࣒௜ሻ for ݅ ൌ 1,… ,  .ܫ

A.4 Realized variance  

The diagnostics of realized variance largely rely on approximating it by quadratic variation.  The 

divergence 

 
ሺ ௧݂ାఛ െ ௧݂ሻଶ െ න ሺ݀ ௦݂ሻଶ

௧ାఛ

௦ୀ௧
 (A.15) 

of squared returns from quadratic variation over a 15-minute interval has mean and variance of 

order ܱሺ߬ଶሻ.  Consequently, the divergence  

 
෍ሺΔ ௠݂ሻଶ
்/த

௠ୀଵ

െ න ሺ݀ ௦݂ሻଶ
்

௦ୀ௧
 (A.16) 

of daily realized variance from intradaily quadratic variation has mean and variance of order ܱ ሺ߬ሻ.  

Moments and other characteristics of realized variance can therefore be approximated by using 

corresponding characteristics of daily quadratic variation, computed using (A.13) for ܳ ௧ܸ,் ൌ

׬ ൫∑ ௜ܸ௦݀ݏ ൅ ∑ ௝ߛ
ଶ

௝௜ ݀ ௝ܰ௦൯
்
௦ୀ௧ :  

 
ln ࣒݁ൣܧ

ᇲࢂ೅ାࣈ	ோ௏೟,೅|ࢂ௧൧ ൎ෍ܥ௧,்
௜ ൫0,࣒, ܳ|ࣈ ௧ܸ,்൯ ൅ ்,௧ܦ

௜ ൫0,࣒, ܳ|ࣈ ௧ܸ,்൯ ௜ܸ௧

ூ

௜ୀଵ

. (A.17) 

(A.17) can also be used to filter latent spot variances ࢂ௧ from observed realized variances ܴ ௧ܸ,் ൎ

்ݔ െ ்݂ ௧ from observedࢂ ௧, in the same fashion used for filteringݔ െ ௧݂.  I omit overnight squared 

returns in the recursion (A.14) by setting ઴ ൌ 0 for the overnight period, when computing the 

joint transform of tomorrow’s intradaily realized variance and end-of-day spot variances 

conditional upon information available at the end of today. 
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Table 1:  Intradaily and overnight variance patterns of S&P futures returns; Vjump1b 
estimates 

Parameter Estimate Std. error t-statistic 

ௗ݂௔௜௟௬ 0.808 0.006 145.7 
 
Intradaily variance pattern 

ܾଵ 
ܾଶ 
ܾ௔௛ 
ܿଵ 
ܿଶ 
݀ଵ 
݀ଶ 

1.587
-0.622
-0.058
0.750
0.091

-0.203
-0.018

0.266
0.095
0.036
0.050
0.012
0.012
0.007

5.96 
-6.53 
-1.61 
14.90 
7.29 

-16.90 
-2.49 

 
Day-of-the-week influences on aggregate intradaily variances, relative to 
Wednesday.  The t-statistics test the null hypothesis value of 1.  

Monday 
Tuesday 

Wednesday 
Thursday 

Friday 
Half-day 

0.874
0.967

       1 
0.987
0.973
0.389

0.013
0.013

0.014
0.015
0.029

-9.39 
-2.48 

 
-0.92 
-1.84 

-21.20 
 
Day-of-the-week influences on overnight variances, relative to Tuesday 
close -> Wednesday open.  The t-statistics test the null hypothesis of 1.  

Monday -> Tuesday 
Tuesday -> Wednesday 
Wednesday -> Thurday 

Thursday -> Friday 
2-day holiday 

3-day weekend  
4- or 5-day holiday weekend 

1.107
       1 

1.078
1.490
2.514
1.347
3.191

0.051

0.050
0.072
0.496
0.065
0.301

2.11 
 

1.56 
6.78 
3.05 
5.38 
7.29 

 
Notes:  ௗ݂௔௜௟௬ is the fraction of 24-hour variance attributable to intradaily trading, excluding the 
first 15 minutes.  Equation (11) in the paper gives the intradaily variance pattern for the above 
parameters.  Day-of-the-week influences are relative to benchmark Wednesday values of 1.  The 
1-.389 =  61.1% lower intradaily variance on the 41 half-days adjacent to holidays includes the 
impact of fewer trading hours on those days.  
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Table 2: Estimates of the log futures price process 

 
݀ ௧݂ ൌ ݐ଴݀ߤ ൅෍ൣሺߤ௜ െ½ሻ ௜ܸ௧݀ݐ ൅ ඥ ௜ܸ௧݀ ௜ܹ௧൧

ூ

௜ୀଵ

൅ ෍ ௝݀ߛ ௝ܰ௧ െ ௝௧ߣ	 ത݇௝݀ݐ

௃

௝ୀଵି௄

	

݀ ଵܸ௧ ൌ ሺߙ െ ଵߚ ଵܸ௧ሻ݀ݐ ൅ ඥߪ ଵܸ௧݀ ௏ܹ௧ ൅ ௏ଵ݀ߛ ଵܰ௧	

݀ ௜ܸ௧ ൌ െߚ௜ ௜ܸ௧݀ݐ ൅ ௏௜݀ߛ ௜ܰ௧ for ݅ ൐ 1 

(1)

where I is the number of state variables in ࢂ௧, J is the number of synchronous jumps in spot 
variance and futures prices, and K is the number of jumps in futures prices only.  Diffusive 
shocks ݀ ଵܹ௧ and ݀ ௏ܹ௧ have correlation ߩ, while the intraperiod jump intensities ߣ௝௧ of Poisson 

counter ௝ܰ௧ are given below in Panel C.   

Panel A:  Log likelihoods of various models 

 
Model 

 
I 

 
J 

 
K 

Number of 
parameters 

 
ln  ܮ

Δ ln  ܮ
0-5 ticks >5 ticks All 

In-sample (1983-2008) 
SVJ1 
Vjump1a 
Vjump1b 
Vjump2 
Vjump3 

1 
1 
1 
2 
3 

0 
1 
1 
2 
3 

1 
0 
1 
1 
1 

28 
30 
33 
42 
51 

891,425.32 
892,063.47 
892,575.37 
893,212.58 
893,432.73 

740.48
1533.22
255.16
146.89

 
-102.32 

-1021.32 
382.05 
73.24 

 
638.16 
511.90 
637.21 
220.13 

 
Out-of-sample (2009-16) 
SVJ1 
Vjump1a 
Vjump1b 
Vjump2 
Vjump3 

264,883.15 
264,860.57 
265,062.33 
265,200.88 
265,269.26 

-33.26
673.23
257.92
141.82

 
10.68 

-471.46 
-119.37 

73.43 

 
-22.58 
201.76 
138.55 
68.39 
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Panel B:  Parameter estimates for specific models.   
Parameter estimates are generally on an annualized basis, with Tuesday close to Wednesday 
close equal to 1/252 years.  The half-lives ܮܪ௜ ൌ 252 ሺln 2ሻ /ሺߚ௜ െ  ௏௜ሻ to variance shocksߛ௜௜̅ߣ
are reported in days.  

 
Parameters\Model 

Vjump1a Vjump1b Vjump2 Vjump3 

 ଵܸ௧ ଵܸ௧ ଵܸ௧ ଶܸ௧ ଵܸ௧ ଶܸ௧ ଷܸ௧
Conditional mean    

 ଴ߤ
 

 ௜ߤ

-.10  
(.02) 
8.0  

(1.5) 

-.08 
 (.03) 
8.0  

(2.5)  

-.08 
(.04) 
5.9  

(4.3) 

 
 

7.4 
(2.95) 

.01 
(.04) 
2.5 

(9.0) 

 
 

1.9 
(11.7) 

 
 

0.3 
(3.7) 

Variance processes    

ඥܧሺ ௜ܸሻ 
 

 ሺdaysሻ	௜ܮܪ
 

 ߪ
 

 ߩ

.155 
(.003) 

3.6  
(0.2) 
.47  

(.05) 
-.70  
(.07) 

.131  
(.003) 

5.2  
(0.3) 
.51  

(.02) 
-.63 

 (.03) 

.108 
(.003) 

9.4 
 (0.7) 
.26  

(.03) 
-.81 
(.08) 

.082 
(.004) 
0.35  

(0.03) 

.092 
(.004) 
13.4 
(1.1) 
.19 

(.03) 
-.99 
(.13) 

.070 
(.004) 
0.08 

(0.01) 

.071 
(.009) 

1.6 
(0.4) 
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Panel C:  Jump parameters from specific models.     
Annualized jump intensities for Poisson counter ௝ܰ௧ are 

௝௧ߣ ൌ ൜
௝ଵߣ											 ଵܸ௧∗																		for	݆ ൑ 1
௝଴ߣ ൅ ௝ଵߣ ଵܸ௧∗ ൅ ௝௝ߣ ௝ܸ௧∗	for	݆ ൐ 1 

where ௝ܸ௧∗’s are annualized spot variances at the start of the period.  Spot variance jumps are 

distributed ߛ௏௝	~	݌ݔܧሺ̅ߛ௏௝), with no variance jumps (̅ߛ௏௝ ൌ 0) for  ݆ ൌ 0.  Log futures price 

jumps ߛ௝	~ሺ̅ߛ௝, ௝ߜ
ଶሻ have correlation ݎݎ݋ܥ௝ ൌ  ௏௝/δ௝ with variance jumps.  Poisson counter ଴ܰ௧ߛ௝̅ߩ

indicates high-frequency jumps in futures prices that are unaccompanied by volatility jumps.  
 ሿ is the expected number of additional jumps over a 1-day or infinite horizon conditionalܬ|ሾΔܰܧ
upon an average-sized variance jump ̅ߛ௏௝.  The estimated average length of an intradaily 15-

minute period was 1.20e-4 years.  Standard errors are in parentheses.   

 Vjump1
a 

Vjump1b Vjump2 Vjump3 

ଵܰ௧ ଴ܰ௧ ଵܰ௧ ଴ܰ௧ ଵܰ௧ ଶܰ௧ ଴ܰ௧ ଵܰ௧ ଶܰ௧ ଷܰ௧
 ௝଴      5.4ߣ

(2.8) 
  9.8 

(23.3) 
0.0 

(0.0) 
௝ଵߣ			
ൈ 10ିସ 

 38.3 
 (3.7) 

 130 
(30) 

 0.36 
(0.06) 

229 
(82) 

6.5 
(2.2) 

5.5 
(1.3) 

.09 
(.01) 

௝௝ߣ			
ൈ 10ିସ 

2.0 
(0.1) 

 0.31 
(0.02) 

 5.6 
(1.5) 

2.1 
(0.6) 

 6.5 
(2.2) 

2.0 
(1.3) 

0.7 
(0.2) 

௝ߛ̅			 ൈ 10ସ -5.1 
(0.7) 

-1.0 
(0.1) 

-20.4 
 (4.0) 

-0.8 
(0.2) 

-2.3 
(1.4) 

-2.5 
(3.9) 

-0.6 
(0.2) 

0.2 
(1.7) 

-3.2 
(2.2) 

-19.9 
(8.6) 

௝ߜ			 ൈ 10ସ 32.6 
(0.6) 

11.4 
(0.3) 

90.2 
(2.7) 

6.9 
(0.5) 

20.2 
(1.6) 

36.5 
(2.5) 

5.6 
(0.5) 

17.8 
(1.6) 

6.3 
(6.4) 

103.3   
(7.1) 

 ௏௝ .0063ߛ̅
(.0002) 

 .0115 
(.0006) 

 .0016 
(.0002) 

.070 
(.011) 

 .0006 
(.0001) 

.022 
(.003) 

.076 
(.012) 

 ௝ -.27ߩ
(.01) 

 -.49 
(.03) 

 -1.18 
(0.22) 

-.05 
(.01) 

 -1.89 
(0.40) 

-.02 
(.01) 

-.10 
(.02) 

 ௝ -.52ݎݎ݋ܥ
(.02) 

 -.62 
(.03) 

 -.60 
(.07) 

-.92 
(.05) 

 -.68 
(.09) 

-.83 
(.96) 

-.76 
(.06) 

 ൧ܬΔܰୢୟ୷หൣܧ
 

 ሿܬ|ሾΔܰஶܧ

0.46 
(0.02) 
2.63 

(0.16) 

16.4 
 (1.4) 
131 
(14) 

0.13 
(0.01) 
1.05 

(0.09) 

5.1 
(1.1) 
72 

(16) 

0.22 
(0.04) 

3.1 
(0.5) 

2.6 
(0.3) 
3.0 

(0.4) 

5.6 
(1.6) 
112 
(33) 

0.16 
(0.03) 

3.2 
(0.7) 

0.20 
(0.11) 
0.20 

(0.11) 

1.7 
(0.2) 
4.9 

(1.4) 
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Panel D:  Variance factor loadings 

 
Model 
and ௜ܸ’s 

Constant 
variance 
௜ߣ
଴ܧሺߛ௜

ଶሻ 

 
 

ሺܧ ௜ܸ௧ሻ 

 
 

ሺܦܵ ௜ܸ௧ሻ 

 
Jump variance loading ߣ௝௜ܧሺߛ௝

ଶሻ on ௜ܸ௧ 
Total 
variance
loading ݆ ൌ 0 1 2 3 

Vjump1a 
   ଵܸ 

 .0239 
(.0008) 

.0211 
(.0008) 

 
 

0.22 
(0.01) 

  1.22 
(0.01) 

Vjump1b 
   ଵܸ 

 .0171 
(.0008) 

.0165 
(.0010) 

0.50 
(0.03) 

0.26 
(0.02) 

  1.76 
(0.04) 

Vjump2 
   ଵܸ 
 
   ଶܸ 

 
 
 

.0001 
(.0000) 

 
.0116 

(.0007) 
.0066 

(.0007) 

 
.0077 

(.0005) 
.0431 

(.0041) 

 
0.63 

(0.07) 
 

 
0.23 

(0.03) 

 
0.05 

(0.01) 
0.28 

(0.07) 

  
1.91 

(0.09) 
1.28 

(0.07) 
Vjump3 
   ଵܸ 
 
   ଶܸ 
 
   ଷܸ 
 

 
 
 

.0000 
(.0000) 
.0000 

(.0000) 

 
.0085 

(.0008) 
.0049 

(.0006) 
.0051 

(.0013) 

 
.0053 

(.0005) 
.0118 

(.0009) 
.0478 

(.0115) 

 
0.72 

(0.13) 

 
0.21 

(0.04) 

 
0.03 

(0.05) 
0.01 

(0.02) 

 
0.10 

(0.02) 
 
 

0.79 
(0.14) 

 
2.05 

(0.17) 
1.01 

(0.02) 
1.79 

(0.14) 
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Table 3: Statistical properties of the normalized intradaily returns ݖ௧ାଵ ൌ
ܰିଵൣܨܦܥ൫ݕ௧ାଵหࢅ௧, Θ෡൯൧ for parameter estimates દ෡  from various models.  Under correct model 

specification, the ݖ௧ାଵ’s should be independent draws from a Gaussian distribution with zero 
mean and unitary variance.  Heteroskedasticity-consistent standard errors are in parentheses.    

 Vjump1a Vjump1b Vjump2 Vjump3  
 
Intradaily and overnight returns (174,854 observations) 
Maximum 
Minimum 
Mean 
(Std. error) 
Std. deviation 
Skewness 
Excess kurtosis 
 
Corr(ݖ௧ାଵ,  ௧ሻݖ
(Std. error) 
Corr(|ݖ௧ାଵ|,  ௧|ሻݖ|
(Std. error) 

 6.49 
-7.38 
.064 

(.002) 
.956 
.03 
-.11 

 
-.013 
(.003) 
.016 

(.003) 

 5.46 
-5.17 
.063 

(0.002) 
0.970 
0.01 
-.20 

 
-.015 
(.002) 
.025 

(.003) 

5.54 
-5.01 
.053 

(.002) 
0.999 
-0.01 
0.02 

 
-.012 
(.002) 
.006 

(.002) 

4.78 
-4.29 
0.050 

(0.002) 
1.001 
-0.02 
0.00 

 
-.013 
(.002) 
-.005 
(.002) 

  
Daily returns (6,558 observations) 
Maximum 
Minimum 
Mean 
Std. error 
Std. deviation 
Skewness 
Excess kurtosis  
 
Corr(ݖ௧ାଵ,  ௧ሻݖ
(Std. error) 
Corr(|ݖ௧ାଵ|,  ௧|ሻݖ|
(Std. error) 

4.10 
-7.39 
0.004 
0.013 
1.051 
0.01 
0.79 

 
-.004 
(.012) 
-.070 
(.012) 

3.99 
-7.11 
0.013 
0.013 
1.037 
0.03 
0.53 

 
-.006 
(.012) 
-.068 
(.012) 

3.54 
-5.17 
0.019 
0.013 
1.028 
0.00 
0.17 

 
-.004 
(.012) 
-.070 
(.012) 

3.91 
-4.84 
0.007 
0.013 
1.045 
-0.04 
0.31 

 
-.009 
(.012) 
-.070 
(.012) 
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Table 4:  Summary statistics for daily realized volatility measures 

Realized daily volatility is ܴ݈݋ݒ௡ ൌ ට
∑ሺ୼ ୪୬ிሻ	మ

ଶହଶఛ೙
 , where 252߬௡ is the estimated length of the 

intradaily period in days, with an average value of 0.774 (Vjump3 estimates).  ARMA models 
are estimated in RATS, using the Bayes information criterion for model selection.   

૛࢔࢒࢕࢜ࡾ  ሻ࢔࢒࢕࢜ࡾሺܖܔ ࢔࢒࢕࢜ࡾ   
Maximum 
Minimum 
Mean 
(Std. error) 
Median 
Std. deviation 
Skewness 
Excess kurtosis 
ARMA model 

0.027530 
0.000003 
0.000130 

(0.000012) 
0.000062 
0.000982 

63.4 
4553 

ARMA(3,1) 

26.93% 
0.17% 
0.91% 

(0.01%) 
0.79% 
0.68% 
12.5 
367 

ARMA(3,1) 

-1.312 
-6.380 
-4.825 
(0.006) 
-4.847 
0.477 
0.63 
1.83 

ARMA(3,2) 

Major Rvol outliers:  26.9% (10/20/1987), 14.8% (10/19/1987), 11.4% (10/22/1987), 8.7% 
(10/10/2008) 

Table 5:  The informational content over 1983-2008 of intradaily/overnight returns or 
realized variances for total latent variances, including jump risk. 

௡ܸ
௧௢௧ ൌ ෠ܸ

௡|௡
௧௢௧ ൅ ,௡ߝ ,௧~ሺ0ߝ				 ௡ܲ|௡ሻ 

ܴଶ ≡ 1	 െ	
௡ଶሻሿߝ௡ሺܧሾܧ

ሾݎܸܽ ௡ܸ
௧௢௧ሿ

	ൌ 	1	 െ	
ሾ݃ݒܣ ௡ܲ|௡ሿ

ሾݎܸܽ ௡ܸ
௧௢௧ሿ

 

Model & Data ࡱሾ࢚࢕࢚࢔ࢂሿ ࢂൣࢍ࢜࡭෡࢔|࢔
࢚࢕࢚ ൧ ሿ࢚࢕࢚࢔ࢂሾ࢘ࢇࢂ  ࢔|࢔෡ࢂൣ࢘ࢇࢂ

࢚࢕࢚ ൧  ૛ࡾ ሿ࢔࢒࢔ࡼሾࢍ࢜࡭

Vjump2 | ࢔ࡹ,࢔ࢅ
 0.0307 0.0301 3.3e-3 5.7e-3 1.4e-3 0.56 

Vjump2 | 3.3 0.0298 0.0307 ࢔ࢂࡾe-3 11.3e-3 1.7e-3 0.48 
 

Vjump3 | ࢔ࡹ,࢔ࢅ
 0.0315 0.0314 7.6e-3 11.6e-3 1.1e-3 0.85 

Vjump3 | 7.6 0.0310 0.0315 ࢔ࢂࡾe-5 15.6e-3 1.6e-3 0.79 
 
Unconditional moments of latent end-of-day total variance ௡ܸ

௧௢௧ are based upon model-specific 

parameter estimates.  End-of-day filtered total variances ෠ܸ௡|௡
௧௢௧ use either all past intradaily and 

overnight returns (࢔ࡹ,࢔ࢅ
) or all past observed daily realized variances (࢔ࢂࡾ), with the in-sample 

moments over 1983-2008 reported in the table.   
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Table 6: Forecasting regressions for realized variance over 1983-2013 

Forecasting regressions are of the form 

௡ାଵ݈݋ݒܴ    
ଶ ൌ ܽ ൅ ௡ାଵ݈݋ݒ௡ሺܴܧ	ܾ

ଶ ሻ ൅   ௡ାଵߝ

with ܴଶ’s  reported for ሺܽ, ܾሻ ൌ ሺ0, 1ሻ.  The table gives the Mincer-Zarnowitz (MZ) 
decomposition of the mean squared error into squared-bias (ܽ ് 0ሻ, inefficiency (ܾ ് 1ሻ and 
residual-error (ܸܽݎሺߝሻሻ components.  Forecasts of next-day’s realized variance are from six 
approaches:  an ARMA(3,1) model fitted to daily realized variance over 1983-2008; RV 
forecasts from the Vjump1b, Vjump2, and Vjump3 models; the HAR-RV-J regression approach 
of Andersen, Bollerslev and Diebold (2003, Table 2B), for the full 1983-2008 period, and for 
their original 1990-2002 period. 

The HAR-RV-J regression over 1983-2008 was 

௡ାଵ݈݋ݒܴ
ଶ ൌ 0.05e‐5 ൅ ௡ଶ݈݋ݒ1.63ܴ െ ௡ିହ݈݋ݒ0.013ܴ

ଶ െ ௡ିଶଶ݈݋ݒ0.008ܴ
ଶ െ ௡ܬ	4.50 ൅ 	,௡ାଵߝ

																					ሺ5.03e‐5ሻ		ሺ0.88ሻ													ሺ0.038ሻ																	ሺ0.015ሻ																				ሺ2.78ሻ 

where ܬ௡ ൌ max	ሺ0, ௡ଶ݈݋ݒܴ െ ܤ ௡ܸሻ is the daily jump component given daily bipower variation 
ܤ ௡ܸ computed from 15-minute returns and divided by the intradaily horizon 252߬௡, measured in 
days.  HAR-RV-J standard errors (in parentheses) use Newey-West heteroskedasticity-consistent 
estimation with 5 daily lags.  

 
Model 

MSE 
ൈ 10଼ 

MZ decomposition (in %)  
ܴଶ Bias2 Ineff. Resid. 

 
In-sample (1983-2008)  
ARMA(3,1) 84.17 0 0 100 0.130 
Vjump1b 
Vjump2 
Vjump3 

83.45 
79.42 
70.51 

0 
0 
0 

4 
17 
6 

96 
83 
94 

0.139 
0.179 
0.271 

ABD (1983-2008) 
ABD (1990-2002) 

67.14 
91.69 

0 
0 

0 
5 

100 
95 

0.306 
0.098 

 
Out of sample (2009-13) 
ARMA(3,1) 2.06 1 6 94  0.392 
Vjump1b 
Vjump2 
Vjump3 

1.83 
1.84 
1.87 

0 
1 
1 

0 
0 
2 

100 
99 
98 

 0.463 
 0.456 
 0.446 

ABD (1983-2008) 
ABD (1990-2002) 

4.67 
2.10 

0 
0 

51 
1 

49 
99 

-0.381 
 0.378 
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Table 7:  Summary statistics for the residuals  ࢔ࢠା૚ ൌ ࢔ࡹ,࢔ࢅା૚ห࢔ࢂࡾ൫ࢂࡽࡲࡰ࡯૚ൣିࡺ
, દ෡൯൧ over 

1983-2008, on actual and simulated data.  Normalized residuals should be i.i.d. standard 
Gaussian conditional upon correct specification.  Simulated data are from 100 runs of 6557 days 
each, using model-specific parameter estimates and time gaps.  The t-statistics for testing 

compatibility between actual moments ܯ௔௖௧ and simulated moments ܯ௦௜௠ are  

௔௖௧ܯൣ െ  .௦௜௠൯√1.01൧ܯ൫ܦܵൣ	/	௦௜௠൯൧ܯ൫݃ݒܣ

 
Statistic 

Actual 
Data 

Simulated data  
t-statistic Average Std. deviation 

Vjump1b  
   Maximum 
   Minimum 
   Mean 
   Median 
   SD  
   Skewness 
   Excess kurtosis 

 
>7a 

-7.55 
-0.191 
-0.155 
1.265 
-.32 
0.55 

 
3.80 
-4.52 
-0.106 
-0.093 
1.158 
-.12 
-.28 

 
0.34 
0.42 
0.012 
0.017 
0.011 
0.03 
0.05 

 
 9.41 
-7.17 
-7.27 
-3.59 
 9.99 
-8.17 
16.40 

Vjump2  
   Maximum 
   Minimum 
   Mean 
   Median 
   SD  
   Skewness 
   Excess kurtosis 

 
6.46 
-5.50 
-0.225 
-0.121 
1.250 
-0.40 
0.16 

 
3.80 
-5.13 
-0.163 
-0.096 
1.211 
-0.28 
-0.13 

 
0.31 
0.52 
0.014 
0.022 
0.009 
0.03 
0.06 

 
 8.52 
-0.71 
-4.35 
-1.16 
 4.10 
-3.50 
 4.41 

Vjump3  
   Maximum 
   Minimum 
   Mean 
   Median 
   SD  
   Skewness 
   Excess kurtosis 

 
5.88 
-5.62 
-0.190 
-0.119 
1.245 
-0.33 
0.20 

 
3.80 
-5.01 
-0.156 
-0.112 
1.215 
-0.20 
-0.10 

 
0.34 
0.40 
0.012 
0.017 
0.011 
0.03 
0.07 

 
 6.04 
-1.53 
-2.77 
-0.39 
 2.88 
-3.78 
 4.53 

 

aThe normalized residual observed on October 20, 1987 could not be computed for the Vjump1b 
model, but is in excess of 7.  The summary statistics consequently use a value of 7 for that 
observation.  
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Figure 1:  Overnight (ON) and intradaily (ID) return horizons, relative to Wednesday 
horizon (Tuesday close -> Wednesday close).  Overnight returns for Monday (Friday close -> 
Monday open) and for Tuesday through Friday include the first 15 minutes of the opening day, 
as do overnight returns spanning 2-day holidays and 4- or 5-day holiday weekends. 

 
 
Figure 2:  Intradaily 15-minute horizons, as a percentage of the total intradaily horizon.
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Figure 3:  Cumulative log likelihood improvements relative to the 1-factor SVJ1 model,  
and impact of eliminating self-exciting jumps in the Vjump2 and Vjump3 models 

                        Vjump3 
 
                       Vjump2 
 
 
 
                       Vjump1b 
 
 
      
                       Vjump1a 

 
                Out-of-sample period 
           
                Vjump30 – Vjump3 

 If jumps not self-exciting           Vjump20 – Vjump2  
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Figure 4: Components of annualized conditional volatility, and daily estimated number of 
jumps, 1983-2016.  Total end-of-day variance estimates ௜ܸ௧

௧௢௧ from the 3-factor variance model 
Vjump3 include the contributions to both diffusion risk and jump risk.  

              ඥ ଵܸ௧
௧௢௧ ൅ ଶܸ௧

௧௢௧ ൅ ଷܸ௧
௧௢௧	ሺleft	scaleሻ 

 
 
 
 
 
 
 
 
 
 
 
  

                  ඥ ଵܸ௧
௧௢௧ ൅ ଶܸ௧

௧௢௧	     
 
 

                      ඥ ଵܸ௧
௧௢௧ 

   Daily Δ ଷܰ௧ (right scale)  
   
 
              Daily Δ ଶܰ௧ (right scale) 

 

  



45 
 

Figure 5:  Annualized intradaily conditional volatility factors over October 12-30, 1987  (100% 
annualized =  1.1% per ¼-hour).  The December 1987 S&P 500 futures price (+) is on the right 
scale. 
 

                 F (right scale)                    ඥ ଷܸ௧
௧௢௧ (left scale) 

 
 
 
 
 
            

 
 

 
 

          ඥ ଵܸ௧
௧௢௧ 

          ඥ ଶܸ௧
௧௢௧  
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Figure 6: Normal probability plots for various models.  These plot the ordered normalized 

residual values ݖ௧ାଵ ൌ ܰିଵൣܨܦܥ൫ݕ௧ାଵหࢅ௧, Θ෡൯൧ (+ symbols on the vertical axis), against the models’ 

predicted values (red diagonal line) over 1983-2008. 

  Intradaily and overnight returns            Daily returns    

  Vjump1b      Vjump1b 

    

  Vjump2      Vjump2 

   
  Vjump3      Vjump3 
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Figure 7A: Daily realized variance ࢔ࢂࡾ/	૛૞૛࣎࢔ 

 
      19871019:  0.0219 = (0.148)2 
      19871020:  0.0725 = (0.269)2 
      19871022:  0.0129 = (0.114)2 

   

 

 

 

 

 

 

 

Figure 7B:  Daily realized volatility ඥ/࢔ࢂࡾ	2૞૛࣎࢔ , on a log scale 
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Figure 8: Normal probability plots for realized variance.  These plot the ordered normalized residual values 

௡ାଵݖ ൌ ܰିଵൣܨܦܥ൫ܴ ௡ܸାଵหࢅ௡,ெ೙
, Θ෡൯൧ (+ symbols on the vertical axis) against predicted values (green dotted lines) based upon 

quadratic variation’s conditional CDFs, and against average values (red solid lines) from 100 runs of simulated data.  The grey shaded 
areas are 95% confidence intervals for the deviation between observed data and average simulated values. 

      Vjump1b        Vjump2        Vjump3 
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