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Abstract. We consider the problem of finding equilibrium asset prices in a financial market in
which a portfolio manager (Agent) invests on behalf of an investor (Principal), who compensates
the manager with an optimal contract. We extend a model from Buffa, Vayanos and Woolley
(2014), BVW (2014), by allowing general contracts. We find that the optimal contract rewards
Agent for taking specific risk of individual assets and not only the systematic risk of the index
by using the quadratic variation of the deviation between the portfolio return and the return of an
index portfolio. Similarly to BVW (2014), we find that, in equilibrium, the stocks in large supply
have high risk premia, while the stocks in low supply have low risk premia, and this effect is
stronger as agency friction increases. However, by using our risk-incentive optimal contract, the
sensitivity of the price distortion to agency frictions is of an order of magnitude smaller compared
to the price distortion in BVW (2014), where only contracts linear in portfolio value and index are
allowed.
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1 Introduction

We consider the problem of asset pricing with delegated portfolio management, that is, of finding
asset prices so that the financial market is in equilibrium when the portfolio managers are offered
optimal compensation contracts. The fact that an increasing percentage of investment funds is run
by investment managers underlines the importance of studying the effect of managerial actions
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on asset prices. Thus, the problem is important, however, it is also difficult. There are exten-
sive studies that consider various equilibrium models of asset prices, but, partly due to technical
difficulties, there are almost no results where asset pricing is combined with optimal contracting
between portfolio managers and investors. A notable exception is Buffa et al. (2014), henceforth
BVW (2014), which inspired the current paper.

BVW (2014) considers a market with three types of participants: portfolio managers who can
divert a part of the managed portfolio funds to their own private savings; rational investors who can
hire managers to invest on investors behalf in individual stocks, while investors can invest privately
only in the index; and buy-and-hold investors. The first two types have CARA utility functions.
The paper considers two models: one in which the dividends have square-root dynamics, and the
other in which they have OU (Orstein-Uhlenbeck) dynamics. The representative CARA investor
chooses optimally the contract to pay the representative manager, but is allowed to do so only in a
subfamily of all possible contracts – those that are linear in the investor’s portfolio value and the
stock index. This would, indeed, be optimal in the classical moral hazard continuous-time models
of Holmstrom and Milgrom (1987) and Sannikov (2008), in which the manager can only affect
the return of the output process. However, when the manager can also affect the volatility of the
output, as is the case in portfolio management, it was shown in Cvitanić et al. (2016a) and Cvitanić
et al. (2016b), henceforth CPT (2016ab), that the optimal contract makes use also of the quadratic
variation of the output and its covariations with the contractible factors. We use that insight to
extend the family of admissible contracts in this paper.

In CPT (2016ab) the manager is paid only at the final time, and the model is one of partial
equilibrium. In contrast, we identify optimal contracts in the model of BVW (2014), which is a
full equilibrium model and on infinite horizon, by adapting to our setting the approach of CPT
(2016ab). In the OU model, we find that the optimal contract is linear in the investor’s portfolio
value, the stock index, and the quadratic variation of the deviation of the portfolio return from
the return of an index portfolio. Thus, the contract rewards Agent for taking the specific risk of
individual risky assets beyond the systematic risk of the index. To the best of our knowledge, this
is the first general equilibrium model in which such a contract is shown to be optimal. We show,
in a numerical example, that given asset prices, the contracts that include the quadratic variation
component can substantially increase investor’s optimal value relative to the contracts that do not
include it. The use of the quadratic variation, which, in practice, would correspond to using the
sample variance, is, as noted in CPT (2016a), in the spirit of using the sample Sharpe ratio when
compensating portfolio managers. However, in our model, in equilibrium, the principal rewards
the agent for higher values of the quadratic variation, rather than penalizing him, to provide proper
incentives for risk-taking beyond solely taking the risk of the index.

We leave the square-root model for future research. The difficulty with the square-root model
is that the linear contracts with constant coefficients (the admissible contracts in BVW (2016)) are
time-inconsistent – the investor would optimally want to change the coefficients as the time goes
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by. This makes the problem difficult.
Our asset pricing results are similar to those of the OU case in BVW (2014): the stocks in large

supply have high risk premia, and the stocks in low supply have low risk premia, and this effect
is stronger as agency friction increases. However, by using the contract that provides optimal
risk-taking incentives, the sensitivity of the price distortion to agency frictions is of an order of
magnitude smaller compared to the price distortion in BVW (2014). In other words, by including
the risk-incentive terms in the compensation, the investor mitigates somewhat the effect of agency
frictions in equilibrium.

Other than BVW (2014) and the current paper, the existing literature either looks at the case
of a fixed contract and then finds asset prices in equilibrium, or the case of fixed asset prices and
then finds the optimal contract. In the first strand of the literature with fixed contracts, none of
the papers, other than the current one, allows for quadratic variation and co-variation components
in the contract. That literature includes the following papers (a more thorough literature review
can be found in BVW 2014): Brennan (1993) considers a static model with preferences based on
a benchmark, resulting in a two-factor equilibrium model; Basak and Pavlova (2013) consider a
similar set-up, but in a dynamic model; Cuoco and Kaniel (2011) have a dynamic setting with two
risky assets, and the contract is a piece-wise affine function of the portfolio return and the return
relative to a benchmark; Malamud and Petrov (2014) consider two types of managers, less and
more informed.

The second strand of the literature with fixed asset prices includes the following papers: Ou-
Yang (2003) has a dynamic model in which the portfolio value is only observable at the terminal
time, and in which there is no moral hazard due to shirking, so that the optimal contract does not
have quadratic variation/covariation components; Cadenillas et al. (2007) extend some of Ou-Yang
(2003) results to non-CARA utility functions, still with no moral hazard; Lioui and Poncet (2013)
assume that the agent has enough bargaining power to require that the contract be linear in the
output and in a benchmark factor; Leung (2014) studies a model with a single risky asset, in which
moral hazard arises because there is an exogenous factor multiplying the volatility choice of the
agent, and that factor is not observed by the principal; CPT (2016ab) find the optimal contract
when the primary source of moral hazard is not due to shirking, but to the volatility vector being
unobserved and the agent’s cost of modifying it. Their model has finite horizon T and the agent is
paid with a lump-sum contract payment at T only, unlike the present paper in which the payments
are continuous over an infinite horizon.

The rest of the paper is organized as follows: Section 2 sets up the model and the optimization
problems, Section 3 describes the main results, Section 4 extends the result to the case when Agent
can invest privately in the index, Section 5 concludes, and Section 6 provides the proofs.

Some notational conventions. Let (Ω,F= {Ft}t≥0,P) denote a filtrated probability space, whose
filtration F is the augmented filtration generated by independent Brownian motions Bp,(Be)i=1,...,N ,
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and satisfies the usual conditions of completeness and right-continuity. For a F-adapted process
X , FX denotes the filtration generated by X and satisfies the usual conditions.

2 Model

2.1 Assets

The market consists of a riskless asset with an exogenous constant risk-free rate r, and N risky
assets whose prices (Sit)i=1,...,N will be determined in equilibrium. We work with the following
model considered by Buffa et al. (2014), henceforth BVW (2014). Assume that the dividend
process of asset i = 1, . . . ,N is given by

Dit = ai pt + eit , (2.1)

where p and ei follow Ornstein-Uhlenbeck processes

d pt = κ
p(p̄− pt)dt +σpdBp

t ,

deit = κ
e
i (ēi− eit)dt +σeidBe

it .
(2.2)

Here, Bp and (Be
i )i=1,...,N are independent Brownian motions, and model coefficients ai, p̄, ēi,κ

p,κe
i ,

σp,σei, for i = 1, . . . ,N, are all positive constants. The filtration FBp,Be
, denoted by F, represents

the full information in the model. We introduce the following vector and matrix notation for future
use:

e = diag{e1, . . . ,eN}, ē = diag{ē1, . . . , ēN}, σe = diag{σe1, . . . ,σeN},
D = (D1, . . . ,DN)

′, S = (S1, . . . ,SN)
′, κe = (κe

1, . . . ,κ
e
N)
′, Be = (Be

1, . . . ,B
e
N)
′.

The vector of assets’ return per share in excess of the riskless rate follows

dRt = Dtdt +dSt− rStdt. (2.3)

The excess return of the market portfolio, or index, is given by

It = η
′Rt , (2.4)

where η = (η1, . . . ,ηN)
′ is a constant vector, with ηi equal to the number of shares of asset i in the

market. However, we assume that not all the shares of assets are available for trade. A constant
vector θ = (θ1, . . . ,θN)

′, with entries equal to the number of shares available to trade is called the
residual supply. The difference ηi−θi equals the number of shares of asset i held by buy-and-hold
investors who do not trade. We assume that each component of θ is strictly positive.
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2.2 Agent and Principal

In addition to buy-and-hold investors, there are two market participants in the model: Agent (port-
folio manager) and Principal (investor). They can be considered as representatives of identical
agents and principals. Both Agent and Principal are price-takers, that is, they take prices as given,
without taking into account the feedback effects in equilibrium.

Principal can hire Agent to manage a portfolio of assets on Principal’s behalf. Agent, if hired
by Principal, receives compensation (fee) paid by Principal, manages a portfolio of assets, and he
can also undertake a “shirking” action that has a detrimental effect on the portfolio, but it provides
Agent with a private benefit.

In the benchmark model, Agent can only invest in the riskless asset in his private account, and
he can also consume from it. (An extension where Agent is allowed to trade privately in the index
is discussed in Section 4.) Thus, Agent is exposed to the risky assets only via the compensation
paid by Principal. Agent’s wealth process is given by

dW̄t = rW̄tdt +(bmt− c̄t)dt +dFt , (2.5)

where
- c̄t is Agent’s consumption rate;
- bmt is the private benefit from his rate mt of shirking with the benefit rate b ∈ [0,1];
- Ft is the cumulative compensation paid by Principal.
Principal can trade in the index, but not in the individual risky assets. The only way she can

access individual risky assets is by hiring Agent. Principal’s wealth process follows

dWt = rWtdt +dGt + ytdIt− ctdt−dFt , (2.6)

where:
- Gt =

∫ t
0 Y ′s dRs−msds is the reported cumulative fund return process, where Y is the vector

of the number of shares of the risky assets held by Agent in the managed portfolio;
- yt is the number of shares of the index held by Principal;
- ct is Principal’s consumption rate.
Agent’s rate mt of shirking action mt is assumed to be nonnegative. It reduces Principal’s

wealth; in addition to shirking, it can also be interpreted as diverting money from the portfolio
for expenses that do not contribute to the performance of the fund. More generally, it may be
thought of as a measure of (lack of) Agent’s efficiency when running the portfolio; see DeMarzo
and Sannikov (2006).

Agent maximizes utility over intertemporal consumption:

V̄ = max
Ξ admissible

E
[∫ ∞

0
e−δ̄ tuA(c̄t)dt

]
,
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where uA is exponential utility with constant absolute risk aversion ρ̄ , i.e., uA(c) = − 1
ρ̄

e−ρ̄c, and
δ̄ > 0 is Agent’s discounting rate. Given Agent’s utility function uA, we can assume, without loss
of generality, that the initial wealth of Agent is zero, i.e., W̄0 = 0.

Given Principal’s strategy Θ = (c,F,y), Agent’s strategy Ξ = (c̄,m,Y ) is admissible if the
following conditions are satisfied

- (c̄,m,Y ) is adapted to F;
- Y is predictable,

∫ t
0 |Ys|2ds < ∞ for all t > 0;

- m≥ 0;
- c̄ is financed by wealth process W̄ satisfying (2.5).
If Agent is not employed by Principal, he chooses his private portfolio Y u and consumption

rate c̄u to maximize his utility over consumption

V̄ u = max
(Y u,c̄u) admissible

E
[∫ ∞

0
e−δ̄ tuA(c̄u

t )dt
]
,

subject to the budget constraint

dW̄ u
t = rW̄ u

t dt +Y u
t dRt− c̄u

t dt. (2.7)

Agent’s private investment and consumption strategy (Y u, c̄u) is admissible if
- (Y u, c̄u) is adapted to F;
- Y u is predictable,

∫ t
0 |Y u

s |2ds < ∞ for all t > 0;
- c̄u is financed by wealth process W̄ u satisfying (2.7).
- The following transversality condition is satisfied:

lim
T→∞

lim
n→∞

E
[
e−δ̄ (T∧τn)e−rρ̄W̄ u

T∧τn

]
= 0,

for any sequence of stopping time {τn}n with limn τn = ∞.
Agent takes the contract offered by Principal if and only if the following participation con-

straint is satisfied:
V̄ ≥ V̄ u. (2.8)

When this inequality is an equality, Agent is indifferent with respect to taking the contract or not.
In this case, as is standard in contract theory, we assume that Agent chooses to work for Principal.

Principal maximizes utility over intertemporal consumption:

V = max
Θ admissible

E
[∫ ∞

0
e−δ tuP(ct)dt

]
,

where uP is an exponential utility with constant absolute risk aversion ρ , i.e., uP(c) = − 1
ρ

e−ρc,
and δ > 0 is Principal’s discounting rate. Principal’s strategy Θ = (c,F,y) is admissible if

- Agent’s optimization problem admits at least one admissible optimal strategy Ξ∗=(c̄∗,m∗,Y ∗);
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- (c,F,y) is adapted to FG∗,I , where G∗t =
∫ t

0(Y
∗
s )
′dRs−m∗s ds is the reported cumulative fund

return when Agent employs his optimal strategy Ξ∗.
- y is predictable,

∫ t
0 y2

s ds < ∞ for all t ≥ 0;
- The consumption stream c is financed by the wealth process W satisfying

dWt = rWtdt +dG∗t + ytdIt− ctdt−dFt .

If Principal does not hire Agent, she chooses investment yu in the index and consumption rate
cu to maximize her utility over consumption

V u = max
(yu,cu) admissible

E
[∫ ∞

0
e−δ tup(cu

t )dt
]
,

subject to the budget constraint

dW u
t = rW u

t dt + yu
t dIt− cu

t dt. (2.9)

Principal’s private investment and consumption strategy (yu,cu) is admissible if
- (yu,cu) is adapted to FI;
- yu is predictable,

∫ t
0 |yu

s |2ds < ∞ for all t > 0;
- cu is financed by wealth process W u satisfying (2.9).
- The following transversality condition is satisfied:

lim
T→∞

lim
n→∞

E
[
e−δ (T∧τn)e−rρW u

T∧τn

]
= 0,

for any sequence of stopping time {τn}n with limn τn = ∞.
Principal hires Agent if and only if

V ≥V u. (2.10)

When the inequality above is an equality, Principal is indifferent to hiring Agent or not. In this
case, we assume that Principal chooses to hire Agent.

2.3 Equilibrium

We will look for equilibria in which Principal hires Agent. The notion of equilibrium is similar to
BVW (2014). The only difference is that the class of the contracts which Principal is allowed to
optimize over is incorporated in our notion of equilibrium.

Definition 2.1 A price process S, a contract F in a class of contracts F , and an index investment
y form an equilibrium if:

(i) Given S, (F,F ) and y, Agent takes the contract, and Y = θ−yη solves Agent’s optimization
problem.
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(ii) Given S, Principal hires Agent, contract F is optimal for Principal in the class F and y is
her optimal index investment strategy.

We will look for the equilibrium in which the price of asset i is of the form

Sit = a0i +api pt +aeieit , (2.11)

where (a0i,api,aei) are constants that will be determined in equilibrium. The form of (2.11),
combined with (2.1), (2.2), and (2.3), imply that the excess return for asset i follows

dRit =[(ai−api(r+κ
p))pt +(1−aei(r+κ

e
i ))eit +κ

papi p̄+κ
e
i aeiēi− ra0i]dt

+apiσpdBp
t +aeiσidBe

it

= : [A1i pt +A2ieit +A3i]dt +apiσpdBp
t +aeiσeidBe

it . (2.12)

Denote also

γ = (ap1, . . . ,apN)
′
σp, σ = diag{ae1, . . . ,aeN}σe, A` = (A`1, . . . ,A`N)

′, `= 1,2,3,

µt− r = ptA1 + etA2 +A3, and ΣR = γγ
′+σ

2.

Then, the vector of asset returns follows

dRt = (µt− r)dt + γ dBp
t +σdBe

t , (2.13)

with (instantaneous) covariance matrix ΣR.

3 Optimal strategies and equilibrium

3.1 Family of viable contracts

When defining the family of contracts that Principal can choose from, we follow the approach
of Cvitanić, Possamai and Touzi (2016ab), henceforth CPT (2016ab). In their framework, they
show that the approach represents no loss of generality (under technical conditions), that is, that
Principal attains maximal utility when optimizing over the family they define. While we have not
proved that result in our framework, we conjecture that a similar result is still true under reasonable
technical conditions. A verification of this conjecture requires a substantial new development of
the theory of 2BSDE on infinite horizon, which is outside of the scope of this paper.

The approach consists of defining the family of viable contracts for which Agent’s problem
satisfies the dynamic programming principle. Let us first motivate the definition of a viable con-
tract. For t ≥ 0 and a given Agent’s admissible strategy Ξ = (c̄,Y,m), consider the following class
of admissible strategies

Ξ
t = {Ξ̂ admissible | Ξ̂s = Ξs,s ∈ [0, t]}.
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Define Agent’s continuation value process V̄ (Ξ) as

V̄t(Ξ) = ess supΞtEt

[∫ ∞

t
e−δ̄ (s−t)uA(c̄s)ds

]
, t ≥ 0.

That is, V̄t(Ξ) is Agent’s optimal value at time t if he employs the strategy Ξ before time t and acts
optimally from time t onward. The continuation value process is expected to satisfy the martingale
principle, which can be viewed as the dynamic programming principle in non-Markovian settings;
i.e., process Ṽ (Ξ), defined as

Ṽt(Ξ) = e−δ̄ tV̄t(Ξ)+
∫ t

0
e−δ̄ suA(c̄s)ds,

is a supermartingale for arbitrary admissible strategy Ξ, and is a martingale for the optimal strategy
Ξ∗. The following result provides two properties of the continuation value in our setting.

Lemma 3.1 For any t ≥ 0 and admissible Ξ,

(i) ∂W̄t
V̄t(Ξ) =−rρ̄V̄t(Ξ);

(ii) limt→∞E
[
e−δ̄ tV̄t(Ξ)

]
= 0.

These properties of the continuation value motivates us to introduce the following family of
Principal’s strategies. In this definition, we assume that ΣR is invertible. First, we introduce the
process P via

dPt = (bmt− c̄t)dt, P0 = 0,

which records the impact of Agent’s private action on his wealth. Next, for real numbers X >

0,Z ≥ b,U,ΓG < 0,ΓI,ΓGI define the Hamiltonian H by

H(X ,Z,U,ΓG,ΓI,ΓGI) = sup
(c̄,m≥0,Y )

{
uA(c̄)+X

[
bm− c̄−Zm+ZY ′(µ− r)+Uη

′(µ− r)

+ 1
2Γ

GY ′ΣRY + 1
2Γ

I
η
′
ΣT η +Γ

GIY ′ΣRη

]}
.

(3.1)

Let us note that if the model was Markovian in (W̄ ,G, I), X would be the derivative of the value
function V̄ (W̄ ,G, I) with respect to W̄ , and similarly XZ,XU,XΓG,XΓI,XΓGI would be the first
and second derivatives with respect to W̄ ,G and I.

Definition 3.2 Principal’s admissible strategy Θ = (c,F,y) is viable if there exist

• a constant V̄0 and

• a class of Agent’s admissible strategies Ξ(Θ),

such that
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(a) for any Agent’s strategy Ξ ∈ Ξ(Θ), there exist FG,I adapted processes Z,U,ΓG,ΓI,ΓGI , sat-
isfying

∫ t
0 Z2

s ds < ∞,
∫ t

0 U2
s ds < ∞, for all t > 0, and Z ≥ b, ΓG < 0 such that the process

V̄ (Ξ) defined by

dV̄t(Ξ) =Xt

[
dPt +ZtdGt +UtdIt + 1

2Γ
G
t d〈G〉t + 1

2Γ
I
t 〈I〉t +Γ

GI
t d〈G, I〉t

]
+ δ̄V̄t(Ξ)dt−H(Zt ,Ut ,Γ

G
t ,Γ

I
t ,Γ

GI
t )dt, V̄0(Ξ) = V̄0,

(3.2)

where Xt =−rρ̄V̄t(Ξ), satisfies the transversality condition

lim
T→∞

lim
n→∞

E
[
e−δ̄T∧τnV̄T∧τn(Ξ)

]
= 0, (3.3)

for any sequence of stopping times {τn}n with limn τn = ∞.

(b) the class Ξ(Θ) contains a strategy Ξ∗ = (c̄∗,m∗,Y ∗) that maximizes the Hamiltonian, that
is, the strategy with

c̄∗ = (u′A)
−1(−rρ̄V̄ (Ξ∗)), m∗ = 0, Y ∗ =− Z

ΓG Σ
−1
R (µ− r)− ΓGI

ΓG η ; (3.4)

(c) Denoting the reported portfolio value and the contract value by G∗ and F∗, respectively,
when Agent employs strategy Ξ∗, then, Principal’s wealth process, following the dynamics

dWt = rWtdt +dG∗t + ydIt− ctdt−dF∗t , (3.5)

satisfies the transversality condition

lim
T→∞

lim
n→∞

E
[
e−rρWT∧τn

]
= 0, (3.6)

for any sequence of stopping times {τn}n with limn τn = ∞.

The next lemma will show that when Principal employs a viable strategy, then strategy Ξ∗

in (3.4) is Agent’s optimal strategy and V̄ (Ξ) is Agent’s continuation value process V̄ (Ξ). The
dynamics (3.2) and the definition of H in (3.1) are motivated by the martingale principle, in par-
ticular, (3.2) and (3.1) ensure that Ṽt(Ξ) = e−δ̄ tV̄t(Ξ)+

∫ t
0 e−δ̄ suA(c̄s)ds is a supermartingale for

an arbitrary admissible strategy Ξ, and is a martingale for strategy Ξ∗. Moreover (3.2) gives a
stochastic representation for Agent’s continuation value process, with sensitivities with respect to
P, G, I,〈G〉, 〈I〉, 〈G, I〉 given by processes X ,XZ,XU, 1

2XΓG, 1
2XΓI , and XΓGI , respectively. Since

ΓG,ΓI,ΓGI can be arbitrary FG,I-adapted processes (with ΓG < 0), the viable strategy allows all
possible sensitivities with respect to quadratic variation and covariations of G and I. Note also that
the sensitivity of Agent’s continuation value with respect to P is the same as the sensitivity with
respect to W̄ . This is why, taking Lemma 3.1 into account, X is set to be equal to −rρ̄V̄ (Ξ).

The reason we require Z ≥ b is that, when Zt < b for t, Hamiltonian H is maximized for m=∞.
This would lead to Principal’s wealth being equal to −∞, hence not optimal for Principal. When
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Z = b, all nonnegative values of m maximize the Hamiltonian, and Agent is indifferent which m
to choose. In this case, we follow the usual convention in contract theory and assume that Agent
will choose the best value for Principal, i.e., m = 0.

Lemma 3.3 Consider any Principal’s viable strategy Θ = (c,F,y). Assume that ΣR is invertible.
Then, the strategy Ξ∗ = (c̄∗,m∗,Y ∗) in (3.4) is Agent’s optimal strategy in the class Ξ(Θ), and V̄0

is Agent’s optimal value at time 0. Moreover, V̄ (Ξ) is equal to Agent’s continuation value process
V̄ (Ξ).

In CPT (2016ab) the compensation is paid only at the terminal time T . Therefore, the form
of a viable contract payment FT is recognized from the fact that V̄T (Ξ) = FT . In the present case,
the compensation is paid continuously and it does not show up explicitly in (3.2). The following
result provides the form of the contract in a viable strategy.

Lemma 3.4 Contract F in any viable strategy satisfies

dFt =ZtdGt +UtdIt + 1
2Γ

G
t d〈G〉t + 1

2Γ
I
t d〈I〉t +Γ

GI
t d〈G, I〉t + 1

2rρ̄ d〈Z ·G+U · I〉t

−
(

δ̄

rρ̄
+ H̄t

)
dt,

(3.7)

where 〈G〉 denotes the quadratic variation of G, Z ·G =
∫ ·

0 ZsdGs, and

H̄t =
1
ρ̄

log(−rρ̄V̄0)− 1
ρ̄
+(ZtY ∗t +Utη)′(µt− r)+ 1

2Γ
G
t (Y ∗t )

′
ΣRY ∗t + 1

2Γ
I
t η
′
ΣRη +Γ

GI
t (Y ∗t )

′
ΣRη .

(3.8)
In particular, when µ− r is a constant vector, F is adapted to FG,I .

Remark 3.5 The lemma shows that a viable contract is linear, in the integration sense, with re-
spect to G, I, their quadratic variation and covariations, and the quadratic variation 〈Z ·G+U · I〉
of Agent’s wealth W̄ . In particular, the linear contracts considered in BVW (2014) of the form, for
some constants φ ,χ, and ψ ,

dFBVW
t = φdGt−χdIt +ψdt (3.9)

are viable. Indeed, we can choose ΓG,ΓI and ΓGI so that all the quadratic variation/covariation
terms sum up to zero.

We could have simply started by requiring that a viable contract is of the form (3.7), for an
arbitrary adapted process Ht (and not including the term 〈Z ·G +U · I〉) . However, then, it
wouldn’t have been clear how to solve Agent’s problem for arbitrary adapted processes Z,U,ΓG,
ΓI , and ΓGI satisfying the above conditions, and, more importantly, our approach shows why the
contracts of the form (3.7) are as general as can be expected if Agent’s problem can be solved by
the dynamic programming principle.
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3.2 Main results

Let us introduce some notation before stating the main results:
- The instantaneous variance of the index portfolio:

Varη = η
′
ΣRη .

- The instantaneous variance of the fund portfolio for the fund that invests Y in risky assets:

VarY = Y ′ΣRY.

-The instantaneous covariance between the fund portfolio and the index portfolio:

CovarY,η = η
′
ΣRY.

- The CAPM beta of the fund portfolio:

β
Y = CovarY,η

Varη .

3.2.1 Optimal strategies

Given asset prices, not necessarily in asset pricing equilibrium, we first state the results on optimal
strategies.

Theorem 3.6 Consider a financial market in which the vector of asset returns (per share) has a
constant drift vector µ and constant covariance matrix ΣR such that ΣR is invertible and η ′ΣRη >

0. Assume that Principal can attain a higher value than V u by hiring Agent, and Agent can attain
a higher value than V̄ u by working for Principal. Then, one optimal strategy for Principal is not
to invest in the index, and

(a) The optimal contract in the viable class is given by

dFt =Cdt + ρ

ρ+ρ̄
dGt +ξ (dGt−β

Y ∗dIt)+ r
2ζ d〈G−β

Y ∗I〉t , (3.10)

where G is the reported portfolio return process,

ξ =(b− ρ

ρ+ρ̄
)+,

ζ =(ρ + ρ̄)Z(1−Z)(b− ρ

ρ+ρ̄
)+,

C = 1
2r

1
ρ̄
(µ− r)′Σ−1

R (µ− r)− (ZY ∗+Uη)′(µ− r)

− r
2ζ (Y ∗−β

Y ∗
η)′ΣR(Y ∗−β

Y ∗
η)+ r

2 ρ̄(ZY ∗+Uη)′ΣR(ZY ∗+Uη),

Z =max{b, ρ

ρ+ρ̄
}= ρ

ρ+ρ̄
+(b− ρ

ρ+ρ̄
)+,

U =− (b− ρ

ρ+ρ̄
)+β

Y ∗.

(3.11)
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(b) Agent’s vector of optimal holdings is given by

Y ∗ =
1
r

1
Cb

Σ
−1
R (µ− r)+

1
r

(
ρ + ρ̄

ρρ̄

Db

Cb

)
η ′(µ− r)

Varη
η , (3.12)

where

Db = (ρ + ρ̄)
(
b− ρ

ρ+ρ̄

)2
+
, (3.13)

Cb =
ρρ̄

ρ+ρ̄
+Db.

(c) Principal’s value process Vt is of the form

Vt =V (Wt) = Ke−rρWt , (3.14)

for an appropriate constant K.

(d) Agent’s value process satisfies the linear SDE

dV̄t = V̄t
[
− rρ̄(ZY +Uη)′(γdBp

t +σdBσ
t )+(δ̄ − r)dt

]
. (3.15)

3.3 Contract properties

1. First best. If b≤ ρ

ρ+ρ̄
, Principal can attain the first best utility, the one she would get if she

was the one choosing portfolio holdings Y rather than Agent choosing them. In this case
ξ = ζ = 0 in (3.10), and Agent receives the fraction ρ

ρ+ρ̄
of the reported portfolio return.

That is, the optimal contract does not have quadratic variation term and is equal to

dFt =
ρ

ρ+ρ̄
dGt .

The fraction ρ

ρ+ρ̄
is the classical risk-sharing fraction of the wealth between two agents with

CARA utilities. Moreover, in this case Db = 0, and there is no agency friction.

2. Second best. As mentioned above, in the optimal contract (3.10), the term ρ

ρ+ρ̄
dGt is the

risk-sharing term that is the only incentive part of the contract in the first best case of no
agency friction. The term ξ (dGt−βY ∗dIt) benchmarks the reported portfolio return against
the portfolio that invests βY ∗ in the index. We can think of βY ∗I as the approximation of the
portfolio with strategy Y ∗ which is optimal (in L2 sense) among the approximations of the
form cIt for some constant c. We call this portfolio the optimal benchmark portfolio. Thus,
ξ (dGt−βY ∗dIt) rewards Agent when the portfolio return is above the return of the optimal
benchmark portfolio, and penalizes Agent when the portfolio return is below the return of
the optimal benchmark portfolio.

When b≤ ρ

ρ+ρ̄
, the quadratic variation and covariation parts of the contract are zero. How-

ever, when b > ρ

ρ+ρ̄
, there is a new quadratic variation term compared to BVW (2014). This
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new term provides additional incentives for aligning Agent’s risk taking with Principal’s
objectives by rewarding the quadratic variation of the deviation G−βY ∗I from the optimal
benchmark portfolio. This quadratic variation can be viewed as the “tracking gap” between
Agent’s portfolio and the optimal benchmark portfolio. Note that when b > ρ

ρ+ρ̄
the sensi-

tivity with respect to 〈G−β θ I〉t is r
2ζ , which is positive, thus rewarding Agent for deviating

from the optimal benchmark portfolio. Thus, the quadratic variation term rewards Agent for
taking the specific risk of individual stocks, and not only the systematic risk of the index.

When agency friction b increases, ξ increases, so as to make Agent to not employ the shirk-
ing action. As a result, the portfolio is benchmarked more heavily to the optimal benchmark
portfolio. Dependence of ζ on the agency friction is demonstrated in Figure 1. When agency
friction is small, ζ increases with respect to agency friction, so that Agent is increasingly
awarded by taking specific risks. However when agency friction is large, the benefits of
taking that specific risk is lower, therefore ζ decreases with respect to agency friction, so
that Agent is incentivized not to take as much specific risk.

Severity of agency friction (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1: Sensitivity to quadratic variation

Finally, the quadratic variation term depends on the interest rate, but the profit sharing and
benchmarking terms do not.

3. Optimal fund holdings. Note that Σ
−1
R (µ− r) is the vector of risk premia of the individual

risky assets, and η ′(µ−r)
Varη is the risk premium of the index. Therefore, item (c) in Theorem 3.9

shows that Agent’s optimal holding in asset i is a linear combination of the risk premium of
asset i and the portion of the risk premium of the index corresponding to asset i. Moreover,
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when agency friction increases, the weight to the individual asset risk premium decreases,
while the weight to the index increases.

3.3.1 Equilibrium prices

We will need the following assumption for the equilibrium result.

Assumption 3.7

(i) θ and η are not linearly dependent.

(ii) Denote ap = (ap1, . . . ,apN)
′ and ae = diag{ae1, . . . ,aeN}. For the values

api =
ai

r+κ p aei =
1

r+κe
i
, i = 1, . . . ,N, (3.16)

the matrix ΣR = apσ2
pa′p +a′eσ2

e ae is invertible.

Remark 3.8 Since Principal can invest in the index directly, if θ = αη for some α ∈R, then there
exists an equilibrium in which Principal invests in α units of index directly without hiring Agent.
Item (i) in the above assumption excludes this trivial case. Item (ii) ensures that the equilibrium
we characterize is endogenously complete.

The following is the main equilibrium result of the paper.

Theorem 3.9 Suppose that Assumption 3.7 holds. Then, there exists an equilibrium in which
Principal does not invest in the index directly, i.e., y = 0, hence Y ∗ = θ , in which asset prices are
as in (2.11) and:

(a) Vectors ap and ae are given by (3.16) and vector a0 = (a01, . . . ,a0N)
′ is given by, with Db given

in (3.13),
a0 =

1
r κ

p p̄ap +
1
r (κ

e)′ēae− ρρ̄

ρ+ρ̄
ΣRθ −DbΣR(θ −β

θ
η), (3.17)

(b) The vector of asset excess returns is given by

µ− r = r ρρ̄

ρ+ρ̄
ΣRθ + rDbΣR(θ −β

θ
η). (3.18)

The index excess return is
η
′(µ− r) = r ρρ̄

ρ+ρ̄
Covarθ ,η . (3.19)

The excess return of Agent’s portfolio is

θ
′(µ− r) = r ρρ̄

ρ+ρ̄
Varθ + rDb

(
Varθ − (Covarθ ,η )2

Varη

)
. (3.20)
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(c) Principal offers optimally the contract that assigns value

V̄0 = V̄ u
0 =−exp

(
1− δ̄

r − log(rρ̄)− 1
2r (µ− r)′Σ−1

R (µ− r)
)
,

that is the minimal value Agent would accept. With this choice, Principal is always willing to
offer the contract. Moreover, Principal’s value process is given by V (Wt) = Ke−rρWt where

K =−exp
(

1− δ

r − log(rρ)+ r
2

ρ

ρ̄
(C 2

b − ρ̄Cb)Varθ + r
2

ρ

ρ̄
(D2

b −2CbDb + ρ̄Db)
(Covarθ ,η )2

Varη

)
.

(3.21)

3.4 Equilibrium properties

1. Price and returns distortion. Note that Db increases with b. We see then, from (3.18),
that the risk premium of asset i increases (resp. decreases) with b when θi/ηi > β θ (resp.
θi/ηi < β θ ). That is, whether the risk premium goes up or down with agency frictions
depends on how large is the fund’s relative holding θi/ηi of asset i compared to the CAPM
beta of the fund. Thus, the stocks in large supply have high risk premia, and the stocks in
low supply have low risk premia, and this effect is stronger as agency friction increases.

The price is distorted reversely. We see from (3.17) that the price of asset i decreases (resp.
increases) with b when θi/ηi > β θ (resp. θi/ηi < β θ ). Therefore assets in large supply have
lower prices and assets in low supply have higher price, and the effect is stronger as agency
friction increases. This is the same qualitative behavior as in BVW (2014), Proposition 6.2.
However, there is a quantitative difference. In BVW (2014), Db is replaced by

DBVW
b = ρ̄(b− ρ

ρ+ρ̄
)+.

Note that Db <DBVW
b for any b∈ (0,1). Therefore, our price and returns distortions are less

sensitive to agency friction than those in BVW (2014). Moreover, when agency friction is
small, our sensitivities are of second order magnitude compared to the first order magnitude
in BVW (2014). However, when b = 1, D1 and DBVW

1 are the same.

Let us now take the same parameters as in BVW (2014): ρ = 1, ρ̄ = 50,r = 4%,κ p = κe
i =

10%,N = 6,ηi = 1,θ1 = θ2 = θ3 = 0.7,θ4 = θ5 = θ6 = 0.3,ai = 1, p̄ = 0.65, ēi = 0.4,σp =

1,
σ2

p
p̄ =

σ2
ei

ēi
, for i = 1, . . . ,6. Figure 2 compares distortion of excess return in our equilibrium

with the one in BVW (2014).

2. Portfolio returns. As we see from (3.19), agency friction does not have impact on index
excess return. This is because Principal can trade the index privately. However, (3.20)
indicates that excess return of Agent’s portfolio depends on agency friction. Since Varθ >
(Covarθ ,η )2

Varθ by Cauchy-Schwarz inequality, the excess return of Agent’s portfolio increases
with agency friction. This means the increase in return of large supply assets dominates the
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Severity of agency friction (b)
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Figure 2: Expected excess return of the two groups of assets. Assets with large supply are in the
top half, assets with low supply are in the bottom half. The results of this paper are presented in
solid lines, the results in BVW (2014) are presented in dashed lines.

decrease in return of low supply assets. Figure 3 demonstrates the excess return of Agent’s
portfolio in our equilibrium in comparison with BVW (2014).

Since the excess return of index does not change, the increase in Agent’s portfolio return
implies that there is a decrease in the return of the portfolio held by buy-and-hold investors.
However, since Db is lower in our paper, this means that buy-and-hold investors lose less
compared to BVW (2014).

3. Contract. In equilibrium Y ∗ = θ , so that from (3.19) we get

β
θ = 1

r
ρ+ρ̄

ρρ̄

η ′(µ−r)
Varη

This is recognized as the optimal portfolio holding in the index in the case in which Agent
and Principal can invest only in the index and they share the risk in the first best situation.
We call this portfolio the index-sharing portfolio. Thus, ξ (dGt − β θ dIt) rewards Agent
when the portfolio return is above the return of the index-sharing portfolio, and penalizes
Agent when the portfolio return is below the return of the index-sharing portfolio; the term
ζ d〈G−β θ I〉t rewards Agent for taking specific risk of individual stocks, and not just the
risk of the index-sharing portfolio.

4. Principal’s optimal value. Given the excess return in BVW (2014)

µ− r = rρ̄ΣR(Zθ +Uη),

17



Severity of agency friction (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
g
e
n
t's

 p
o
rt

fo
lio

 e
x
c
e
s
s
 r

e
tu

rn

20

25

30

35

Figure 3: Expected excess return of Agent’s portfolio. The result of this paper is presented as a
solid line, the result in BVW is presented in dashed lines.

and the same parameters as in BVW (2014) (see Figure 2), Figure 4 demonstrates that
Principal’s certainty equivalence could be improved substantially when the contract (3.10)
is employed compared to (3.9). However, under this new contract, holding the residual
demand to clear the market is no longer optimal for Agent. Therefore, the equilibrium in
BVW (2014) fails to be an equilibrium when Principal is allowed to choose contracts from
our viable class.

4 Extension: Agent can invest privately in the index

In this section, we extend the baseline model from Section 2 to the case in which Agent is allowed
to invest privately in the index.

When Agent holds ȳt shares of index at time t his wealth process W̄ follows

dW̄t = (rW̄t +bmt− c̄t)dt + ȳtdIt +dFt . (4.1)

The admissibility of Agent’s strategy Ξ = (c̄,m,Y,y) is defined similarly as in Section 2 with the
additional requirement that ȳ is predictable and satisfies

∫ t
0 ȳ2

s ds < ∞ for all t > 0. Principal’s
optimization problem is the same before, except, we assume that Principal can observe Agent’s
wealth process continuously. Equivalently, define the process P as

dPt = (bmt− c̄t)dt + ȳtdIt ,
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Severity of agency friction (b)
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Figure 4: Certainty equivalence of Principal when asset prices are as in BVW (2014). Solid
line represents Principal’s certainty equivalence when contract (3.10) is implemented, dashed line
represents Principal’s certainty equivalence when the contract in BVW (2014) is implemented.

which records the contribution to Agent’s wealth through his private actions. Since Principal
knows the contract F , she can observe P if and only if she can observe W̄ . We assume that this
is the case, hence P is contractible. More precisely, we say that Principal’s strategy Θ = (c,F,y)
is admissible if it is adapted to FG,I,P. The notion of equilibrium in Definition (2.1) is modified
accordingly, so that in item (i) Agent’s optimal investment strategy Y and ȳ satisfy Y + ȳη =

θ − yη .
Then, for real numbers X > 0,Z≥ b,U,ΓG < 0,ΓI,ΓGI,ΓP,ΓP,ΓGP, such that ΓGΓP−(ΓGP)2 >

0, define the Hamiltonian H by

H = sup
(c̄,m≥0,Y,ȳ)

{
uA(c̄)+X

[
bm− c̄−Zm+ ȳη

′(µ− r)+ZY ′(µ− r)+Uη
′(µ− r)

+ 1
2Γ

GY ′ΣRY + 1
2Γ

Pȳ2
η
′
ΣRη + 1

2Γ
I
η
′
ΣRη

+Γ
GIY ′ΣRη +Γ

PI ȳη
′
ΣRη +Γ

GPȳY ′ΣRη

]}
.

For invertible ΣR, we define Principal’s viable strategies as follows.

Definition 4.1 Principal’s strategy Θ = (c,F,y) is viable, if there exist

• a constant V̄0;

• a class of Agent’s admissible strategies Ξ(Θ);
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such that

(a) for any Agent’s strategy Ξ∈Ξ(Θ), there exist FG,I,P adapted processes Z,U,ΓG,ΓP,ΓI,ΓGI ,
ΓPI,ΓGP, satisfying

∫ t
0 Z2

s ds < ∞,
∫ t

0 U2
s ds < ∞, for all t > 0, and Z ≥ b, ΓG < 0, ΓGΓP−

(ΓGP)2 > 0 such that the process V̄ (Ξ) defined by

dV̄t(Ξ) =Xt

[
dPt +ZtdGt +UtdIt + 1

2Γ
G
t d〈G〉t + 1

2Γ
P
t 〈P〉t + 1

2Γ
I
t 〈I〉t

+Γ
GI
t d〈G, I〉t +Γ

PI
t d〈P, I〉t +Γ

GPd〈G,P〉t
]

+ δ̄V̄t(Ξ)dt−Htdt, V̄0(Ξ) = V̄0,

where Xt =−rρ̄V̄t(Ξ), satisfies the transversality condition

lim
T→∞

lim
n→∞

E
[
e−δ̄T∧τnV̄T∧τn(Ξ)

]
= 0,

for any sequence of stopping times {τn}n with limn τn = ∞.

(c) the class Ξ(Θ) contains a strategy Ξ∗ = (c̄∗,m∗,Y ∗, ȳ∗) that maximizes the Hamiltonian,
that is, the strategy with

c̄∗ = (u′A)
−1(−rρ̄V̄ (Ξ∗)), m∗ = 0, Y ∗ =− Z

ΓG Σ
−1
R (µ− r)− ΓGI

ΓG η− ΓGP

ΓG ȳ∗η

ȳ∗ =
ΓGPZ−ΓG

ΓGΓP− (ΓGP)2
η ′(µ− r)

η ′ΣRη
+

ΓGIΓPG−ΓGΓPI

ΓGΓP− (ΓGP)2 ;
(4.2)

(d) Denoting the reported portfolio value and the contract value G∗ and F∗, respectively, when
Agent employs strategy Ξ∗, then, Principal’s wealth process, following the dynamics

dWt = rWtdt +dG∗t + ydIt− ctdt−dF∗t . (4.3)

satisfies the transversality condition

lim
T→∞

lim
n→∞

E
[
e−rρWT∧τn

]
= 0,

for any sequence of stopping times {τn}n with limn τn = ∞.

Similar to Lemmas 3.3 and 3.4, the following results hold.

Lemma 4.2 Assume that ΣR is invertible and η ′ΣRη > 0. Consider any Principal’s viable strategy
Θ=(c,F,y). Then, the strategy Ξ∗=(c̄∗,m∗,Y ∗, ȳ∗) in (4.2) is Agent’s optimal strategy in the class
Ξ(Θ), and V̄0 is Agent’s optimal value at time 0.
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Lemma 4.3 Contract F in any viable strategy satisfies

dFt =ZtdGt +UtdIt + 1
2Γ

G
t d〈G〉t + 1

2Γ
P
t d〈P〉t + 1

2Γ
I
t d〈I〉t +Γ

GI
t d〈G, I〉t +Γ

GP
t d〈G,P〉t +Γ

PI
t d〈P, I〉t

+ 1
2rρ̄ d〈Z ·G+U · I +P〉t−

(
δ̄

rρ̄
+ H̄t

)
dt,

(4.4)

where

H̄t =
1
ρ̄

log(−rρ̄V̄0)− 1
ρ̄
+(ZtY ∗t +Utη + ȳ∗η)′(µt− r)

+ 1
2Γ

G
t (Y ∗t )

′
ΣRY ∗t + 1

2Γ
P
t ȳ∗t η

′
ΣRη + 1

2Γ
I
t η
′
ΣRη

+Γ
GI
t (Y ∗t )

′
ΣRη +Γ

GP
t ȳ∗t (Y

∗
t )
′
ΣRη +Γ

PI
t ȳ∗t η

′
ΣRη .

(4.5)

In particular, F is adapted to FG,I,P.

Remark 4.4 The contract in (4.4) depends on the quadratic variation 〈Z ·G+U · I+P〉 of Agent’s
wealth and quadratic variation 〈P〉. These are observable by Principal because Agent’s wealth
is assumed observable by Principal. In the benchmark model of Section 2 in which Agent is
not allowed to invest in the index privately, the contract in (3.7) depends only on the quadratic
variation 〈Z ·G+U · I〉t , which is observable to Principal, due to the assumption that Z,U ∈ FG,I

and Principal observes G and I continuously. Note that in that case 〈Z ·G+U · I〉t is also the
quadratic variation of Agent’s wealth process, but it does not require that Principal can observe
Agent’s wealth process. Here, instead, we assume Agent’s wealth process is observable, which
makes the same approach work. It is an interesting open question what the optimal contract is if
Agent’s wealth process is not observable/contractible and he can invest privately in the index.

It turns out that with a particular choice of sensitivity processes Γ’s, it is optimal for Agent and
Principal not to invest in the index. Therefore, the equilibrium is as in the benchmark case.

Theorem 4.5 Suppose that Assumption 3.7 holds. Then, there exists an equilibrium in which
statements in Theorem 3.9, moreover, both Agent and Principal do not invest in the index. The
optimal contract in the viable class is

dFt =CIdt + ρ

ρ+ρ̄
dGt +ξ (dGt−β

Y ∗dIt)+ r
2ζ d〈G−β

Y ∗I〉t

+ 1
2(Γ

P + rρ̄)d〈P〉t +(ΓGP + rρ̄Z)d〈G,P〉t +(ΓPI + rρ̄U)d〈P, I〉t ,
(4.6)

where Z,U,ξ ,ζ are the same as in (3.11), and

Γ
P <

(1−Z
Z

)2
Γ

G, Γ
GP = 1−Z

Z Γ
G, Γ

PI = ΓGI

Z , Γ
G =−rZCb, Γ

GI = rZDbβ
Y ∗,

CI =−
(

δ

rρ̄
+ H̄

)
with H̄ from (4.5).
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5 Conclusions

We find equilibrium asset prices in a model with OU dynamics for the dividend processes, in a
market in which CARA investors hire CARA portfolio managers. The optimal contract involves
the quadratic variation of a benchmarked portfolio value which provides incentive to Agent to take
on specific risk of individual stocks. We find that the stocks in large supply have high risk premia,
and the stocks in low supply have low risk premia, and this effect is stronger as agency friction
increases. However, this effect is of a lower order of magnitude than when only the contracts
without the quadratic variation terms are allowed, as in BVW (2014). Therefore introducing the
quadratic variation term in investor’s contracts mitigates the price/return distortion of asset prices
in equilibrium. It would be of interest to study, in the future, the problem with dividends modeled
as square-root processes, in which case the contract terms would change with the state of the
economy, and the volatility would also depend on the agency frictions in equilibrium. This would
require numerically solving the corresponding HJB equations. Another open problem is finding
the optimal contract when Agent’s can hedge and his hedging strategy is not contractible.

6 Proofs

6.1 Proof of Lemma 3.1

We denote V̄t(Ξ) by V̄t(W̄t) to emphasize its dependence on W̄t . Let (c̄′s)s≥t be Agent’s optimal
consumption stream from t onwards. Note that c̄′ is financed by a wealth process starting from W̄t

at time t. Therefore c̄′− rW̄t can be financed by a wealth process starting from 0 at time t. Agent’s
exponential utility function implies that

V̄t(0)≥ erρ̄W̄t V̄t(W̄t).

Above inequality is in fact an equality, i.e., c̄′−rW̄t is optimal for V̄t(0). Assuming otherwise, there
exists another consumption stream c̄

′′
whose associated value is strictly larger than erρ̄W̄t V̄t(W̄t).

Since c̄
′′

is financed by a wealth process starting from 0 at time t, c̄
′′
+ rW̄t can be financed by a

wealth process starting from W̄t at time t. Moreover, the expected utility associated to c̄
′′
+ rW̄t

is strictly larger than V̄t(W̄t), contradicting the optimality of c̄′ for V̄t(W̄t). Therefore, V̄t(W̄t) =

e−rρ̄W̄t V̄t(0), confirming item (i).
For item (ii), definition of V̄t(Ξ) yields

E
[
e−δ̄ tV̄t(Ξ)

]
= E

[∫ ∞

t
e−δ̄ suA(c̄t

s)ds
]
,

where c̄t is Agent’s optimal consumption stream from t onwards. Then, item (ii) follows from
applying the monotone convergence theorem on the right-hand side.
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6.2 Proof of Lemma 3.3

First order condition for c̄ and Y in (3.1) gives

u′A(c̄) = X and Γ
G

ΣRY =−Z(µ− r)−Γ
GI

ΣRη .

Since the optimization problem on the right-hand side of (3.1) is concave in c̄ and Y , and Z ≥ b,
we have that Ξ∗ = (c̄∗,m∗,Y ∗) in (3.4) is the optimizer for H.

For an arbitrary Agent’s admissible strategy Ξ = (c̄,m,Y ), consider the process

Ṽt(Ξ) =
∫ t

0
e−δ̄ suA(c̄s)ds+ e−δ̄ tV̄t(Ξ), t ≥ 0,

where V̄ (Ξ) is defined via (3.2). The definition of H in (3.1) implies that Ṽ (Ξ) is a local super-
martingale. Taking a localizing sequence {τn}n for this local supermartingale and arbitrary T ∈R,
we obtain

E
[∫ T∧τn

0
e−δ̄ suA(c̄s)ds

]
+E
[
e−δ̄ (T∧τn)V̄T∧τn(Ξ)

]
= E[ṼT∧τn(Ξ)]≤ Ṽ0(Ξ) = V̄0. (6.1)

Sending n, and then T to infinity, applying the monotone convergence theorem to the first term on
the left-hand side, and (3.3) to the second term, we obtain

E
[∫ ∞

0
e−δ̄ suA(c̄s)ds

]
≤ V̄0.

For strategy Ξ∗ = (c̄∗,m∗,Y ∗), Ṽ is a local martingale. Then, the inequality in (6.1) is an equality.
Sending n, and then T to infinity and using the transversality condition for V̄ (Ξ∗), optimality of
Ξ∗ is confirmed. Thus, V̄0 is Agent’s optimal value at time 0. A similar argument works for V̄t .

6.3 Proof of Lemma 3.4

Introduce V̂t = V̄0e−rρ̄W̄t , where W̄ follows (2.5) with F in (3.7). We claim that V̂ = V̄ (Ξ). There-
fore, when Agent is offered the contract F in (3.7), and with everything else remaining the same,
his continuation value satisfies the viability condition (3.2). To prove the claim notice first that
Hamiltonian H in (3.1) can be written as

H = X
[

1
ρ̄

log(X)− 1
ρ̄
+(ZY ∗+Uη)′(µ− r)+ 1

2Γ
G(Y ∗)′ΣRY ∗+ 1

2Γ
I
η
′
ΣRη +Γ

GI(Y ∗)′ΣRη

]
.

(6.2)
Next, we also notice that SDE (3.2) for V̄ (Ξ) has locally Lipschitz coefficients on (−∞,0), hence
it admits a unique strong solution before the solution hitting either −∞ or 0. On the other hand,
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applying Itô’s formula to V̂ , we have

dV̂t =Xt

[
(rW̄t +bmt− c̄t)dt +dFt

]
− 1

2rρ̄Xtd〈Z ·G+U · I〉t

=Xt

[
(rW̄t +bmt− c̄t)dt +ZtdGt +UtdIt + 1

2Γ
G
t d〈G〉t + 1

2Γ
Id〈I〉t +Γ

GI
t d〈G, I〉t−

(
δ̄

rρ̄
+ H̄t

)]
=δ̄V̂t +Xt

[
dPt +ZtdGt +UtdIt + 1

2Γ
G
t d〈G〉t + 1

2Γ
I
t d〈I〉t +Γ

GI
t d〈G, I〉t− (−rW̄t + H̄t)

]
=δ̄V̂t +Xt

[
dPt +ZtdGt +UtdIt + 1

2Γ
G
t d〈G〉t + 1

2Γ
I
t 〈I〉t +Γ

GI
t d〈G, I〉t

]
−Htdt,

where Xt =−rρ̄V̂t and the fourth identity follows from −rW̄t +
1
ρ̄

log(−rρ̄V̄0) =
1
ρ̄

log(−rρ̄V̂t) =
1
ρ̄

log(X) and (6.2). Thus, V̂ satisfies (3.2) and it does not hit −∞ or 0 in finite time, since W̄ does
not hit −∞ nor ∞ in finite time. Therefore, V̂ is the unique solution of (3.2).

6.4 Proof of Theorem 3.6

6.4.1 Step 1: Preparation

Given Z,U,ΓG,ΓGI satisfying Z ≥ b and ΓG < 0, we denote

Ū = U
Z , Γ̄

G =− Z
ΓG , and Γ̄

GI =−ΓGI

ΓG . (6.3)

Then, Agent’s optimal strategy Ξ∗ from (3.4) is

c̄∗ = (u′A)
−1(−rρ̄V̄ (Ξ∗)), m∗ = 0, Y ∗ = Γ̄

G
α + Γ̄

GI
η , (6.4)

where α = {αt}t≥0 with αt = Σ
−1
R (µt− r).

When Agent employs the optimal strategy Ξ∗, using (3.7) and (3.8), we see that the contract
takes the form

dF∗t =−
(

1
ρ̄

log(−rρ̄V̄0)+
δ̄

rρ̄
− 1

ρ̄
− 1

2rρ̄Z2
t (Y

∗
t +Ūtη)′ΣR(Y ∗t +Ūtη)

)
dt+Zt(Y ∗t +Ūtη)′(γdBp

t +σdBe
t ).

Then, Principal’s wealth process (3.5) follows

dWt =
(

rWt− ct +
1
ρ̄

log(−rρ̄V̄0)+
δ̄

rρ̄
− 1

ρ̄
− 1

2rρ̄Z2
t (Y

∗
t +Ūtη)′ΣR(Y ∗t +Ūtη)

)
dt

+(Y ∗t + ytη)′dRt−Zt(Y ∗t +Ūtη)′(γdBp
t +σdBe

t ).
(6.5)

6.4.2 Step 2: Principal’s HJB equation

For constant µ , we conjecture that Principal’s value function is given as

V (w) = Ke−rρw, (6.6)
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for some constant K < 0. This value function is expected to satisfy the following HJB equation

δV = sup
Z≥b,Ū ,Γ̄G,Γ̄GI ,c,y

{
up(c)+Vw

[
rw− c+ 1

ρ̄
log(−rρ̄V̄0)+

δ̄

rρ̄
− 1

ρ̄

]
+Vw

[
(Y ∗+ yη)′(µ− r)− 1

2rρ̄Z2(Y ∗+Ūη)′ΣR(Y ∗+Ūη)
]

+ 1
2Vww

[
(Y ∗+ yη)−Z(Y ∗+Ūη)

]′
ΣR
[
(Y ∗+ yη)−Z(Y ∗+Ūη)

]}
.

(6.7)

Note that Y ∗+yη = Γ̄Gα +(Γ̄GI +y)η and Y ∗+Ūη = Γ̄Gα +(Γ̄GI +Ū)η . Therefore, instead of
optimizing over Ū , Γ̄GI , and y individually, we can optimize over Γ̄GI + y,Ū − y, and still obtain
the same maximum value. This means that we can set

y = 0. (6.8)

The maximizer of c in (6.7) is
c = (u′P)

−1(Vw). (6.9)

Plugging (6.6), (6.8), and (6.9) back into (6.7), and taking into account that K < 0, we reduce (6.7)
to

r−δ = sup
Z≥b,Ũ ,Γ̄GI ,Γ̄G

{
ρ

ρ̄
(δ̄ − r)+ rρ

[
(Y ∗)′(µ− r)+ 1

ρ̄
log(−rρ̄V̄0)+

1
ρ

log(−rρK)
]

− 1
2r2

ρ
2[(Y ∗)′ΣRY ∗

]
+ r2

ρ
2Z
[
(Y ∗+Ūη)′ΣRY ∗

]
− 1

2r2
ρ(ρ̄ +ρ)Z2[(Y ∗+Ūη)′ΣR(Y ∗+Ūη)

]}
.

(6.10)

The first order condition of optimality for Ū in (6.10) yields

(ρ + ρ̄)Z[η ′ΣRη ]Ū = [ρ− (ρ + ρ̄)Z][η ′ΣRY ∗].

Since we assume that η ′ΣRη > 0, the concavity in Ū of the maximization problem in (6.10) implies
that the maximizer in Ū is

Ū =
ρ− (ρ + ρ̄)Z
(ρ + ρ̄)Z

CovarY ∗,η

Varη
. (6.11)

Using (6.4), the first order condition for Γ̄GI in (6.10) is

0 = η
′(µ− r)− rCb

[
Covarα,η

Γ̄
G +Varη

Γ̄
GI]+ rZ(ρ− (ρ + ρ̄)Z)VarηŪ . (6.12)

Plugging in (6.11) for Ū , the previous equation is transformed into

0 = η
′(µ− r)+ r(Db−Cb)

[
Covarα,η

Γ̄
G +Varη

Γ̄
GI], (6.13)

where

Cb = ρ(1−Z)2 + ρ̄Z2 and Db =
(ρ− (ρ + ρ̄)Z)2

ρ + ρ̄
. (6.14)
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Similarly, the first order condition for Γ̄G in (6.10) is

0 = α
′(µ− r)− rCb

[
Varα

Γ̄
G +Covarη ,α

Γ̄
GI]+ rZ(ρ− (ρ + ρ̄)Z)Covarη ,αŪ .

Plugging in the expression (6.11) for Ū , the previous equation is transformed into

0 = α
′(µ− r)+ r(Db−Cb)Covarη ,α

Γ̄
GI + r

[
Db

(Covarη ,α)2

Varη
−CbVarα

]
Γ̄

G. (6.15)

Solving (6.13) and (6.15) for Γ̄G and Γ̄GI , and using

Covarη ,α = η
′
ΣRα = η

′
ΣRΣ

−1
R (µ− r) = η

′(µ− r),

Varα = α
′
ΣRα = α

′(µ− r),

we obtain
Γ̄

G =
1

rCb
, (6.16)

Γ̄
GI =

Db

rCb(Cb−Db)

η ′(µ− r)
Varη

. (6.17)

On the right-hand side of (6.10), the function to be maximized tends to negative infinity when
either |Γ̄G| → ∞ or |Γ̄GI| → ∞. Therefore, Γ̄G and Γ̄GI obtained in (6.16) and (6.17) are the
maximizers for the maximization problem in (6.10). Moreover, since µ − r is a constant vector,
Y ∗ = Γ̄Gα + Γ̄GIη is a constant vector as well.

Another form of Γ̄GI that will be useful later can be obtained by plugging (6.16) back into
(6.12) and using (6.11). This gives

Γ̄
GI =

Db

Cb

CovarY ∗,η

Varη
. (6.18)

Finally, the unconstrained first order condition for Z in (6.10) gives

0 = ρ
[
(Y ∗+Ūη)′ΣRY ∗

]
− (ρ + ρ̄)Z

[
(Y ∗+Ūη)′ΣR(Y ∗+Ūη)

]
.

Plugging the expression of Ū from (6.11) into the previous equation, we can solve it and get
Z = ρ

ρ+ρ̄
. Since the maximization problem in (6.7) is concave in Z, under the constraint Z ≥ b

optimal Z is
Z = max

{
ρ

ρ+ρ̄
,b
}
. (6.19)

6.4.3 Step 3: Optimal contract

Plugging (6.11), (6.16), and (6.18) back to (6.3) yields

U =−(Z− ρ

ρ+ρ̄
)βY ∗, Γ

G =−rZCb, and Γ
GI = rZDbβ

Y ∗, where β
Y ∗ =

CovarY ∗,η

Varη
.
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Combining the previous expressions with (3.7), we obtain

ZdGt +UtdIt =
ρ

ρ+ρ̄
dGt +ξ (dGt−β

Y ∗dIt),
1
2Γ

Gd〈G〉t +Γ
GId〈G, I〉t + 1

2rρ̄Z2d〈G+ŪI〉t = r
2ζ
[
d〈G〉t−2d〈G,βY ∗I〉t

]
+ 1

2rρ̄U2d〈I〉t ,

where
ξ = (b− ρ

ρ+ρ̄
)+ and ζ = (ρ + ρ̄)Z(1−Z)(b− ρ

ρ+ρ̄
)+.

In order to have 〈G−βY ∗I〉t instead of 〈G〉t−2〈G,βY ∗I〉t in the above expression, we introduce

1
2Γ

I = r
2

[
ξ − ρ̄(Z− ρ

ρ+ρ̄
)2](

β
Y ∗)2

.

Then,

1
2Γ

Gd〈G〉t +Γ
GId〈G, I〉t + 1

2Γ
Id〈I〉t + 1

2rρ̄Z2d〈G+ŪI〉t = r
2ζ d〈G−β

Y ∗I〉t .

On the other hand,

δ̄

rρ̄
+ H̄ = 1

ρ̄
log(−rρ̄V̄0)+

δ̄

rρ̄
− 1

ρ̄
+(ZY ∗+Uη)′(µ− r)

+ r
2ζ (Y ∗−β

Y ∗I)′ΣR(Y ∗−β
Y ∗I)− r

2 ρ̄(ZY ∗+Uη)′ΣR(ZY ∗+Uη).

Collecting above results and combining them with (3.7), we obtain

dFt =Cdt + ρ

ρ+ρ̄
dGt +ξ (dGt−β

Y ∗dIt)+ r
2ζ d〈G−β

Y ∗I〉t , (6.20)

where

C =− 1
ρ̄

log(−rρ̄V̄0)− δ̄

rρ̄
+ 1

ρ̄
− (ZY ∗+Uη)′(µ− r)

− r
2ζ (Y ∗−β

Y ∗I)′ΣR(Y ∗−β
Y ∗I)+ r

2 ρ̄(ZY ∗+Uη)′ΣR(ZY ∗+Uη).
(6.21)

6.4.4 Step 4: Verifications

Let us verify that Θ = (c,F,y), defined by (6.9), (6.20), and (6.8), is viable. First, when Agent
employs the strategy Ξ∗ with constant Y ∗, we have from (3.2), (3.1) that

dV̄t(Ξ
∗) =−rρ̄V̄t(Ξ

∗)[ZY ∗+Uη ]′(γdBp
t +σdBe

t )+(δ̄ − r)V̄t(Ξ
∗)dt.

Therefore, V̄ (Ξ∗) is given by

V̄t(Ξ
∗) = V̄0e(δ̄−r)tE

(
− rρ̄

∫ t

0
(ZY ∗+Uη)′(γdBp

s +σdBσ
s )
)
.

We need to show that V̄ (Ξ∗) satisfies the transversality condition (3.3). To this end, take any T ∈R
and any sequence of stopping times {τn}n converging to infinity. Since Y ∗ is a constant vector,
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then Z and U are constants, therefore the above stochastic exponential is a martingale, hence the
family {

E
(
− rρ̄

∫ T∧τn

0
(Zθ +Uη)′(γdBp

s +σdBσ
s )
)}

n
is uniformly integrable in n.

As a result,

lim
n→∞

E
[
e−δ̄T∧τnV̄T∧τn(Ξ

∗)
]
= V̄0e−rTE

[
E
(
− rρ̄

∫ T

0
(Zθ +Uη)′(γdBp

s +σdBσ
s )
)]

= V̄0e−rT ,

which vanishes when T → ∞. Therefore Lemma 3.3 shows that Ξ∗ = (c̄∗,m∗,Y ∗) in (3.4) is
Agent’s optimal strategy in Ξ(Θ).

Next we need to show that Θ is adapted to FG∗,I . Combining (6.6) and (6.9) yields

c =− 1
ρ

log(−rρK)+ rW.

Plugging this expression for c into (3.5) we obtain

dWt =
1
ρ

log(−rρK)dt +dG∗t −dF∗.

We have seen in Lemma 3.4 that F∗ is adapted to FG∗,I , thus W and c are adapted to the same
filtration.

It remains to check the transversality condition (3.6) is satisfied. To this end, applying Itô’s
formula to Vt =V (Wt), and using (6.7) and (6.9), we obtain

dVt = (δ − r)Vtdt− rρVt [Y ∗− (ZY ∗+Uη)]′[γdBp
t +σdBe

t ].

Therefore
Vt =V0e(δ−r)tE

(
− rρ

∫ t

0
[Y ∗− (ZY ∗+Uη))′[γdBp

s +σdBe
s]
)
.

The same argument leading to verify (3.3) above yields that (3.6) is satisfied. This concludes the
proof of viability for Principal’s strategy Θ.

Let us now verify the optimality of Principal’s strategy Θ. For arbitrary Principal’s viable
strategy Θ̃ = (c̃, F̃ , ỹ) and its associated Agent’s optimal strategy Ξ̃∗, consider the process

Ṽt =
∫ t

0
e−δ suP(c̃s)ds+ e−δ tV (Wt),

where V (w) is defined in (6.6). From the HJB equation (6.7), we obtain that Ṽ is a local super-
martingale. Using the same localization argument as in the proof of Lemma 3.3 together with the
transversality condition (3.6), we obtain

E
[∫ ∞

0
e−δ suP(c̃s)ds

]
≤ Ṽ0 =V (W0),

where the inequality is equality when Principal chooses Θ. This verifies the optimality of Θ.
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6.5 Proof of Theorem 3.9

6.5.1 Step 1: Equilibrium asset prices

In equilibrium, given that y = 0, we necessarily have Y ∗ = θ . Then, (6.4) combined with (6.16)
and (6.18) yields

θ =
1

rCb
αt +

Db

Cb
β

θ
η . (6.22)

Recall that αt = Σ
−1
R (µt− r). Left-multiplying (6.22) by rCbη ′ΣR leads to

rCbη
′
ΣRθ = η

′(µt− r)+ rDbCovarθ ,η .

Note that all the terms above equation are constants except for the first term on the right-hand
side, which is η ′(ptA1 + etA2 +A3). Since this equation has to hold for all values of pt and et in
equilibrium, it is necessary to have

A1 = 0 and A2 = 0.

Hence µ is a constant. Recalling the definition of A1 and A2 in (2.12), we then obtain

api =
ai

r+κ p , aei =
1

r+κe
i
, i = 1, . . . ,N. (6.23)

In order to determine a0, we left-multiply both sides of (6.22) by rCbΣR, and using A1 =A2 = 0
it follows that

A3 = µ− r = rΣR
(
Cbθ −Dbβ

θ
η
)
. (6.24)

Note that Cb−Db =
ρρ̄

ρ+ρ̄
. Thus, the previous equation can be rewritten as

A3 = µ− r = rΣR

(
ρρ̄

ρ+ρ̄
θ +Db(θ −β

θ
η)
)
. (6.25)

Recalling the definition of A3 from (2.12), (6.25) yields

a0 =
1
r

κ
p p̄ap +

1
r
(κe)′ēae− ρρ̄

ρ+ρ̄
ΣRθ −DbΣR(θ −β

θ
η). (6.26)

Plugging (6.16), (6.17), and Cb−Db =
ρρ̄

ρ+ρ̄
back to (6.4), we confirm (3.12). Left-multiplying

both sides of (6.25) by θ ′, we obtain the excess return of the portfolio:

θ
′(µ− r) = r ρρ̄

ρ+ρ̄
Varθ + rDb

(
Varθ − (Covarθ ,η )2

Varη

)
. (6.27)

Left-multiplying η ′ both sides of (6.25) by η ′ , we obtain the excess return of the index:

η
′(µ− r) = r ρρ̄

ρ+ρ̄
Covarθ ,η . (6.28)

Finally, since api and aei obtained in (6.23) are positive, all entries of ΣR are positive. Moreover
all entries of η are positive. Therefore η ′ΣRη > 0 is also confirmed.
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6.5.2 Step 2: Participation constraint and Principal’s value

We now determine Principal’s optimal choice of Agent’s value at time 0, i.e., V̄0, so that Agent is
willing to take this contract. and that Principal is willing to issue the contract F .

If Agent does not take the contract, his value function V̄ u is expected to satisfy the following
HJB equation

δ̄V̄ u = sup
c̄u,Y

{
uA(c̄u)+V̄ u

w̄(rw̄+Y ′(µ− r)− c̄u)+ 1
2V̄ u

w̄w̄Y ′ΣRY
}
, (6.29)

We conjecture that V̄ u takes the form

V̄ u(w̄) = K̄ue−rρ̄w̄,

for some constant K̄u < 0. The first order conditions for the maximization of c̄u and Y give

c̄u =− 1
ρ̄

log(−rρ̄K̄u)+ rw̄,

Y = 1
rρ̄

Σ
−1
R (µ− r),

which are optimizers for the right-hand side of (6.29) due to concavity. Plugging above c̄u and Y
back to (6.29) yields

log(−rρ̄K̄u) = r−δ̄

r −
1
2r (µ− r)′Σ−1

R (µ− r). (6.30)

An argument similar to the proof of Lemma 3.3 verifies the optimality of (c̄u,Y ). Since W̄0 = 0,
Principal can set V̄0 = K̄u. In this case, Agent is indifferent with respect to taking the contract or
not, in which case we assume he chooses to work for Principal. Plugging (6.30) into (6.21) yields

C = 1
2r

1
ρ̄
(µ− r)′Σ−1

R (µ− r)− (ZY ∗+Uη)′(µ− r)

− r
2ζ (Y ∗−β

Y ∗I)′ΣR(Y ∗−β
Y ∗I)+ r

2 ρ̄(ZY ∗+Uη)′ΣR(ZY ∗+Uη).
(6.31)

Let us determine K in (6.6). First, plugging µ−r from (6.24) into the right-hand side of (6.30),
we obtain

log(−rρ̄V̄0) =
r−δ̄

r −
r
2

[
C 2

b Varθ +(D2
b −2CbDb)

(Covarθ ,η )2

Varη

]
. (6.32)

Second, plugging (6.11) back into (6.10) and using Y ∗ = θ , we obtain

1
ρ̄

log(−rρ̄V̄0)+
1
ρ

log(−rρK)+θ
′(µ−r) = 1

ρ
+ 1

ρ̄
− δ

rρ
− δ̄

rρ̄
+ r

2CbVarθ− r
2Db

(Covarθ ,η )2

Varη . (6.33)

Plugging (6.27) and (6.32) back to (6.33), we obtain

1
ρ

log(−rρK) = 1
ρ
− δ

rρ
+ r

2
1
ρ̄
(C 2

b − ρ̄Cb)Varθ + r
2

1
ρ̄
(D2

b −2CbDb + ρ̄Db)
(Covarθ ,η )2

Varη . (6.34)

If Principal does not hire Agent, her value function V u is expected to satisfy the following HJB
equation

δV u = sup
cu,y

{
up(cu)+V u

w(rw+ yη
′(µ− r)− cu)+ 1

2V u
wwy2

η
′
ΣRη

}
. (6.35)
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We conjecture that V u takes the form

V u(w) = Kue−rρw,

for some constant Ku < 0. The first order conditions for the maximization of cu and y give

cu =− 1
ρ

log(−rρKu)+ rw,

y = 1
rρ

η ′(µ−r)
η ′ΣRη

,

which are optimizers for the right-hand side of (6.35) due to concavity. Plugging above cu and y
back to (6.35), we obtain

1
ρ

log(−rρKu) = 1
ρ
− δ

rρ
− 1

2r
1
ρ

(η ′(µ−r))2

η ′ΣRη
. (6.36)

Using η ′(µ− r) from (6.28), we obtain

1
ρ

log(−rρKu) = 1
ρ
− δ

rρ
− r

2
1
ρ

(
ρρ̄

ρ+ρ̄

)2 (Covarθ ,η )2

Varη . (6.37)

An argument similar to the proof of Lemma 3.3 verifies the optimality of (cu,y).
Comparing (6.34) and (6.37), we see that V (W0)≥V u(W0) if and only if

C3Varθ +C4
(Covarθ ,η )2

Varη ≥ r
2

(
ρρ̄

ρ+ρ̄

)2 (Covarθ ,η )2

Varη , (6.38)

where constants C3 and C4 are

C3 =
r
2

ρ

ρ̄
Cb(ρ̄−Cb) and C4 =

r
2

ρ

ρ̄
Db(2Cb−Db− ρ̄).

Note that C3 =
r
2

(
ρρ̄

ρ+ρ̄
)2−C4 and C3 ≥ 0 when 0 ≤ b ≤ 1. Then, (6.38) is equivalent to Varθ ≥

(Covarθ ,η )2

Varη , which holds by Cauchy-Schwarz inequality. Therefore, V (W0)≥V u(W0) and Principal
is willing to hire Agent.

6.6 Calculation for Figure 4

Given the excess return in BVW (2014)

µ− r = rρ̄ΣR(Zθ +Uη), (6.39)

where Z and U are as in Theorem 3.6 item (a), and Agent’s optimal holding Y ∗ = θ , Principal’s
value function is

VBVW (W0) =−e−rρW0−CBVW ,

where

CBVW =−1+ δ

r + log(rρ)− r
2

(
ρρ̄

ρ+ρ̄

)2
θ
′
ΣRθ

− rρ
(
b− ρ

ρ+ρ̄

)
+

[
ρ̄2

ρ+ρ̄
− (ρ̄ + 1

2ρ)
(
b− ρ

ρ+ρ̄

)
+

](
Varθ − (Covarη ,θ )2

Varη

)
.

(6.40)
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The term log(rρ) in above eqaution corresponds to the term log(r) in BVW (2014), Equation
(A.104). The difference is due to Principal’s utility being equal to −e−ρc in BVW (2014), while
being equal to − 1

ρ
e−ρc in the present paper.

Taking the excess return (6.39), we want to calculate Principal’s value if she uses our contract.
First, (6.39) yields

η
′(µ− r) = r ρρ̄

ρ+ρ̄
Covarη ,θ , α = rρ̄(Zθ +Uη).

Plugging above two identities back into (6.4), and using Γ̄G and Γ̄GI from (6.16) and (6.17), we
obtain

Y ∗ =
ρ̄Z
Cb

θ +
Db− ρ̄(b− ρ

ρ+ρ̄
)+

Cb
β

θ
η . (6.41)

Using the above expression and the fact that Cb =
ρρ̄

ρ+ρ̄
+Db, we have

CovarY ∗,η =Covarθ ,η .

Hence (6.11) yields
Ū = ρ−(ρ+ρ̄)Z

(ρ+ρ̄)Z β
θ .

Plugging the previous expression of Ū back into (6.10), a calculation shows that

1
ρ̄

log(−rρ̄V̄0)+
1
ρ

log(−rρK)+(Y ∗)′(µ− r) = 1
ρ
+ 1

ρ̄
− δ

rρ
− δ̄

rρ̄
+ r

2CbVarY ∗− r
2Db

(Covarη ,Y∗)2

Varη .

Combining (6.39), (6.41), and the fact that Cb =
ρρ̄

ρ+ρ̄
+Db, we show that

r
2
CbVarY ∗− r

2
Db

(Covarη ,Y ∗)2

Varη
=

1
2
(Y ∗)′(µ− r)

=
r
2

ρ̄2Z2

Cb
Varθ +

r
2

−ρ̄(b− ρ

ρ+ρ̄
)+Cb + ρ̄ZDb− ρ̄2(b− ρ

ρ+ρ̄
)+Z

Cb

(Covarθ ,η)2

Varη
.

On the other hand, using (6.30), (6.39), and K̄u = V̄0, we obtain

log(−rρ̄V̄0) = 1− δ̄

r −
r
2

ρ̄
2Z2Varθ − r

2

[
−2Z(b− ρ

ρ+ρ̄
)+ρ̄

2 +(b− ρ

ρ+ρ̄
)2
+ρ̄

2
](Covarθ ,η)2

Varη
.

Combining the previous three equations, Principal’s value, when she employs the contract in
(3.10), is

VCX(W0) = Ke−rρW0 =−e−rρW0−CCX ,

where

CCX =−1+ δ

r + log(rρ)

+
r
2

ρρ̄Z2

Cb

[
ρ̄2

ρ+ρ̄
− (ρ + ρ̄)

(
b− ρ

ρ+ρ̄

)2
+

]
Varθ

+
r
2

[
ρρ̄

ρ+ρ̄
(ρ− ρ̄)

(
b− ρ

ρ+ρ̄

)
+
+ρρ̄

(
b− ρ

ρ+ρ̄

)2
+
+

ρρ̄Z
Cb

(
Db− ρ̄

(
b− ρ

ρ+ρ̄

)
+

)](Covarθ ,η)2

Varη
.

(6.42)

Figure 4 compares the certainty equivalences CBVW/ρ and CCX/ρ for Principal under the two
contracts.
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6.7 Proof of Theorem 4.5

When Agent employs the optimal strategy Ξ∗ in (4.2), using (4.4), (4.5), and noticing that (4.4)
does not contain ȳ · I, we obtain

dF∗ =−
[

1
ρ̄

log(−rρ̄V̄0)+
δ̄

rρ̄
− 1

ρ̄
+ ȳ∗η ′(µ− r)− 1

2rρ̄(ZtY ∗t +Utη + ȳ∗η)′ΣR(ZtY ∗+Utη + ȳ∗η)
]
dt

+(ZtY ∗t +Utη)′(γdBp
t +σdBe

t ).

Therefore, Principal’s wealth process in (4.3) follows

dWt =
[
rWt− ct +

1
ρ̄

log(−rρ̄V̄0)+
δ̄

rρ̄
− 1

ρ̄

]
dt

+
[
(Y ∗t + ytη + ȳ∗t η)′(µ− r)− 1

2rρ̄(ZtY ∗t +Utη + ȳ∗t η)′ΣR(ZtY ∗+Utη + ȳ∗t η)
]
dt

+
[
(Y ∗t + ytη)− (ZtY ∗t +Utη)

]′
(γdBp

t +σdBe
t ).

We conjecture that Principal’s value function is given by

V (w) = Ke−rρw, (6.43)

for some constant K < 0. The value function is expected to satisfy the following HJB equation

δV = sup
Z≥b,U,Γ′s,c,y

{
up(c)+Vw

[
rw− c+ 1

ρ̄
log(−rρ̄V̄0)+

δ̄

rρ̄
− 1

ρ̄

]
+Vw

[
(Y ∗+ yη + ȳ∗η)′(µ− r)− 1

2rρ̄(ZY ∗+Uη + ȳ∗η)′ΣR(ZY ∗+Uη + ȳ∗η)
]

+ 1
2Vww

[
(Y ∗+ yη)− (ZY ∗+Uη)

]′
ΣR
[
(Y ∗+ yη)− (ZY ∗+Uη)

]}
. (6.44)

Recalling (4.2), we have

Y ∗+ yη + ȳ∗η =− Z
ΓG α−

(
ΓGI

ΓG − y
)
η−

(
ΓGP

ΓG −1
)
ȳ∗η ,

ZY ∗+Uη + ȳ∗η = Z(Y ∗+ yη + ȳ∗η)+(U−Zy− (Z−1)ȳ∗)η ,

(Y ∗+ yη)− (ZY ∗+Uη) = (Y ∗+ yη + ȳ∗η)− (ZY ∗+Uη + ȳ∗η).

Therefore, instead of optimizing over Z,Ū ,Γ′ s, ȳ and y individually, we can optimize over Z,
ΓGI− yΓG, ΓGP−ΓG and U −Zy− (Z−1)ȳ∗. This means that we can set y+ ȳ∗ = 0 and ȳ∗ = 0,
i.e.,

y = ȳ∗ = 0. (6.45)

Using this and (6.45), we have from (4.2) that

Y ∗ =− Z
ΓG α− ΓGI

ΓG η ,

ȳ∗ =
ΓGPZ− (1−Z)ΓG

ΓGΓP− (ΓGP)2
η ′(µ− r)

η ′ΣRη
+

ΓGI(ΓPG +ΓG)−ΓGΓPI

ΓGΓP− (ΓGP)2 .
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For given Z,ΓG,ΓGI with Z > 0,ΓG < 0, we can take

Γ
GP = 1−Z

Z Γ
G, Γ

P <
(1−Z

Z

)2
Γ

G, Γ
PI = ΓGI

Z .

Then ΓGΓP− (ΓGP)2 > 0 and ȳ∗ = 0 are satisfied. This reduces to the case in which Agent is not
allowed to invest in the index privately. Hence, the remainder of the proof is the same as before.
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