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Abstract
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outperforms other popular carry trade strategies in terms of Sharpe ratio, skewness,

kurtosis, maximum drawdown, expected recovery time, and percentage of positive re-

turns. Popular factor pricing models in international finance do not explain the superior

performance. Our strategy predicts future (1- to 24-month ahead) returns and changes

in global FX market volatility. A pricing model using our trading strategy as a sin-

gle factor outperforms and subsumes the popular “Dollar”-“Carry” two factor pricing

model.
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1 Introduction

Currency carry trade strategies are well-known to earn high Sharpe ratios. The literature

typically suggests to sort currencies according to country-specific characteristics such as inter-

est rates, power purchase parity adjusted exchange rates or past exchange rate appreciation

and use an equal weighting scheme to construct trading strategies. In turn, such trading

strategies are then used as pricing factors to price assets in foreign exchange (FX) markets.

A prominent pricing model is the DOL-HML two factor model (Lustig et al., 2011), where

DOL is the “dollar” factor (borrow USD, equally lend in all other currencies) and HML is

the “carry” factor (borrow low, lend high interest rate currencies). Equal weighting schemes

are, however, suboptimal and there is no theoretical guidance why these profitable trading

strategies are suitable pricing factors which are able to explain expected asset returns in the

cross-section.

We construct a currency trading strategy which outperforms many well-known carry trade

strategies out-of-sample. Moreover, our strategy earns economically large and statistically

significant abnormal returns according to popular factor pricing models, suggesting that

current pricing factors fail to explain important priced risks in FX markets. Finally, a

pricing model which uses our trading strategy as a single factor performs better than and

subsumes the prominent DOL-HML factor pricing model.

In theory, our strategy is perfectly negatively correlated with the stochastic discount

factor (SDF) estimated according to a standard projection approach as described by Hansen

and Jagannathan (1991),1 and thus, earns the theoretically maximum attainable Sharpe

ratio in FX markets. We call this strategy the Maximum Sharpe Ratio (MSR) strategy. It

is equal to the optimal portfolio of an investor with log-utility (Merton, 1971).

As suggested by Maurer et al. (2015), we use principal component analysis (PCA) to

span a risk space containing the most important FX market risks, onto which we project

the SDF. PCA helps us to reduce estimation noise. Addressing estimation error and pa-

rameter uncertainty concerns is important (see Brandt (2005) for an overview). That is, by

1Following Maurer et al. (2015), first, principal component analysis (PCA) is used to map out the FX
market risk space. Second, a cross-sectional regression of currency pair carry trade returns (borrow USD,
lend currency I) is employed to estimate market prices of risk and construct country-specific SDFs.
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construction our MSR strategy earns the maximum Sharpe ratio in-sample, but this does

not guarantee a strong out-of-sample performance. For instance, DeMiguel et al. (2009)

show that in equity markets an equally weighted strategy outperforms optimized portfolios

out-of-sample (due to parameter uncertainty). In contrast to this strong finding in equity

markets, we find that our optimized portfolio performs well in FX markets because there is

a strong factor structure which is an ideal environment to reduce noise in the estimation of

expected returns and covariances.

Besides the fact that MSR is constructed from an SDF projection, Maurer et al. (2015)

document that this approach yields country-specific SDF estimates which are correlated to

fluctuations in output gap, which is a proxy for macroeconomic uncertainty. In particular,

countries with more volatile SDFs feature a higher output gap volatility and changes in

output gap are negatively correlated with shocks to estimated SDFs. Thus, this empirical

relationship is evidence that the superior performance of MSR as a trading strategy and

pricing factor has a risk-based explanation related to economic fundamentals.

We implementMSR at a monthly frequency and find that it earns a high Sharpe ratio and

outperforms other popular carry trade strategies across various performance measures and

for diverse subsamples between 1977 and 2016.2 For our set of 15 developed countries, which

feature a large active trading volume and liquidity, we find that MSR earns a Sharpe ratio of

1.04 before and 0.78 after accounting for transaction costs. This is in comparison to a Sharpe

ratio of 0.62 and 0.56 respectively for the HML strategy, which borrows (lends) a portfolio of

currencies with low (high) interest rates (Lustig and Verdelhan, 2007). The outperformance is

even larger during NBER recessions when MSR earns a Sharpe ratio of 0.67 after transaction

costs, while HML earns 0.05. We also confirm the superior performance of MSR outside

NBER recession periods and in pre- and post-Euro subsamples.

We further find that the monthly return distribution of MSR is positively skewed, which

is a desirable property since it indicates large upside potential and relatively limited downside

risk. Many other currency strategies have a less favorable negative skewness. Moreover, the

2For the implementation we only use available information, that is, at the end of each month, when we
rebalance our portfolio, we estimate all necessary parameters (in PCA and cross-sectional regressions) using
only historical data. Thus, our results are not subject to a look-ahead bias.
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maximum drawdown for MSR is less severe than for other popular currency strategies. The

expected recovery time from a maximum drawdown is also substantially shorter for MSR.

Consistent with Bekaert and Panayotov (2016) and Daniel et al. (2014) our finding of a

limited downside risk suggests that crash risk does not appear to fully explain the large

expected returns in FX markets.

MSR earns statistically significant and economically large abnormal returns according to

popular factor pricing models in FX markets. This suggests that current pricing factors fail

to explain important risk sources which are compensated by sizable average excess returns.

Building on this finding we test the ability of MSR as a pricing factor. We document

that MSR is an important pricing factor and is able to explain much of the cross-sectional

variation in expected returns in FX markets. Time-series and cross-sectional asset pricing

tests indicate that a model using MSR as a single factor outperforms the popular DOL-

HML two factor model in pricing assets in FX markets. Moreover, DOL and HML do not

contain any additional information relevant for pricing beyond what is already captured by

MSR. Thus, the MSR single factor model appears to subsume the DOL-HML two factor

pricing model.

We argue that there are two important dimensions of MSR’s investment. First, MSR

optimally trades off conditional risks and market prices, i.e., it invests in the Markowitz

(1952) tangency portfolio. Second, MSR allocates capital between the risk-free asset (bond

in home currency) and the risky tangency portfolio such that the conditional volatility of

MSR matches the conditional volatility of the estimated SDF. This time variation in the

capital allocation is essentially market timing. MSR invests more (or increases leverage)

in the risky tangency portfolio when market prices of risk are high and less (or decreases

leverage) during times of low risk compensations. Notice that times of high (low) market

prices (i.e., SDF volatility) do not necessarily coincide with times of high (low) FX market

volatility. Thus, the market timing of MSR is different to volatility managed portfolios

such as in Della Corte et al. (2009), Daniel et al. (2014) and Moreira and Muir (2016).

MSR’s market timing ability is valuable and MSR earns a higher unconditional Sharpe

ratio than other strategies (e.g. the tangency portfolio), which have the same risky asset

portfolio composition but do not dynamically adjust their leverage. MSR is also found to
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outperform volatility managed portfolios particularly during NBER recessions and in the

post-Euro subsample.

In support of the idea that MSR is able to time the market, we find that the amount of

leverage taken by MSR in month t predicts future (1- to 24-month ahead) returns of many

FX strategies as well as future changes in global FX market volatility. In contrast, changes

in global FX market volatility do not have such predictive power, suggesting that MSR is

able to time the market more efficiently than volatility managed portfolios.

To address estimation error concerns discussed in the literature on portfolio optimiza-

tion under parameter uncertainty, we exploit the strong factor structure in FX markets. A

strong structure on expected returns and covariances helps to reduce noise in the estimation

of these moments. We use interest rate differentials to proxy for expected carry trade re-

turns and remove unimportant principal components when estimating exchange rate growth

covariances. Removing principal components with little explanatory power ensures that the

underlying model excludes near-arbitrage opportunities (Kozak et al., 2015).3 It is also

similar to shrinkage methods or portfolio constraints to prevent extreme portfolio positions

which generate large in-sample but small out-of-sample returns.

Our paper is organized as follows. First, we relate our paper to the relevant literature.

The data and all tested carry trade strategies are described in section 2. We report and

compare the performance of all strategies in section 3: section 3.1 compares strategies without

accounting for transaction costs, 3.2 reports the performance after accounting for transaction

costs, 3.3 reports results in diverse subsamples, and 3.4 investigates whether popular pricing

factors can explain the large excess returns of MSR. Section 4 demonstrates MSR’s ability

to predict future currency returns and FX market volatility. Motivated by the findings in the

previous sections, section 5 delivers the key result of the paper, demostrating the power of

MSR as a single pricing factor to explain the cross-section of expected FX market returns.

Section 6 concludes. Appendix A describes the construction of MSR and its relation to the

tangency portfolio in Markowitz (1952) and the non-parametric SDF estimation approach

in Maurer et al. (2015). Appendix B and C describe the data sources and all relevant tables.

3In a similar spirit, Ross (1976) suggests factors should be constructed such that the maximum attainable
Sharpe ratio is bounded.
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The accompanying Internet Appendix replicates all results in this paper for a larger set of

48 emerging and developed countries and demonstrates the robustness of our findings.

Related Literature

Our paper is related to the literature which analyzes risk factors in FX markets and constructs

profitable carry trade strategies. Lustig and Verdelhan (2007, 2011) and Burnside (2011,

2012) discuss the connection between carry trade returns, aggregate consumption growth

(CCAPM) and popular stock market pricing factors. Recently, many new FX risk factors

were introduced: carry factor (Lustig et al., 2011), global volatility factor (Menkhoff et al.,

2012a; Christiansen et al., 2011), momentum factor (Burnside et al., 2011; Menkhoff et al.,

2012b), global currency skewness factor (Rafferty, 2012), FX correlation risk factor (Mueller

et al., 2013), dollar factor (Verdelhan, forthcoming; Lustig et al., 2014), downside beta risk

factor (Dobrynskaya, 2014; Lettau et al., 2014; Galsband and Nitschka, 2013), FX liquidity

risk factor (Mancini et al., 2013), economic size factor (Hassan, 2013), surplus-consumption

risk factor (Riddiough, 2014). Brusa et al. (2015) introduce an international CAPM model

with one global equity factor and two currency factors. Daniel et al. (2014) show that dollar-

neutral carry trades and dollar-exposed strategies are fundamentally different and usual risk

factors appear to explain only dollar-neutral returns. Bekaert and Panayotov (2016) show

that excluding the Australian dollar, Japanese Yen, and Norwegian Krone from the asset

universe substantially improves the Sharpe ratio and lowers the downside risk of carry trade

strategies. For most of our analysis we focus on the well-known and dominant DOL and

HML factors as a benchmark. We show that our trading strategy loads on important risks

not spanned by these pricing factors and outperforms the DOL-HML two factor model.

Some research attempts to link currency carry trade returns and pricing factors to macroe-

conomic fundamentals (Habib and Stracca, 2012; Cenedese, 2012; Dobrynskaya, 2015; Filip-

pou and Taylor, forthcoming; Menkhoff et al., 2015). Our companion paper, Maurer et al.

(2015) shows that estimated SDFs, which correspond to MSR, are inherently related to

fluctuations in output gap.

There is a large literature on trading strategies in FX markets. Our MSR strategy is
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closely related to the mean-variance efficient currency portfolios by Baz et al. (2001) and

Della Corte et al. (2009), but there are several important differences. Baz et al. (2001)

build portfolios of short term bonds in 5 developed currencies to minimize the conditional

variance given a conditional expected target return. Thus, similar to MSR, their strategy

holds the tangency portfolio, but opposite to MSR, their strategy decreases (increases) the

investment in the tangency portfolio when market prices are high (low) because the expected

target return is constant through time. Accordingly, the conditional Sharpe ratio is identical

but the unconditional Sharpe ratio of their strategy is lower than the one of MSR. Della

Corte et al. (2009) construct portfolios of short term bonds in 4 developed currencies to

maximize the conditional expected return given a conditional target volatility. While their

strategy decreases (increases) leverage in response to an increase (decrease) in the global FX

market volatility, MSR adjusts its leverage in response to time variations in market prices

of risk. Notice that FX market volatility and market prices are likely negatively correlated

but the correlation is not perfect. Daniel et al. (2014) and Moreira and Muir (2016) also

document that volatility managed portfolios in FX markets earn large risk adjusted returns,

and Daniel et al. (2014) further analyzes the downside/crash risk of such strategies. One of

our main results is to analyze abnormal returns of MSR, predictability of FX market returns

and the possibility to use MSR as a pricing factor, while Baz et al. (2001), Della Corte et al.

(2009), Daniel et al. (2014) and Moreira and Muir (2016) only study the performance of

trading strategies.

Levich and Thomas (1993), Taylor and Allen (1992), Silber (1994) and LeBaron (1999),

provide evidence that technical analysis can generate substantial risk-adjusted returns in FX

markets. Jorda and Taylor (2012) show that conditioning on purchase power parity (PPP)

information can improve the performance of naive carry trade strategies. Sager and Taylor

(2014) build on the exchange rate predictability results from a cointegration relationship

in Clarida and Taylor (1997) and generate large trading profits. Employing the portfolio

optimization method of Brandt et al. (2009), which maps asset characteristics into portfolio

weights, Laborda et al. (2014) and Barroso and Santa-Clara (2015) construct optimal carry

trade portfolios, which perform well out-of-sample. Della Corte et al. (forthcoming) construct

a profitable carry trade strategy based on option implied variance risk premia. Dahlquist and

6



Hasseltoft (2016) document a strong relationship between economic momentum (trends in

fundamental variables) and average carry trade returns and build trading strategies. Bekaert

and Panayotov (2016) construct carry trades based on a restricted set of “good” currencies

and earn large risk adjusted returns with limited downside risk.

Finally, our paper is related to a large literature on portfolio optimization under param-

eter uncertainty. Markowitz (1952) derives a theoretical formula to construct the maximum

Sharpe ratio (or tangency) portfolio. The implementation is, however, challenging because

conditional expected returns and covariances have to be estimated from the data. Estimation

errors can lead to a poor out-of-sample performance of a strategy, even though the in-sample

performance is deceptively outstanding (Brandt (2005) provides an extensive review). Popu-

lar methods to deal with estimation errors include: shrinkage to reduce noise in estimates of

expected returns and covariances (James and Stein, 1961; Jorion, 1986; Frost and Savarino,

1986), minimization of expected loss due to parameter uncertainty (Kan and Zhou, 2007;

Tu and Zhou, 2011; Kan et al., 2016), portfolio constraints to restrict extreme positions

which are likely due to estimation errors (Frost and Savarino, 1988; Jagannathan and Ma,

2003), and imposing factor structures to reduce noise in estimates of expected returns and

covariances (Sharpe, 1963; Chan et al., 1999; MacKinlay and Pastor, 2000). Given that FX

markets feature a strong factor structure, our paper employs the last approach and imposes

a factor model to overcome estimation errors.

2 Data and Carry Trade Strategies

2.1 Data

Exchange Rate: We collect daily spot and 1-month forward bid, ask and mid exchange

rates from Barclays Bank International and Reuters via Datastream. Our sample consists

of 15 developed countries: Australia, Belgium, Canada, Denmark, Euro Area, France, Ger-

many, Italy, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United King-

dom. These are the countries identified as developed by Lustig et al. (2011). Exchange rates

are defined against USD (US-dollar) and our sample starts on January 2nd, 1976 and ends
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on March 2nd, 2016.4

Trading frictions are typically lower for currencies of developed countries (e.g., they have

a large active trading volume, there are less capital controls, liquidity is higher, transaction

costs are lower) than for emerging countries. Thus, our set of 15 developed countries fits our

theoretical frictionless model better than a larger set of developed and emerging countries.

Moreover, investors typically prefer to implement a trading strategy using currencies of

developed countries because of liquidity risks and trading costs. Since our paper develops

a profitable trading strategy, we focus on our results for the set of 15 developed countries.

The results for a larger set of 48 emerging and developed markets are similar and we report

them in the Internet Appendix.

Purchasing power parity (PPP): OECD provides annual PPP data (national foreign

currency per USD) for all of the countries in our sample. Annual PPP data is released in

March and we assume PPP is constant from March until February in the following year in

order to construct monthly observations.

NBER Recession: We collect the NBER recession time-series from the Federal Reserve

Bank of St. Louis. NBER based Recession Indicators for the USA are defined as the Period

following the Peak through the Trough.

2.2 Carry Trade Returns and Transaction Costs

We denote spot and 1-month forward exchange rates of units of currency I per USD at

time t by EXI/US,t and FI/US,t. By no-arbitrage the covered interest rate parity (CIP)

implies FI/US,t = EXI/US,te
(rI,t−rUS,t)∆t, where rUS,t, rI,t are (continuously compounded and

annualized) risk-free 1-month spot interest rates in USD and currency I, and ∆t = 1
12

is a 1

month investment horizon. Akram et al. (2008) show that the CIP holds closely in the data

at daily and lower frequencies. We define the realized carry trade return denominated in

USD of borrowing 1 USD and lending EXI/USD,t units of currency I for 1 month (∆t = 1
12

)

4The sample from January 2nd, 1976 to October 11th, 1983 is quoted against the British Pound, and we
convert all data to exchange rates against USD.
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as,

CTUS−US/+I,t+∆t =
EXI/US,t

EXI/US,t+∆t

erI,t∆t − erUS,t∆t = erUS,t∆t

(
EXI/US,t

EXI/US,t+∆t

e(rI,t−rUS,t)∆t − 1

)

= erUS,t∆t

(
FI/US,t

EXI/US,t+∆t

− 1

)
≈ erUS,t∆t ln

(
FI/US,t

EXI/US,t+∆t

)
.

Note that carry trade returns are net-zero investments and thus, they are excess returns.

We use quotes of the last day of the month to compute monthly returns. Since rUS,t is

locally-deterministic, we rescale the carry trade returns to ‘CTUS−US/+I,t+∆t ≈ ln
Å

FI/US,t

EXI/US,t+∆t

ã
,

that is, borrow e−rUS,t∆t USD and lend e−rUS,t∆tEXI/USD,t units of currency I.

We compute carry trade returns before and after transaction costs. We use mid exchange

rate quotes for EXI/US,t and FI/US,t to compute returns before transaction costs. To account

for transaction costs we use bid-ask quotes, indicated by superscript b and a. We implement

two measures of transaction costs: (i) full round-trip costs (a conservative measure) and

(ii) costs assuming no roll-over fees for forward contracts (arguably more realistic measure).

We present our results for both types of transaction costs. Accounting for full round-trip

transaction costs for a long position in the “borrow USD lend I” trade we have the return

net of transaction costs ‘CTL,US−US/+I,t+∆t ≈ ln
Å

F b
I/US,t

EXa
I/US,t+∆t

ã
, and for a short position in the

same trade we have ‘CT S,US−US/+I,t+∆t ≈ − ln
Å

Fa
I/US,t

EXb
I/US,t+∆t

ã
.

Accounting every month for full round-trip transaction costs is conservative because it

is relatively cheap to roll a contract over from month to month. The literature recognizes

this and often assumes no roll-over fees and only accounts for transaction costs if there is a

change in a position (Menkhoff et al., 2012a,b; Della Corte et al., forthcoming). Specifically,

if a position was open before time t and stays open after the end of the month, then we

compute the realized return without transaction costs (mid exchange rate quotes). If a long

position was open before time t and is closed at the end of the month, then we calculate the

return as ‘CTL,US−US/+I,t+∆t ≈ ln
Å

FI/US,t

EXa
I/US,t+∆t

ã
. If a long position was newly opened at time t

but stays open at the end of the month, then we calculate the return as ‘CTL,US−US/+I,t+∆t ≈

ln
Å

F b
I/US,t

EXI/US,t+∆t

ã
. Similar, if a short position was open before time t and is closed at the

end of the month, then we calculate the return as ‘CT S,US−US/+I,t+∆t ≈ − ln
Å

FI/US,t

EXb
I/US,t+∆t

ã
. If a
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short position was newly opened at time t but stays open at the end of the month, then we

calculate the return as ‘CT S,US−US/+I,t+∆t ≈ − ln
Å

Fa
I/US,t

EXI/US,t+∆t

ã
.

If a currency does not have a bid, ask of mid quote for the spot or the forward exchange

rate at some time t or t+ ∆t, then we exclude the currency from our sample at time t. We

also exclude a currency at time t if the absolute value of the annualized forward premium

12×
∣∣∣∣ FI/US,t

EXI/US,t

∣∣∣∣ or equivalently the annualized implied interest rate differential 12×|rI,t − rUS,t|

is larger than 30%. Interest rate differentials of more than 30% are rare and we believe such

large values likely indicate the presence of severe trading frictions, sizable sovereign default

risk or an extraordinary large currency devaluation. This selection removes only 0.1% of

observations in our sample of 15 developed countries between January 1976 and March

2016. Our results are robust to various choices of this threshold value.

2.3 Trading Strategies

MSR: The theoretical motivation and a detail derivation of the maximum Sharpe ratio

(MSR) strategy is described in Appendix A. In the main text we focus on the empirical

implementation of the strategy.

MSR invests in a portfolio of foreign short term bonds with weights

θUS,t = ϑ›Wt
‹Λ−1
t
›W T
t ECTt,

where ϑ is a time invariant scaling factor, ECTt = Et
î
CTUS−US/+I,t+∆t

ó
is a vector of con-

ditional expected excess returns and ›Wt
‹Λ−1
t
›W T
t represents the inverse of the conditional

covariance matrix of exchange rate growth Σt after a spectral decomposition (or PCA) with›Wt the matrix of eigenvectors and ‹Λt the diagonal matrix of eigenvalues. The implementation

of MSR requires the estimation of the conditional moments Σt and ECTt. On the last day of

every month t we collect daily exchange rate returns over the past 6 months. We exclude the

most recent daily return to ensure that our portfolio construction θUS,t at time t only uses in-

formation available prior to t. We exclude a currency at time t and set its weight to zero in the

MSR portfolio if more than 20% of its daily exchange rate returns are missing over the past 6
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months. We use an exponentially weighted moving average (EWMA) of squared, demeaned

returns to estimate the current conditional covariance matrix Σt.
5 We set the EWMA weight

equal to 0.95, which implies a half-life of an exchange rate growth observation of 14 trading

days. Our strategy is robust to various choices of the window length and the EWMA weight;

we have tested window lengths between 3 and 12 months and EWMA weights between 0.9

and 1, and our findings remain essentially unchanged. We use the most recent interest rate

differential (rI,t − rUS,t) ∆t (or equivalently the forward premium ln
Å

FI/US,t

EXI/US,t

ã
) as a proxy

for the conditional expected return Et
î
CTUS−US/+I,t+∆t

ó
. Thus, the underlying assumption is

that the representation Et

ï‘CTUS−US/+I,t+∆t

ò
= αt + βt (rI,t − rUS,t) ∆t with βt > 0 holds ∀I

at time t.

Our theoretical derivation assumes that there are no transaction costs or other trading

frictions. Transaction costs are most of the time small for our set of 15 developed countries.

In contrast, transaction costs can be substantial for emerging countries and affect the prof-

itability of MSR. The issue of transaction costs can be mitigated if we compute the current

bid-ask spread relative to the mid exchange rate quote at every time t and exclude currencies

with relative spreads larger than 1%. When we account for monthly full round-trip transac-

tion costs, then a 1% spread implies annual costs of 12%. It is natural to exclude assets with

large costs from the portfolio selection. This filter removes 0.2% of the monthly observations

for our 15 developed countries (all of which are before August 1993). Our results are robust

to changes in this threshold value.

We drop principal components (i.e., an eigenvector and eigenvalue) with little explanatory

power to exclude near-arbitrage opportunities in the constructed SDF. In particular, we drop

a principal component k if
λk,t∑N
h=1

λh,t
is less than 1%. The results are robust to changes in

this threshold value. This also helps to further mitigate the problem of transaction costs. As

explained in more detail in Appendix A transaction costs imply that the exchange rate is not

exactly equal to the ratio of country-specific SDFs (equation (2) in the Appendix). Instead

the relationship holds approximately because transaction costs limit arbitrage opportunities.

5Element (I, J) of Σt is Covt

(
ĈT

US

−US/+I,t+∆t, ĈT
US

−US/+J,t+∆t

)
=

∑
τ<t

δt−τCT
US

−US/+I,τCT
US

−US/+J,τ∑
τ<t

δt−τ
,

where CT
US

−US/+I,τ is the demeaned realized carry trade return denominated in USD of borrowing USD
and lending I at time τ , and weight δ ∈ (0, 1]. Returns are demeaned within the 6 month rolling window.
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In turn, this implies that carry trade returns (equation (3) in the Appendix) will be exposed

to small unpriced fluctuations. Removing principal components which explain almost no

common variation in the data from our analysis helps to remove such unpriced fluctuations

of the exchange rate around the ratio of SDFs.

The variance of MSR is by construction equal to the variance of the SDF in the US.

Thus, we scale the portfolio weights in our strategy by a constant factor of ϑ = 0.02 so that

the volatility is of a similar magnitude to the volatility of HML. Scaling the portfolio by a

constant ϑ is not material because MSR is a net-zero investment strategy and its returns

are always excess returns.

MSRV , MSRI, MSRCV , MSRI,CV , TAN: Besides MSR, we implement five related

strategies. MSRV and MSRI explore the importance of the covariance matrix in the con-

struction of MSR. MSRV ignores all correlations and assumes the covariance matrix is sim-

ply a diagonal matrix with exchange rate variances on the diagonal. The portfolio weights

are θV,t = D−1
t ECTt where the diagonal of Dt is equal to the diagonal of ›Wt

‹Λ−1
t
›W T
t and all

off-diagonal elements are zero. MSRI further ignores the variances and the portfolio weights

are θI,t = ECTt. Using the full covariance matrix undoubtedly improves the in-sample per-

formance of the optimal portfolio and thus MSR is expected to outperform MSRV and

MSRI . However, out-of-sample this may not be true because of estimation errors. For in-

stance, DeMiguel et al. (2009) document that a naive, equally weighted portfolio outperforms

the tangency portfolio out-of-sample in equity markets.

MSRCV adjusts MSR to keep its conditional volatility (or risk exposure) constant

through time, θCV,t = 1»
η̃TUS,tη̃US,t

θUS,t. Accordingly, the difference between MSR and the

adjusted strategy MSRCV is due to market timing. MSR takes into account time varia-

tions in market risk premia and dynamically changes its risk exposure. More specifically,

MSR increases (decreases) its risk exposure when the compensation for risk is large (small),

which increases the unconditional Sharpe ratio of the strategy. In contrast, MSRCV is

constructed to keep its risk exposure constant through time and does not take advan-

tage of changes in market risk premia. Similarly, we construct MSRI,CV which adjusts

MSRI to keep the conditional volatility constant. This strategy is also discussed by Daniel
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et al. (2014) and is related to the research by Moreira and Muir (2016). The portfolio is

θI,CV,t =
σI,CV»

ECTT
t
‹WtΛ̃t‹WT

t ECTt

ECTt, which has constant conditional volatility σI,CV . Finally,

TAN is the tangency portfolio φt =
θUS,t

1TN×1θUS,t
.

DOL, D-DOL, HML: The Dollar (DOL) and High-minus-Low interest rate (HML)

strategies are introduced by Lustig et al. (2011). DOL is a net-zero investment strategy of

borrowing 100% in USD and investing all of the borrowed money equally in risk-free bonds in

all other currencies, i.e. the return on DOL is simply
∑N
I=1

1
N
‘CTUS−US/+I,t+∆t. The dynamic

Dollar (D-DOL) takes a long (short) position in DOL when the interest rate in USD is below

(above) the median interest rate across all countries. For the HML strategy we first sort

currencies on the last day of every month t according to their current risk-free interest rates

relative to the rate in the US, i.e. rI,t − rUS,t or equivalently the forward premium
FI/US,t

EXI/US,t

into quintiles. Within each quintile we build a net-zero investment strategy of borrowing

100% in USD and investing all of the borrowed money equally in risk-free bonds in all other

currencies within the quintile. We denote these five portfolios by IntPi ∀i ∈ {1, . . . , 5}. The

HML strategy takes a long position in the high interest rate currency portfolio IntP5 and

a short position in the low interest rate portfolio IntP1. HML is well-known to earn a high

Sharpe ratio.

MOM: Momentum (MOM) strategies are popular in equity and FX markets. For instance

Burnside et al. (2011) and Menkhoff et al. (2012b) analyze momentum returns in FX markets

and report high Sharpe ratios. They show that the momentum returns do not change much

if either the formation period or the investment horizon changes, or whether the portfolios

are constructed based on past carry trade returns or solely exchange rate growths. On the

last day of every month t we compute for each currency I the average carry trade return of

borrowing USD and lending currency I over the past 12 months. We, then, sort currencies

according to the past performance into quintiles (the top quintile contains the winner cur-

rencies and the bottom quintile the loser currencies) and build equally weighted currency

portfolios for each quintile. We denote these five portfolios by MomPi ∀i ∈ {1, . . . , 5}.

MOM takes a long position in the winner currency portfolio MomP5 and a short position

in the loser currency portfolio MomP1. We exclude a currency from our sample at time t if
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we do not observe any returns of that currency over the past 12 months.

VAL: The value (V AL) strategy assumes that the uncovered interest rate parity holds in the

long run and (in real terms) undervalued currencies appreciate against overvalued currencies.

This idea arguably goes back to Bilson (1984) who analyzes an FX trading strategy based on

deviations of the exchange rate from its equilibrium level when the PPP relationship holds.

On the last day of every month t we sort currencies according to their real exchange rates

against the USD into quintiles, where the top quintile contains overvalued and the bottom

quintile undervalued currencies. The real exchange rate of currency I per USD is equal to

the purchasing power parity at time t (quoted as currency I per USD) divided by nominal

exchange rate EXI/US,t. We construct equally weighted currency portfolio for each quintile,

denoted by V alPi ∀i ∈ {1, . . . , 5}. V AL takes a long position in the portfolio of undervalued

currencies V alP1 and a short position in the portfolio of overvalued currencies V alP5.

3 Performance of Trading Strategies

Table 3 reports the correlation matrix of monthly returns of all strategies. Correlations are

estimated using returns before transaction costs. The correlation between MSR and all

other strategies (except for MSRCV , MSRV and MSRI,CV where the correlation is 77%,

61% and 51%) is relatively small. MSR has a moderate correlation of roughly 35% with

both MSRI and HML. MSR’s correlation to TAN , DOL, MOM and V AL is close to

zero. This cross-correlation pattern indicates that MSR is distinct from the existing carry

trade strategies in the literature.

Tables 4 through 10 in the Appendix summarize the performance of the eleven trading

strategies MSR, MSRV , MSRI , MSRCV , MSRI,CV , TAN , HML, DOL, D-DOL, MOM

and V AL described in section 2.3. All trading strategies use information available at the

end of month t to construct a portfolio which we then hold until the end of the subsequent

month t + 1. Thus, all returns are out-of-sample and none of the trading strategies suffers

from a look-ahead bias. We report annualized average excess returns (Mean), volatility

(Vol) and Sharpe ratio (SR) (these three values are measured in percentage in the tables).
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Moreover, we characterize the distribution of returns and estimate the skewness (Skew),

kurtosis (Kurt), and the 10th-, 50th- and 90th-percentiles (10-%, 50-% and 90-%) of monthly

returns. We further compute what percentage of monthly returns are positive (% positive)

and we estimate the auto-correlation (AC) of monthly returns. MDD measures the maximum

drawdown in percentage, which is defined as the maximum loss from peak to trough a strategy

has experienced during the entire sample period. Moreover, ‖MDD‖/Mean measures the

expected time in years to recover from the maximum drawdown. Equivalently, ‖MDD‖/Mean

also measures the maximum downside risk (in percentage) a strategy is exposed to per 1%

expected return.

Tables 11 through 15 report annualized abnormal returns of MSR according to several

popular factor pricing models in international finance. We useDOL, D-DOL, HML, MOM ,

V AL and a proxy for changes in global FX market volatility as pricing factors.

As a brief preview of our results, MSR and some of its variations dominate popular carry

trade strategies (HML, DOL, D-DOL, MOM , V AL) across all performance measures.

MSR pays statistically significant and economically large abnormal returns according to the

investigated pricing models. This is evidence that MSR is indeed close to the true maximum

Sharpe ratio strategy in FX markets and current popular FX pricing factors are not able to

explain important FX market risks.

3.1 Performance Before Transaction Costs

Table 4 reports results for monthly excess returns without accounting for transaction costs

(i.e., returns computed using mid exchange rate quotes) for our set of 15 developed countries

for the period starting at the end of January 1977 to the end of February 2016.6 Consistent

with the literature HML earns a sizable Sharpe ratio of 0.62 (Lustig et al., 2011). D-DOL

earns a comparably high Sharpe ratio of 0.58. MOM and V AL perform slightly worse with

Sharpe ratios of 0.32 and 0.53. DOL earns a much lower Sharpe ratio of only 0.08. MSR

6Though our data starts in January 1976, the construction of MOM uses 12 months of past returns and
thus, we measure the performance of our strategies starting only in January 1977.
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dominates all strategies by a large amount and earns a remarkable Sharpe ratio of 1.04.7

TAN performs substantially worse than MSR with a Sharpe ratio of 0.32. Remember

that both MSR and TAN earn the same conditional Sharpe ratio. The difference is due

to the market timing of MSR. MSRCV also earns a lower Sharpe ratio than MSR, 0.96

but the difference is not as stark as between MSR and TAN . The outperformance of

MSR over MSRCV is also due to the better market timing on MSR. By construction,

MSRCV has a constant conditional volatility and does not take advantage of changes in

market prices of risk. The conditional volatility of TAN changes through time but not in

an optimal way. In contrast, MSR loads more (less) on a risk source when its market price

is large (small). Dynamically adjusting the exposure to risk depending on the size of the

compensation increases the unconditional Sharpe ratio. We will further show in section 3.3

that MSR’s ability to time the market is particularly beneficial during recessions.

Interestingly, with a Sharpe ratio of 1.08 and 1.05 MSRV and MSRI,CV slightly outper-

form MSR, which implies that estimating the correlation structure of exchange rate growths

is not beneficial or even harmful for the out-of-sample performance. This is due to estimation

errors (Brandt, 2005): knowing the correlation matrix undoubtedly improves the in-sample

performance of an optimized portfolio, but estimation errors can lead to a suboptimal allo-

cation and poor performance out-of-sample. For the construction of MSRV and MSRI,CV

we have to estimate far less parameters than for MSR, and thus, estimation uncertainty

is a more prevalent issue in the case of MSR. This is similar to the finding by DeMiguel

et al. (2009) in stock markets, where a naive, equally weighted strategy is found to outper-

form mean-variance efficient portfolios out-of-sample. The difference between MSRV and

MSRI,CV is small, which implies that controlling for only overall portfolio variance or man-

aging the variance of each asset does not matter much. In contrast, we find the Sharpe ratio

of MSRI is substantially smaller, 0.74, which implies that the value to estimate exchange

rate variances is large when constructing a trading strategy.

7Note that if our theory is correct, then there is an upper bound on the Sharpe ratio of MSR. Since
θJ,t = 0.02 × W̃tΛ̃tW̃

T
t ECTt, then θTUS,tΣtθUS,t ≈ 0.02 × θTUS,tECTt and thus, 0.02× the unconditional

Sharpe ratio has to be less or equal to the unconditional volatility of MSR. Empirically, we observe an
unconditional volatility of 11.36% which is almost 5.5 times larger than 0.02×the unconditional Sharpe ratio
1.04. Thus, the performance of our strategy is in accordance with the restrictions set by our theoretical
model.

16



Interestingly, the skewness of MSR is positive. Many other strategies have a negative

skewness (including MSRCV and MSRI,CV ). MSRI , MOM and V AL have a slightly

positive but basically zero skewness. A positive skewness is a favorable property of a trading

strategy, while a negative skewness is undesirable. With a positive skewness we frequently

observe large positive returns (large upside potential), while negative returns are relatively

close to the mean (limited downside risk). A negative skewness implies the opposite, the

upside potential is (or positive returns are) relatively limited, and the downside risk is (or

negative returns are) relatively large. The kurtosis is larger than that of a normal distribution

and the return distribution features fat tails. Fat tails are generally desirable (undesirable)

in combination with a positive (negative) skewness. The 10th and 90th percentiles draw

a similar picture: while MSR earns among the largest 90th percentile returns, its 10th

percentile return is less negative than that of other strategies.

The maximum drawdown of MSR is only -16%, which is the smallest maximum loss

among all strategies. In comparison, HML has a maximum drawdown of -43%, DOL -73%,

D-DOL -24%, MOM -30%, V AL -23%. The MDD of MSRV (-19%) is slightly worse than

the MDD of MSR (-16%). It appears that estimating the correlation structure between

exchange rate growths has the benefit to limit maximum losses. TAN has a MDD of -

30% and MSRI , MSRCV and MSR have MDDs in excess of -40%. The small maximum

loss of MSR is particularly remarkable since MSR earns an annualized expected return of

11.9%, which is substantially larger than the expected return of most other strategies. In

comparison, only MSRV earns a slightly larger expected return of 12.6%. MSRI,CV earns

11.7%, MSRCV 9%, MSRI 7.6%, HML 5.7% and expected returns of DOL, D-DOL,

MOM , V AL and TAN are all well below 5%. In other words, the expected recovery time

from the maximum drawdown (or equivalently the maximum downside risk per 1% expected

return) is only 1.35 years for MSR while it is 1.54 years for MSRV , 3.56 years for MSRI,CV ,

4.5 years for MSRCV , 4.99 years for D-DOL, and well above 5 years for all other strategies.

We conclude that MSR faces substantially less downside risk than any of the other strategies,

and the market timing and information from the covariance matrix estimation is useful to

limit maximum losses.

Monthly returns are about 65% of the time positive for MSR, HML, MSRV , MSRI ,
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MSRCV , MSRI,CV and TAN , 58% for D-DOL, 56% for MOM and V AL, and 53% for

DOL. The auto-correlation is slightly positive for almost all strategies: 23% for MSRI , 18%

for MSRV , 15% for MSR and MSRCV , 10% for MSRI,CV and HML, 5% for TAN and

V AL, 4% for DOL, and virtually 0 for D-DOL and MOM .

3.2 Performance After Transaction Costs

Table 5 reports results for returns after transaction costs assuming that there is no fee to roll

over a forward contract. As explained in section 2.2, we compute returns after transaction

costs by accounting for bid-ask spreads when portfolio weights change over time. That is,

transaction costs are paid for any turnover in the portfolio. This definition of transaction

costs is widely used in the literature (Menkhoff et al., 2012a,b; Della Corte et al., forthcom-

ing). MSR again outperforms all other strategies except for MSRV and MSRI,CV across

all performance dimensions. The outperformance of MSRV and MSRI,CV again suggests

that there is no value in estimating the correlation matrix between exchange rate growths.

Transaction costs are larger for MSR than for other strategies but the outperformance of

MSR over popular trading strategies remains economically large. We observe a sizable drop

in the Sharpe ratio of MSR from 1.04 to 0.78. Similarly, the Sharpe ratio of MSRCV drops

from 0.96 to 0.7 and of TAN from 0.32 to 0.18. This is in contrast to all other strategies

where the Sharpe ratio is never reduced by more than 0.08. Comparing MSR, MSRCV

and TAN , all of whom need an estimation of the correlation matrix, to MSRV , MSRI and

MSRI,CV , all of whom ignore the correlation structure, suggests that the time variations

in estimated correlations between exchange rate growths induce substantial turn over and

transaction costs. Thus, ignoring the correlation structure and only managing variances of

exchange rate growths reduces transaction costs substantially.

We observe a similar effect of transaction costs on all other performance measures: the

skewness becomes smaller, the maximum drawdown worse, the expected recovery time longer

and percentage of positive returns lower after transaction costs. Moreover, this effect is

generally stronger for MSR than for other strategies. But our conclusion remains unchanged:

MSR dominates all popular trading strategies HML, DOL, D-DOL, MOM and V AL.
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In table 6 we account for full round-trip transaction costs. This measure assumes that the

entire portfolio is liquidated every month, which is a rather conservative way to implement

transaction costs. For instance Lustig et al. (2011) use this conservative way to account for

transaction costs. The Sharpe ratio for MSR is still surprisingly high, 0.51. Other perfor-

mance measures are also negatively affected after accounting for full round-trip transaction

costs. Again, our conclusion remains unchanged that MSR outperforms all other popular

strategies.

3.3 Performance in Subsamples (After Transaction Costs)

Next, we investigate the performance in diverse subsamples. Throughout this section we work

with returns after transaction costs (but not full round-trip costs). First, we split our sample

into NBER recession and non-NBER recession subsamples. The following time periods,

which span 56 months, are NBER recessions between 1977 and 2016: February 1980 to July

1980, August 1981 to November 1982, August 1990 to March 1991, May 2001 to November

2001, and January 2008 to June 2009. In table 7 we condition on non-NBER recessions. The

results and our conclusion are similar as in the full sample. MSR outperforms all strategies

except for MSRV and MSRI , CV in good times. The Sharpe ratio of MSR is 0.80. Thus,

the Sharpe ratio in good times is only slightly higher than in the entire sample (cf. table

5). The Sharpe ratio of all other strategies except for V AL are substantially higher in good

times than in the full sample.

More interesting, table 8 reports results when we condition on NBER recessions. First,

we observe that MSR and V AL perform incredibly well during recessions while all other

strategies perform poorly. The Sharpe ratios of MSR and V AL are 0.67 and 0.95 during

recessions.8 MSRV earns a comparably much smaller Sharpe ratio of 0.34 and MSRI,CV

a ratio of only 0.13. All other strategies earn either negative average excess returns or a

Sharpe ratio close to zero. The outperformance of MSR over MSRV and MSRI,CV suggests

that estimating the correlation matrix of exchange rate growths adds value to the portfolio

8Though V AL outperforms MSR during recessions, it performs much worse than MSR during good
times, and 88% of the time the economy was not in a recession between 1977 and 2016. Moreover, the
performance of MSR is more stable across good and bad times than the performance of V AL.
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construction in bad times. This is consistent with the common belief that correlations

increase in bad times and thus, ignoring correlations is likely a costly mistake. Moreover,

given the almost identical performance of MSR and MSRCV in good times but the large

outperformance of MSR over MSRCV during recessions, we conclude that the market timing

of MSR is particularly valuable in bad times. In bad times market prices are arguably more

volatile and timing the market/ adjusting leverage is important to earn a high unconditional

Sharpe ratio.

Finally, we split the sample into pre- and post-Euro subsamples, because trading strate-

gies may be affected by the introduction of the Euro. For instance, if a strategy has earned

large profits trading European currencies against each other, the introduction of the Euro

would eliminate much of these profits since many European countries have joined the cur-

rency union. Moreover, the introduction of the Euro may have non-trivial implications on

global FX markets in equilibrium, which may substantially affect carry trade profits. All

strategies but V AL and TAN have earned a higher Sharpe ratio in the pre-Euro era than

in the post-Euro era. While the Sharpe ratio of MSR drops only slightly from 0.86 to 0.79,

it drops substantially for many other strategies. For instance, the Sharpe ratio of MSRV

declines from 1.21 to 0.66 and the ratio of MSRI,CV from 1.26 to 0.56. Thus, it appears that

estimating the correlation matrix of exchange rate growths was not valuable in the pre-Euro

era but has become valuable after the introduction of the Euro. Similarly, the Sharpe ratio

of MSRCV drops from 0.85 to 0.52 and the ratio of MSRI from 0.82 to 0.57. It appears that

the market timing of MSR was profitable in the pre-Euro era but even more so after the

introduction of the Euro. The Sharpe ratio of HML decreases from 0.68 to 0.45 and the one

of MOM from 0.35 to only 0.09. The Sharpe ratio of DOL and D-DOL is almost identical

across the two subsamples. The poor performance of MOM in recent years is also pointed

out for instance by Della Corte et al. (forthcoming). The Sharpe ratio slightly increases

for V AL from 0.45 to 0.53 and for TAN from 0.09 to 0.26. Overall, MSR is more stable

across the two subsamples than other strategies. A similar conclusion can be drawn for other

performance measures.

In summary, we find that MSR outperforms popular carry trade strategies (HML, DOL,

D-DOL, MOM , V AL) by a large amount across diverse performance measures and within
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various subsamples. We also find that MSR earns a higher unconditional Sharpe ratio than

other strategies (MSRCV , TAN), which have the same risky asset portfolio composition as

MSR but only differ with respect to the time variation in leverage. This is evidence that

MSR is able to time the market and invest more (less) aggressive when market prices are

high (low). Finally, we document that MSRV and MSRI,CV , which ignore the correlation

structure and only manage the portfolio variance outperform MSR in good times or during

the pre-Euro era. This suggests that estimation errors outweigh the benefits of taking the

correlation matrix into account in the portfolio optimizaiton. However, we also document

that MSR substantially outperforms MSRV and MSRI,CV during NBER recessions or in

the post-Euro era, i.e., taking the correlation structure into account is valuable during bad

times or in more recent times. Moreover, we find that MSR’s performance is roughly the

same across subsamples while other strategies have less stable performances.

3.4 “Abnormal” Returns of MSR

According to our theoretical derivation in section A expected excess returns earned by MSR

are compensation for risk and there is no (statistical) arbitrage. We start with the premise

that MSR pays the maximum attainable Sharpe ratio because it is perfectly negatively

correlated to the SDF (or the projection of the SDF into the FX market risk space) and loads

on all relevant priced risks (in FX markets). This derivation offers a compelling economic

justification for the outstanding empirical performance of MSR reported in tables 4 through

10. Next, we test whether the excess returns earned by MSR can be explained by existing

pricing factors. When we talk about abnormal returns in this section, we do not refer

to (statistical) arbitrage, but rather, it is with respect to a specific pricing model. When

MSR earns abnormal returns, then we conclude that the pricing model under investigation

is inadequate to explain priced risks (in FX markets). Indeed, we find that MSR earns

statistically significant and economically large abnormal returns according to popular factor

pricing models in international finance.

The literature has introduced and discussed many possible pricing factors. We focus on

the trading strategies in section 2.3 as factors. DOL and HML are popular pricing factors
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in the international finance literature since Lustig et al. (2011), Verdelhan (forthcoming) and

Lustig et al. (2014). Menkhoff et al. (2012a) show that HML is highly negatively correlated

with a currency portfolio (FMV OL) which mimics unexpected changes in global FX volatility

(V OL). Following Menkhoff et al. (2012a) we estimate global FX volatility at the end of

month t,

σFXt =
1

Tt ×N

Tt∑
τ=1

N∑
I=1

∣∣∣∣∣dEXUS/I,τ

EXUS/I,τ

∣∣∣∣∣
where Tt is the number of trading days τ in month t. The measure uses absolute instead of

squared returns so that outliers are less accentuated. The V OL index is the time series of

residuals after estimating an AR(1) process for σFXt , and thus, captures unexpected changes

in volatility. Moreover, as in Menkhoff et al. (2012a), we construct a V OL factor mimicking

currency portfolio FMV OL. Therefore, we regress V OL on five equally weighted currency

portfolios sorted by interest rates. We confirm the finding by Menkhoff et al. (2012a) that

FMV OL takes long (short) positions in low (high) interest rate currencies, and the correlation

between FMV OL and HML is close to -1.

Tables 11 through 15 report the results of the time-series regressions,

MSRt = α +
∑
i

βiFi,t + εt,

where MSRt is the monthly excess return of MSR in month t, α measures the abnormal

return of MSR, Fi,t are the pricing factors DOL, D-DOL, HML, FMV OL, MOM and

V AL, βi is the factor loading of MSR on pricing factor i, and εt is an error term with mean

0 and uncorrelated to all factors. We use excess returns before transaction costs in all our

regressions. We consider five different pricing models with factors: (1) DOL and HML,

(2) DOL and FMV OL, (3)-(4) are as (1)-(2) but adding D-DOL, MOM and V AL, and (5)

combines all six pricing factors. Although HML and FMV OL are highly negatively corre-

lated, the correlation is not perfect, and thus, there is value in analyzing factor models with

both factors. Overall, MSR earns statistically significant and economically large abnormal
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returns, suggesting that all six pricing factors fail to explain important priced risks.9

Table 11 reports results for the entire sample period from January 1977 to February 2016

for our set of 15 developed countries. MSR hardly loads on DOL, D-DOL, MOM or V AL.

It does, however, load positively on HML and negatively on FMV OL. When combining

all factors, HML is the most important factor to capture the risk in MSR. The R2 of all

regressions is less than 15%, indicating that the time variation/ risk of MSR is not well

captured by the investigated factors. The estimated abnormal return α of MSR according

to the factor models is highly statistically significant and between 8.1% and 9.6% per year.

Thus, the unexplained risk in MSR is compensated with large expected returns. Notice

that the volatility of the unexplained risk is about 10%, since the total volatility of MSR is

11% and R2 = 1 − unexplained variance
total variance

≈ 15%. In turn, this implies that the compensation for

the unexplained variation in MSR is between 81% to 96%, which is an economically larger

market price of risk. This is strong evidence that the popular pricing factors DOL, HML,

FMV OL, D-DOL, MOM and V AL fall short to capture important risks in FX markets.

We further analyze several subsamples to check for robustness. First, table 12 describes

the results outside NBER recessions. The results are basically identical to the results in

the entire sample. Second, table 13 reports our findings for NBER recession periods. The

most notable change is that MSR loads significantly positively on MOM in bad times.

Unfortunately, there are only 56 monthly observations for NBER recessions, which limits

the power of our test, and our estimated abnormal returns are only significant on the 10%

level. The size of the estimated α is, however, economically large and ranges between 12.7%

and 13.9% per year.

Finally, we also investigate the pre- and post-Euro subsamples in tables 14 and 15. MSR

is positively exposed to risks captured by DOL, HML and V AL, negatively to FMV OL,

and not (statistically significantly) to D-DOL and MOM risk in the pre-Euro era, while

it positively loads on D-DOL and MOM but neither on DOL nor V AL in the post-Euro

subsample. R2 is comparably low in pre- and post-Euro subsamples. Finally, abnormal

9For statistical tests, we use Newey and West (1987) heteroskedasticity and auto-correlation robust co-
variance estimates. The regression residuals appear uncorrelated. Nevertheless, we include T 0.25 (where T is
the number of monthly observations) auto-correlation lags in the estimation of the robust covariance matrix
of residuals. Changing the number of lags does not affect our results.
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returns are statistically significant and positive, but economically roughly three times as

large in the pre-Euro era.

4 Market Timing of MSR and Predictability of FX

Market Returns

An integral feature of MSR is its market timing ability. MSR dynamically adjusts its lever-

age in response to time variations in market prices of risk. Increasing (decreasing) leverage

when market prices are high (low) allows MSR to outperform and earn an unconditionally

higher Sharpe ratio than other strategies (e.g. MSRCV or TAN), which have the same

risky asset portfolio composition as MSR but only differ with respect to the time variation

in leverage. To support this argument, we provide evidence that MSR is indeed able to

predict future returns and volatility in FX markets. The idea is that if MSR is able to time

the market and adjust its leverage based on time variations in market prices, then MSR

should be able to predict future returns.

We construct predictors based on the portfolio holdings of MSR and run several predic-

tive regressions,

Yt,t+h = co +
∑
i

cixi,t + εt,

where the dependent variable Yt,t+h = 1
h

∑h
τ=1 Yt+τ is the average realization of Y over the

subsequent h months after month t, xi,t is the realization of predictor i in month t, εt is

white noise, and c0 and ci are the regression coefficients.

Our first predictor is the sum over all absolute portfolio weights ofMSR, x1,t =
∑
i ‖θi,US,t‖.

This quantity measures the total dollar exposure of (or notional amount invested in) MSR

in month t. Our second measure of risk exposure is the leverage defined by the sum over all

portfolio weights but the risk-free asset in the USA, x2,t =
∑
iθi,US,t

. The third predictor is the

sign of x2,t, x3,t = sign(x2,t). It indicates when MSR lends versus borrows in the risk-free

asset in the USA. Fourth, we investigate whether the USD interest rate versus interest rate
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in other currencies can predict future returns. Predictor x4,t = sign (median({rJ,t})− rUS,t)

is 1 (-1) if the US interest rate is smaller (larger) than the median interest rate across all

currencies, and zero otherwise. This measure is identical to the conditioning variable used

to construct D-DOL. Fifth, we use changes in global FX market volatility x5,t = V OL as

described in section 3.4 as a predictor. Finally, we use the most recent realization of the

dependent variable in our predictive regressions as a predictor, x6,t = Yt.

The dependent variables to predict (Y ) are future returns in MSR, HML, DOL, D-

DOL, MOM and V AL as well as future changes in global FX market volatility V OL. We

consider prediction horizons h between 1 and 24 months, i.e., we test whether our predic-

tors xi are able to explain 1-month or up to 24-month ahead realizations of our dependent

variables Y .

Tables 16 and 17 report the results of our predictive regression. We also run predictive

regressions for each predictor individually and the results are the same.10 All dependent

variables except for V AL are well forecast across all horizons. R2 is large even at the 1-

month horizon.11 For instance, future returns of MSR are extremely well predicted with R2

ranging from 14% at the 1-month horizon to over 25% at 1- and 2-year horizons. Changes

in global FX market volatility V OL are also very well forecast at the 1-month horizon with

an R2 of 10%. Though, the predictability of V OL worsens at longer horizons. Surprisingly

our predictors are also able to forecast future returns in HML, D-DOL and MOM .12 To

our knowledge we are the first to document such strong predictabilities in these returns.

The predictability of DOL is less surprising. The construction of D-DOL is based on the

predictability of DOL using sign (median({rJ,t})− rUS,t) as a signal.

Our three measure of leverage of MSR (
∑
i ‖θi,US,t‖,

∑
i θi,US,t, sign (

∑
i θi,US,t)) are by far

the most powerful predictors. The slope coefficient of at least one of the three MSR leverage

variables is significant in almost every predictive regression (except for the regressions where

V AL is the dependent variable). In contrast, sign (median({rJ,t})− rUS,t) only has power

10We do not report predictive regressions with single predictors to save space.
11An R2 of even 0.5% is considered substantial in predictive regressions of asset returns at a 1 month

horizon.
12Notice that MOM is cross-sectional (not time-series) momentum and thus, there is no reason why it

should be predictable.
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to predict future returns in DOL but none of the other variables. Similarly, V OL forecasts

itself at a 1 month horizon but nothing else. Finally, the most recent realization of any

dependent variable does not have any power to predict its own future realizations. We take

the strong predictive power of our three leverage measures of MSR as evidence that the

time variation in expected returns and risk (or equivalently market prices) is well forecast.

In turn, this predictive power allows our MSR strategy to time the market and dynamically

adjust leverage in response to changes in market prices and earn a high unconditional Sharpe

ratio.

5 MSR as a Single Pricing Factor

Motivated by our theoretical derivation of MSR we test the ability of MSR as a pricing

factor and show that a pricing model with MSR as a single factor subsumes the prominent

DOL-HML two factor model. This finding is arguably the economically most important

result of our paper. We use the following 21 test assets: 5 interest rate sorted portfolios

(IntPi ∀i ∈ 1, . . . , 5), 5 momentum sorted portfolios (MomPi ∀i ∈ 1, . . . , 5), 5 value sorted

portfolios (V alPi ∀i ∈ 1, . . . , 5), D-DOL, MSRV , MSRI , MSRCV , MSRI,CV , TAN .13

5.1 Time-Series Test

We run a separate time-series regression for each test asset j with excess return Rj,t on a

constant and the contemporaneous excess return of MSR,

Rj,t = αj + βMSR,jMSRt + εj,t,

where εt,j is white noise. We do not report the coefficient estimates of all 21 regressions

to save space. Overall we find that abnormal returns αj are close to zero. We test the

joint hypothesis of all abnormal returns αj being equal to 0. In particular, we calculate

13DOL, HML, MOM and V AL are captured by the 15 IntPi, MomPi and V alPi portfolios. We do
not include individual currency pairs as test assets because many currency pairs have missing observations.
Working with portfolios is more convenient because we do not have to truncate the data and can apply
standard econometric methods for hypothesis testing.
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the F-statistic T−N−K
N

Ä
1 + E[F ]TΣ−1

F E[F ]
ä−1

αTΣ−1
ε α, which is distributed according to a

F-distribution with N and T −N−K degrees of freedom, where T is the number of monthly

return observations, N is the number of test assets, K is the number of pricing factors, E[F ]

is a column vector of average factor returns, ΣF is the covariance matrix of pricing factors, α

is a column vector of estimated abnormal returns of all test assets and Σε is the covariance

matrix of residuals in the time-series regressions of all test assets. The last panel (last two

rows) in table 18 report F-statistics. For abnormal returns of the 15 IntPi, MomPi and

V alPi portfolios the F-statistic is 1.069, which is insignificant (p-value of 38.3%). Thus,

the single MSR factor model cannot be rejected based on abnormal returns in time series

regressions. However, the F-statistic for abnormal returns of all 21 test assets is 1.460,

which is significant at the 10% level (p-value of 8.7%). Thus, the single MSR factor model

is rejected, though only at a low significant level.

We also estimate a 2-factor model which uses DOL and HML as pricing factors to place

the results from the single MSR factor model into perspective,14

Rj,t = αj + βDOL,jDOLt + βHML,jHMLt + εj,t.

The DOL-HML model is a popular pricing model in the literature (Lustig et al., 2011).

The model explains the expected returns of the interest rate sorted portfolios (IntPi), but

abnormal returns of other portfolios are economically large and and highly statistically sig-

nificant. The joint hypothesis that all abnormal returns are equal to 0 is rejected for both

the smaller set of 15 test assets as well as for the larger set of 21 assets. The F-statistic for

abnormal returns of the 15 portfolios is 1.560, which is significance at the 10% (p-value is

8.1%). Even more striking, the F-statistic for the larger set of 21 assets is 2.710, which is

highly statistically significant (p-value of 0.008%). In comparison, the single MSR factor

model performs much better in time-series tests than the two factor DOL-HML model.

14To save space we only compare the single factor MSR model to the popular 2-factor DOL-HML model.
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5.2 Cross-Sectional Test

We run cross-sectional regressions to estimate the market price of risk of the factors. We

also estimate abnormal returns in the cross-sectional regressions and test the joint hypothesis

that all abnormal returns are equal to zero. Columns 2 and 4 of the top 3 panels in table 18

report the estimates of the cross-sectional regression,

E[Rj] = βMSR,jγMSR + α∗j ,

where E[Rj] is the average annualized return of asset j, βMSR,j is the estimated factor

loading from the time-series regression above, γMSR is the estimated market price of the

MSR risk factor and α∗j the abnormal return in the cross-sectional regression. We do not

include a constant in our cross-sectional regression, though the results are robust if we

include a constant. Column 2 reports estimates of the regression with only the 15 interest

rate, momentum and value portfolios as test assets, while column 4 also includes all 21 test

assets. The estimated market price of risk γMSR is large (roughly 20%) and significantly

different from 0. The point estimate of γMSR is somewhat larger than the average return

of MSR. The R2 of the cross-sectional regression is large: 81% for the 15 portfolios, and

91% for all 21 test assets. The MSR single factor model does a very good job explaining

the cross-sectional variation of average returns in FX markets. We also report the χ2 test

statistic αT
Ä

1
T

(I − β(βTβ)−1βT )Σε(I − β(βTβ)−1βT )(1 + γTΣFγ)
ä−1

α which is distributed

according to a χ2 distribution with N −K−1 degrees of freedom, where α are the abnormal

return estimates from the cross-sectional regression, I is an identity matrix, β are the factor

loading estimates from the time-series regressions, Σε is the covariance matrix of the residuals

of the time-series regressions, γ are the market price of risk estimates from the cross-sectional

regression, ΣF is the covariance matrix of the pricing factors, N is the number of test assets

and K is the number of pricing factors. In either case of 15 or 21 test assets we cannot reject

the hypothesis that all abnormal returns α∗j estimated in the cross-sectional regression are

jointly 0 (χ2-statistics 8.9 and 23.6, or p-values 77.9% and 21.1%), which is in support of our

single factor MSR model.

Columns 3 and 5 of the top 3 panels in table 18 report the results of the equivalent
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cross-sectional regression for the DOL-HML model,

E[Rj] = βDOL,jγDOL + βHML,jγHML + α∗j .

Column 3 reports estimates for the 15 interest rate, momentum and value portfolios as test

assets, while column 5 uses all 21 test assets. DOL does not carry a market price but HML

is compensated with a large premium. The implied premium of HML is 6% for the 15

test assets but 15% for the 21 test assets. In the case of 15 test assets the premium is of

a similar size as the average return of HML. The R2s of the cross-sectional regressions

are substantially lower than the values in the MSR single factor model. In the case of 15

portfolios R2 is only 54%, for 21 test assets it is 68%. The χ2 test suggests that the DOL-

HML model is rejected based on the hypothesis that all abnormal returns α∗j are jointly 0.

For the set of 15 test assets the χ2-statistic is 22.726, which is significant at the 5% level

(p-value of 3.0%). For the larger set of 21 test assets χ2-statistic is 51.290, which is highly

significant (p-value of 0.005%). This is in stark contrast to the MSR model which could

not be rejected. In summary, the cross-sectional results (R2 and χ2-tests) suggest that the

MSR single factor model is a better pricing model than the popular 2-factor DOL-HML

model to price assets in FX markets.

5.3 Single- versus Multi-Factor Pricing Model

The previous comparison of the MSR single factor model and the DOL-HML two factor

model suggests that the MSR model prices assets more accurately. It is, then, not surprising

that adding MSR to the DOL-HML two factor model improves the model’s ability to price

assets. More interesting is whether DOL and HML have any additional information beyond

MSR to price assets. To answer the first question of whether MSR adds value to the DOL-

HML two factor model, we first orthogonalize MSR with respect to DOL and HML, and

then, add it as an additional pricing factor to the model. Indeed we find a significant market

price for the orthogonalized factor, and conclude that MSR has important information for

pricing beyond DOL and HML. Similarly, to address the question whether adding DOL

and HML to the MSR single factor model improves pricing, we orthogonalize DOL and
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HML with respect to MSR, and then, check whether market prices are significant for the

orthogonalized factors. We document that market prices of the orthogonalized DOL and

HML factor do not carry a market prices, and thus, we conclude that DOL and HML do

not explain expected returns beyond what is already captured by MSR.15

With regard to the first question, we regress MSR on DOL and HML,

MSR = h0 + h1DOL+ h2HML+ ε

to define the orthogonalized factor ‡MSR = h0 + ε. ‡MSR only contains information which

is not captured by DOL and HML. We, then, estimate the time-series regression

Rj,t = αj + βfiMSR,j
‡MSRt + βDOL,jDOLt + βHML,jHMLt + εj,t,

for every test asset Rj, and subsequently the cross-sectional regression,

E[Rj] = βfiMSR,j
γfiMSR

+ βDOL,jγDOL + βHML,jγHML + α∗j .

The coefficient estimates of the cross-sectional regression are reported in table 19. For the

estimation with either 15 or 21 test assets the market price of the orthogonalized factor‡MSR is large and significant. We further document that the cross-sectional regression R2

of the three factor model is substantially larger than the R2 of the DOL-HML model. In

the case of 15 test assets the R2 increases from 54% to 88% when we add ‡MSR, and in the

case of 21 test assets it increases from 68% to 91%. This is a substantial improvement and‡MSR explains much of cross-sectional variation in average returns beyond DOL and HML.

Finally, once we add ‡MSR to the DOL-HML model, the new three factor model is no longer

rejected according to the joint tests of abnormal returns αj and α∗j being equal to zero. To

sum up, adding MSR as a pricing factor to the DOL-HML model substantially improves

the pricing model. In other words, MSR contains important information for pricing which

is not captured by DOL and HML.

15Orthogonalizing factors to testi their importance for pricing beyond the information captured by other
factors is suggested in the Empirical Asset Pricing lecture notes by John Cochrane, for instance.
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With regard to the second question, we separately regress DOL and HML on MSR,

Yi = hi,0 + hi,1MSR + εi

to define the orthogonalized factor ‹Yi = hi,0 + εi, ∀Yi ∈ {DOL,HML}. ‡DOL and ·�HML

only contain information which is not captured by MSR. We, then, estimate the time-series

regression

Rj,t = αj + βMSR,jMSRt + βfiDOL,j‡DOLt + βflHML,j
·�HMLt + εj,t,

for every test asset Rj, and subsequently the cross-sectional regression,

E[Rj] = βMSR,jγMSR + βfiDOL,jγfiDOL + βflHML,j
γflHML

+ α∗j .

The coefficient estimates of the cross-sectional regression are reported in table 20. For the

estimation with either 15 or 21 test assets the market prices of the orthogonalized factors‡DOL and ·�HML are both close to zero and insignificant. Moreover, we find that the cross-

sectional regression R2 of the three factor model is similar to the R2 of the MSR single

factor model. In the case of 15 test assets the R2 slightly increases from 81% to 88% when

we add ‡DOL and ·�HML, but in the case of 21 test assets it remains virtually unchanged

at 91%. Thus, DOL and HML explain almost nothing in the cross-sectional variation in

average returns beyond what is already explained by MSR. The three factor model slightly

improves over the MSR single factor model with respect to the joint test of all abnormal

returns αj from time-series regressions of 21 test asset being equal to zero. The p-value

slightly increases from 8.7% to 14.7%. However, in all other joint tests of abnormal returns

(in time-series and cross-sectional regressions) neither the MSR single factor model nor the

three factor model is rejected. To sum up, DOL and HML do not contain any additional

information relevant for pricing beyond what is captured by MSR. In other words, the

MSR single factor model subsumes the DOL-HML two factor pricing model.
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6 Conclusion

We construct a currency carry trade strategy that aims to earn the theoretically maximum

attainable Sharpe ratio in FX markets (we call it MSR strategy). We implement our MSR

trading strategy at the end of every month from January 1977 to February 2016. MSR

earns a high Sharpe ratio of 1.04 before and 0.78 after transaction costs and outperforms

popular carry trade strategies by a large amount across diverse performance measures and

within various subsamples. MSR’s market timing ability is valuable and MSR earns a

higher unconditional Sharpe ratio than other strategies, which have the same risky asset

portfolio composition but do not dynamically adjust their leverage. In support of the idea

that MSR is able to time the market, we find that the amount of leverage taken by MSR

in month t predicts future returns of many FX strategies as well as future changes in global

FX market volatility.

We further document that MSR earns statistically significant and economically large

abnormal returns according to popular factor pricing models in FX markets. This suggests

that current pricing factors fail to explain important priced risks. Time-series and cross-

sectional asset pricing tests confirm that MSR is an important pricing factor. We further

document that the MSR single factor model performs better in pricing assets in FX markets

than the popular DOL-HML two factor model. Moreover, DOL and HML do not contain

any additional information relevant for pricing beyond what is captured by MSR. In other

words, the MSR single factor model subsumes the DOL-HML two factor pricing model.
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Appendix

A Maximum Sharpe Ratio (MSR) Strategy: Deriva-

tion and Comparison to the Tangency Portfolio

A.1 The Tangency Portfolio

Let CT J−J/+I,t+dt be the carry trade return (denominated in the home currency J) of bor-

rowing in the home currency J and lending in the foreign currency I over the time horizon

(t, t+dt].16 Let the N×1 column vector ECTt =
î
Et
î
CT J−J/+1,t+dt

ó
, . . . , Et

î
CT J−J/+N,t+dt

óóT
denote the conditional expected returns and Σt the N ×N conditional covariance matrix of

N carry trade returns {CT J−J/+I,t+dt}I∈{1,...,N} at time t. Markowitz (1952) shows that the

tangency portfolio earns the maximum (conditional) Sharpe ratio (over the interval (t, t+dt])

and is given by,

φJ,t =
1

ct
Σ−1
t ECTt,

where the N elements in vector φJ,t are the portfolio weights of the N foreign bonds I ∈

{1, . . . , N}, ct = 1TN×1Σ−1
t ECTt and 1N×1 is an N × 1 column vector of ones. The scaling

factor ct ensures that the portfolio weights of φJ,t add up to 1 and the tangency portfolio,

by definition, only consists of risky assets/ foreign bonds.17 Note that ct crucially depends

on the conditional moments of asset returns at time t, and thus, is time varying if there are

shocks to the investment opportunity set.

Investing always all the wealth in the tangency portfolio implies that there is no market

timing, i.e., no adjustments of the capital allocation between the risk-free asset and the risky

portfolio. Thus, the tangency portfolio earns the maximum conditional Sharpe ratio, but its

16That is, CT J−J/+I,t+dt takes a short position in the risk-free home bond J and a long position in foreign
bond I.

17If we assume mean-variance preferences u(w) = Et[w] − γ
2V art[w] where γ characterizes risk aversion,

then the optimal capital allocation between the risk-free (home) bond and the risky tangency portfolio leads to
the foreign bond portfolio weights 1

γΣ−1
t ECTt and the the risk-free (home) bond weight 1− 1

γ 1TN×1Σ−1
t ECTt.
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unconditional Share ratio may be far lower than the maximum attainable ratio in a dynamic

setting with changes in the investment opportunity set. Intuitively, a strategy which only

maximizes the conditional Sharpe ratio but ignores market timing earns unconditionally

a lower Sharpe ratio than a dynamic strategy which takes advantage of changes in the

investment opportunity set and invests more (less) in the risky asset portfolio (i.e., increase

(decrease) leverage) in times when market prices of risk are high (low). We show in section

A.2 that at every time t MSR, which is constructed as a mimicking portfolio of the inverse

of the SDF, is equal to the tangency portfolio φJ,t multiplied by ct.Thus, MSR times the

market and adjusts its risk exposure over time and earns a higher unconditional Sharpe ratio

than the tangency portfolio.

When we implement our strategy, we do not observe the true conditional expected returns

and covariances and have to estimate them from the data. Estimation errors often lead to

extreme portfolio positions, which imply a high in-sample Sharpe ratio but typically lead

to a poor out-of-sample performance (Brandt, 2005). To mitigate this problem, we exploit

the strong factor structure in FX markets. We use interest rate differentials rI,t − rJ,t as

a proxy for the conditional expected return Et
î
CT J−J/+I,t+dt

ó
. The assumption is that the

representation Et
î
CT J−J/+I,t+dt

ó
= αt + βt (rI,t − rJ,t) with βt > 0 holds at time t. This

assumption is motivated by the empirical fact that currency premia sort well with interest

rate differentials.

For the conditional covariance matrix we use an exponentially weighted moving average

(EWMA) of squared, demeaned returns to estimate the conditional covariance matrix Σt.
18

EWMA models share several desirable features with GARCH models but are much easier to

estimate. Moreover, we diagonalize the covariance matrix Σt,

ΣtWt = WtΛt, (1)

where Wt is the N × N rotation matrix (whose columns are N × 1 eigenvectors) and Λt

18Element (I, L) of Σt is Covt
Ä
CT J−J/+I,t+dt, CT

J
−J/+L,t+dt

ä
=

∑
τ<t

δt−τCT
J

−J/+I,τCT
J

−J/+L,τ∑
τ<t

δt−τ
, where

CT
J

−J/+I,τ is the demeaned realized carry trade return denominated in J of borrowing J and lending I
at time τ , and weight δ ∈ (0, 1].
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the N × N diagonal matrix with corresponding eigenvalues of Σt. We, then, remove an

eigenvector and the corresponding eigenvalue from Wt and Λt if the eigenvalue is sufficiently

small.19 Let’s denote the new matrices by ›Wt and ‹Λt. To construct the tangency portfolio

we replace Σ−1
t by ›Wt

‹Λ−1
t
›W T
t . This procedure reduces estimation errors in the covariance

matrix in a similar spirit as shrinkage, and ensures absence of near-arbitrage opportunities

in the underlying model (Kozak et al., 2015).

A.2 MSR and the SDF in a Diffusion Model

We derive now an expression for MSR with foreign bond weights θJ,t, which mimics the

inverse of the SDF constructed according to the approach by Maurer et al. (2015).20 This

approach is a standard projection of the SDF into the FX market space, where Maurer et al.

(2015) suggest to span the FX market space using the most important principal compo-

nents of exchange rate growths. As the strategy which trades the projected SDF, MSR

is equivalent to the optimal portfolio in a continuous time model with log-utility (Merton,

1971).

We assume financial markets are fully integrated, frictionless and free of arbitrage.21

Let {Ω,F , {Ft}t≥0,P} be a standard filtered probability space, where {Ft}t≥0 is the nat-

ural filtration generated by the d-dimensional standard Brownian motion Zt. For ease of

exposition, we assume financial markets are complete. This ensures that in each country

I there is a unique country-specific SDF MI and the exchange rate is equal to the ratio of

country-specific SDFs. Note that it is possible to relax the complete market assumption in

a diffusion model. Maurer and Tran (2015, 2016) show that the pricing-consistent exchange

rate is unique and equal to the ratio of projected SDFs in a model with incomplete markets

and pure diffusion risks.

19See Section 2.3 for the specific choice of the threshold value.
20In this paper we go beyond the analysis in Maurer et al. (2015) and estimate our model dynamically

(using rolling windows). This is particularly important when we implement a trading strategy.
21There are no direct or indirect trading costs and feasible portfolio weights are on the real line (continuous

and unconstraint).
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The unique SDF in country I, which prices all assets denominated in currency I, is,

dMI,t

MI,t

= −rI,tdt− ηTI,tdZt.

The drift and diffusion terms describe the short rate rI,t ∈ R and the d market prices of

diffusion risks ηI,t ∈ Rd at time t in currency I. Our analysis holds conditionally at time t,

for any rI,t and ηI,t adapted to the filtration Ft.

We define the exchange rate between currencies J and I at time t such that EXJ/I,t

units of currency J exchange for one unit of currency I. By no-arbitrage the exchange rate

is equal to the ratio of country-specific SDFs I and J ,

EXJ/I,t =
MI,t

MJ,t

. (2)

Applying Itô’s Lemma, we compute the dynamics of the exchange rate,

dEXJ/I,t

EXJ/I,t

=
î
rJ,t − rI,t + ηTJ,t (ηJ,t − ηI,t)

ó
dt+ (ηJ,t − ηI,t)T dZt.

Accordingly, we obtain the carry trade return denominated in currency J of borrowing

currency J and lending currency I over the time horizon (t, t+ dt],

CT J−J/+I,t+dt = (rI,t − rJ,t) dt+
dEXJ/I,t

EXJ/I,t

= ηTJ,t (ηJ,t − ηI,t) dt+ (ηJ,t − ηI,t)T dZt.
(3)

Note that the carry trade return CT J−J/+I,t+dt is an excess return since it is a net-zero in-

vestment. We can write the conditional expected excess return in terms of market prices of

risks,

Et
î
CT J−J/+I,t+dt

ó
= ηTJ,t (ηJ,t − ηI,t) dt. (4)

The challenge is that we observe neither the d risk sources Zt nor the market prices ηI,t.

However, realized carry trade returns are observable and based on equations (3) and (4),
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Maurer et al. (2015) propose a 2-step estimation procedure using PCA and linear regression

analysis to construct country-specific SDFs. In the first step, PCA on carry trade returns

is employed to transform the original risk sources Zt into equivalent risk sources ‹Zt. In the

second step, market prices η̃I,t of these new risk sources are estimated in a linear regression.22

More specifically, let,

xt+dt =


CT J−J/+1,t+dt − Et

î
CT J−J/+1,t+dt

ó
...

CT J−J/+N,t+dt − EtCT J−J/+N,t+dt

 =


(ηJ,t − η1,t)

T dZt
...

(ηJ,t − ηN,t)T dZt

 ≡ ∆ηTt dZt, (5)

be a N × 1 column vector of (non-redundant) demeaned carry trade returns of borrowing

currency J and lending currencies I, ∀I ∈ {1, . . . , N}, I 6= J over the time horizon (t, t+ dt]

(cf. equation (3)) and ∆ηt is an N × d matrix of differential market prices.23 Notice that

xt+dt is also equal to the vector of demeaned exchange rate growths. The N ×N conditional

covariance matrix of carry trade returns at time t is again denoted by Σt = Et
î
xt+dtx

T
t+dt

ó
.

The N principal components of the set of N carry trade returns are given by W T
t xt+dt,

where Wt is the rotation matrix in (1). In the spirit of Kozak et al. (2015), dropping

principal components with little explanatory power (i.e., we drop eigenvectors with small

eigenvalues) ensures that the constructed SDF excludes near-arbitrage opportunities. Again

we let ›Wt and ‹Λt denote the N × Kt and Kt × Kt matrices corresponding to Wt and Λt

after removing principal components with low explanatory power, where Kt is the number

of principal components we retain in our analysis at time t.

We use the rotation matrix ›Wt to transform the d original risk sources Zt into Kt new

risk sources ‹Zt, which are proportional to the first Kt principal components of the set of N

22The procedure is similar to the 2-stage Fama-MacBeth regression (Fama and MacBeth, 1973), but in
the approach of Maurer et al. (2015) we do not have to estimate time-series regressions in the first stage
because of the particular relationship between market prices and exchange rate loadings on risk sources, i.e.,
the exchange rate is equal to the ratio of SDFs. This reduces estimation errors. Moreover, it ensures that
our identified risk sources are always priced risks (in contrast to possibly unpriced risk sources as it is the
case with other asset classes; see below for details).

23Technically, J is the (N + 1)th currency.
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carry trade returns,

d‹Zt =
√
dt‹Λ−0.5

t
›W T
t xt+dt. (6)

Given the new defined risk sources ‹Zt, we obtain the cross-country differences in market

prices of these new risks,

∆̃η
T

t ≡


(η̃J,t − η̃1,t)

T

...

(η̃J,t − η̃N,t)T

 =
1√
dt
›Wt
‹Λ0.5
t .

This is because ∆̃ηt has to satisfy ∆̃η
T

t d
‹Zt = xt+dt (see (5)). Thus, PCA on N carry trade

returns (or exchange rate growths) allows us to transform the original, unobservable risk

space Zt into an equivalent, observable risk space ‹Zt, and at the same time we also observe

the cross-country difference in market prices of risk (η̃J,t − η̃I,t) associated with the new

defined risk sources.

To construct country-specific SDFs it is not enough to estimate the cross-country dif-

ference in market prices (η̃J,t − η̃I,t), but we need η̃J,t. We estimate η̃J,t from the system of

equations (4),

η̃J,t =
1

dt

ï
∆̃ηt∆̃η

T

t

ò−1

∆̃ηtECTt, (7)

and η̃I,t = η̃J,t−(η̃J,t − η̃I,t). η̃J,t in (7) is the slope coefficient in a cross-sectional regression of

expected carry trade returns ECTt on factor loadings ∆̃ηt (corresponding to the risk factors

d‹Zt).
Finally, we construct the SDF in every country I ∈ {1, . . . , N + 1},

d›MI,t›MI,t

= −rI,tdt− η̃TI,td‹Zt. (8)

For the SDF ›MJ in country J , the last term capturing the SDF’s risk loadings (or the market

prices) is equal to the unexpected return of a net-zero investment carry trade strategy with
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portfolio weights,

θJ,t = ›Wt
‹Λ−1
t
›W T
t ECTt, (9)

that is, η̃TJ,td
‹Zt = θTJ,txt+dt.

Notice that if we keep all principal components in our construction of the SDF (Kt = N),

then ›Wt = Wt and ‹Λt = Λt, and thus, ›Wt
‹Λ−1
t
›W T
t = Σ−1

t according to (1). However, as

explained above, PCA is important because we want to drop principal components with

low explanatory power to exclude near-arbitrage opportunities in our setting. As a result›Wt 6= Wt and ‹Λt 6= Λt, and thus, ›Wt
‹Λ−1
t
›W T
t 6= Σ−1

t , and we work with the adjusted covariance

matrix ›Wt
‹Λt
›W T
t instead of Σt.

Equation (9) clearly reveals now that MSR is equivalent to the optimal portfolio of

an investor with log-utility in Merton (1971). Moreover, by construction, strategy θJ,t is

perfectly negatively correlated with the SDF in country J , and thus, earns the maximum

attainable Sharpe ratio (in FX markets) when denominated in currency J . We call θJ,t the

maximum Sharpe ratio (MSR) carry trade strategy to investor J . Notice that θJ,t = ctφJ,t

and thus, MSR is not identical to the tangency portfolio. Though, both MSR and the

tangency portfolio conditionally earn the maximum Sharpe ratio, the tangency portfolio

does not adjust its risk exposure in response to changes in market prices. In contrast,

MSR’s risk exposure is perfectly correlated with the conditional volatility of the SDF, and

thus, it times the market and earns a higher unconditional Sharpe ratio.24

The main objective of our paper is to implement the MSR strategy in USD, θUS,t and

compare its performance to other well-known carry trade strategies. Indeed, we show in

section 3 that the Sharpe ratio earned by MSR exceeds the Sharpe ratios of other strategies.

This empirical result is consistent with our theory and is evidence in favor of our approach

to construct country-specific SDFs. Finally, a slight adjustment of strategy θJ,t yields the

MSR strategy to investor I (denominated in currency I), θI,t = θJ,t− iI , where iI is a N × 1

column vector with element I is equal to 1 and all other elements are equal to 0. Then, θI,t

satisfies η̃I,td‹Zt = θTI,txt+dt, which implies that θI,t is perfectly negatively correlated to the

24The quantitative importance of this market timing feature of MSR is demonstrated in section 3.
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SDF in country I and it earns the maximum Sharpe ratio denominated in currency I.

Some comments are in order. First, the described approach to construct country-specific

SDFs is non-parametric. For instance, we do not need any assumptions about preferences,

wealth distributions or the structure of the economy. We also do not impose any specific

statistical model or stochastic process to estimate the SDFs. The only restriction is that

FX market returns are driven by pure-diffusion risks, and even this can be relaxed for the

processes of rI,t and ηI,t, as long as they are adapted to the filtration Ft (and assuming some

regularity to exclude pathological price behavior such as bubbles).

Second, the model holds conditionally. That is, given the risk-free short rates rI,t, con-

ditional expected carry trade returns ECTt and covariance matrix Σt at time t, we can

construct the observable risk sources d‹Zt in (6), the corresponding conditional market prices

η̃I,t in (7), SDF growths
d‹MI,t‹MI,t

in (8) and the MSR strategy θJ,t in (9). We describe the

(dynamic) estimation of the model (i.e. the estimation of conditional quantities and the

implementation of the MSR strategy) in more detail in section 2.3.

Third, an advantage of FX market data is that all risks are priced risks. This is clear

from (3): the diffusion term of any carry trade return (or exchange rate growth) is equal

to the difference in country-specific market prices of risks. Accordingly, carry trade returns

never load on unpriced risks, because such risks by definition do not carry a market price.

This is in stark contrast to other financial market instruments, which often are subject to

unpriced shocks. Therefore, it is natural to work with FX market securities to construct

SDFs.

Fourth, although all risks in FX markets are priced, this does not imply that all priced

risks affect FX markets. In particular, if all N + 1 countries assign identical market prices to

some priced risk source (i.e., some element h in ηI,t is identical across all countries I), then

according to (3) no carry trade return is exposed to this risk source. Risks, which satisfy

this knife edge condition on market prices, are not detected using FX market data and are

missing in the constructed SDF in (8). Our constructed SDF is, however, a projection of

the SDF into the FX market risk space. Accordingly, MSR earns the maximum attainable

Sharpe ratio in FX markets but not necessarily the maximum attainable Sharpe ratio if we
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are able to invest in all (FX and non-FX) assets.

Finally, relaxing the assumption of frictionless trading – such as introducing transaction

costs (bid-ask spreads) – may cause some distortions due to limits to arbitrage. In particular,

in the presence of transaction costs, the exchange rate will only approximately but not

exactly be equal to the ratio of country-specific SDFs in (2). If transaction costs are large

enough, then it may not be possible to lock in an arbitrage profit even if (2) is violated

and the exchange rate slightly deviates from the ratio of SDFs. This implies that in the

presence of transaction costs, there may be some fluctuations in exchange rates which are

not due to fundamental, priced shocks. No-arbitrage sets limits on the absolute size of these

non-fundamental, unpriced fluctuations and the limits are proportional to the size of the

transaction costs. But these unpriced fluctuations have an effect on the construction of the

equivalent risks ‹Zt in (6), the corresponding market prices in (7), the country-specific SDFs

in (8) and the MSR trading strategy in (9). Removing principal components which explain

almost no common variation in the data in order to exclude near-arbitrage opportunities (as

explained above) also helps to mitigate the problem of transaction costs. This is because

unpriced fluctuations of the exchange rate around the ratio of SDFs, by their nature, are

unsystematic and do not capture much of the common variation in exchange rates.

B Data Sources

Spot and Forward Exchange Rates

In Table 1 we list the Datastream mnemonics for spot and forward exchange rate quotes

against the British pound, whereas those against the U.S. Dollar are listed in Table 2. To

obtain mid-, bid- and ask-exchange rates, the suffixes (ER), (EB) and (EO) are added to

the corresponding mnemonics.
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Table 1: Datastream mnemonics for currency quotes against the British pound

Currency Spot rate Forward rate Quote convention

Belgian franc BELGLUX BELXF1F FCU/GBP
Canadian dollar CNDOLLR CNDOL1F FCU/GBP
Danish krone DANISHK DANIS1F FCU/GBP
French franc FRENFRA FRENF1F FCU/GBP
German mark DMARKER DMARK1F FCU/GBP
Italian lira ITALIRE ITALY1F FCU/GBP
Japanese yen JAPAYEN JAPYN1F FCU/GBP
Netherlands guilder GUILDER GUILD1F FCU/GBP
Norwegian krone NORKRON NORKN1F FCU/GBP
Swedish krona SWEKRON SWEDK1F FCU/GBP
Swiss franc SWISSFR SWISF1F FCU/GBP
U.S. dollar USDOLLR USDOL1F FCU/GBP

C Strategy Performance

We consider the following trading strategies, which are described in detail in section 2.3:

• MSR is the maximum Sharpe ratio strategy, which is perfectly negatively correlated

with the US SDF.

• MSRV is constructed as MSR but for simplicity assumes that covariances between

exchange rate growths are zero (i.e., use a diagonal matrix with exchange rate growth

variances on the diagonal as the covariance matrix).

• MSRI makes the additional simlifying assumption that variances across exchange rates

are identical (i.e., use an identity matrix as the covariance matrix).

• MSRI,CV adjusts MSRI to yield a constant conditional volatility.

• MSRCV adjusts MSR to yield a constant conditional volatility.

• TAN is the tangency portfolio.

• DOL borrows USD and equally lends in all other currencies.
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Table 2: Datastream mnemonics for currency quotes against the U.S. dollar

Currency Spot rate Forward rate Quote convention

Australian dollar BBAUDSP BBAUD1F FCU/USD
Belgian franc BELGLU$ USBEF1F FCU/USD
British pound BBGBPSP BBGBP1F USD/FCU
Canadian dollar BBCADSP BBCAD1F FCU/USD
Danish krone BBDKKSP BBDKK1F FCU/USD
Euro BBEURSP BBEUR1F FCU/USD
French franc BBFRFSP BBFRF1F FCU/USD
German mark BBDEMSP BBDEM1F FCU/USD
Italian lira BBITLSP BBITL1F FCU/USD
Japanese yen BBJPYSP BBJPY1F FCU/USD
Netherland guilder BBNLGSP BBNLG1F FCU/USD
New Zealand dollar BBNZDSP BBNZD1F FCU/USD
Norwegian krone BBNOKSP BBNOK1F FCU/USD
Swedish krona BBSEKSP BBSEK1F FCU/USD
Swiss france BBCHFSP BBCHF1F FCU/USD

• D-DOL takes a long (short) position in DOL when the interest rate in USD is below

(above) the median interest rate across all countries.

• HML buys (sells) the top 20% currencies with the highest (lowest) interest rate.

• MOM buys (sells) the top 20% currencies with the highest (lowest) past 12 month

return.

• V AL buys (sells) the top 20% most undervalued (overvalued) currencies.

• IntPi, MomPi and V alPi ∀i ∈ {1, . . . , 5} are equally weighted quintile portfolios sorted

according to interest rates, past performance and value. Portfolios are constructed

using information available at the end of month t and monthly returns are computed

over the subsequent month (i.e. monthly return from the end of month t to the end of

month t+ 1).

Table 3 reports correlations between all strategies. Tables 4 through 10 report several

performance measures:
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• Mean: annualized average excess returns in %,

• Vol: annualized volatility in %,

• SR: annualized Sharpe ration in %,

• Skew: monthly return skewness,

• Kurt: monthly return kurtosis,

• MDD: maximum drawdown/ loss from peak to trough in %,

• ‖MDD‖/Mean: expected time to recover from maximum drawdown in years,

• AC: monthly auto-correlation of returns,

• % positive: percentage of positive returns in %,

• x-%: xth percentile of monthly returns.

Tables 11 through 15 show that MSR earns large abnormal returns and reports factor

loadings according to several popular pricing factor model in international finance. Tables

16 and 17 report predictive regression results and shows that MSR is able to predict returns

of popular carry trade strategies. Tables 18 and ?? show that MSR is able to price assets

in FX markets and replaces the popular DOL and HML pricing factors.
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Table 3: Correlation Matrix of Trading Strategies

MSR MSRV MSRI MSRCV MSRI,CV TAN HML DOL D-DOL MOM VAL
MSR 1.00 0.61 0.37 0.77 0.51 0.12 0.36 0.06 0.14 0.04 0.12
MSRV 0.61 1.00 0.64 0.50 0.76 0.08 0.35 0.21 0.51 0.13 -0.05
MSRI 0.37 0.64 1.00 0.43 0.71 0.07 0.43 0.20 0.60 0.12 -0.09
MSRCV 0.77 0.50 0.43 1.00 0.65 0.27 0.59 0.11 0.24 0.11 0.17
MSRI,CV 0.51 0.76 0.71 0.65 1.00 0.10 0.56 0.18 0.62 0.18 0.06
TAN 0.12 0.08 0.07 0.27 0.10 1.00 0.22 0.01 0.01 0.09 0.06
HML 0.36 0.35 0.43 0.59 0.56 0.22 1.00 0.06 0.12 -0.03 0.24
DOL 0.06 0.21 0.20 0.11 0.18 0.01 0.06 1.00 0.31 -0.09 -0.31
D-DOL 0.14 0.51 0.60 0.24 0.62 0.01 0.12 0.31 1.00 0.17 -0.12
MOM 0.04 0.13 0.12 0.11 0.18 0.09 -0.03 -0.09 0.17 1.00 -0.18
V AL 0.12 -0.05 -0.09 0.17 0.06 0.06 0.24 -0.31 -0.12 -0.18 1.00

Notes: Correlation matrix of monthly currency strategy excess returns for our set of 15 developed countries from

January 1977 to February 2016. Returns are without transaction costs. Details about the strategies are at the

beginning of section C.
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Table 4: Performance Before Transaction Costs

MSR HML DOL D-DOL MOM VAL

Mean 11.86 5.66 0.74 4.88 4.20 4.29
Vol 11.36 9.18 8.59 8.47 13.24 8.12
SR 1.04 0.62 0.09 0.58 0.32 0.53

Skew 2.35 -0.85 -0.20 -0.20 0.34 0.03
Kurt 18.77 5.82 3.90 4.04 6.90 4.66

MDD -15.96 -43.18 -72.50 -24.34 -30.38 -22.79
‖MDD‖/Mean 1.35 7.62 98.27 4.99 7.23 5.31

AC 0.15 0.10 0.04 0.00 -0.00 0.05
% positive 64.73 64.52 53.12 57.54 56.13 55.70

90-% 4.04 3.60 3.08 3.32 4.70 3.00
50-% 0.44 0.58 0.08 0.38 0.28 0.23
10-% -1.57 -2.85 -2.90 -2.43 -4.02 -2.36

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 11.86 12.61 7.63 9.02 11.69 3.42
Vol 11.36 11.68 10.34 9.38 11.17 10.80
SR 1.04 1.08 0.74 0.96 1.05 0.32

Skew 2.35 3.14 0.07 -0.39 -0.47 8.64
Kurt 18.77 30.79 18.06 3.85 4.88 147.52

MDD -15.96 -19.37 -47.51 -40.58 -41.65 -30.79
‖MDD‖/Mean 1.35 1.54 6.23 4.50 3.56 9.00

AC 0.15 0.18 0.23 0.15 0.10 0.05
% positive 64.73 67.31 67.53 64.73 67.53 64.73

90-% 4.04 4.51 3.18 4.03 4.81 0.62
50-% 0.44 0.58 0.47 0.77 1.09 0.08
10-% -1.57 -1.54 -1.47 -2.87 -2.90 -0.35

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries from January 1977 to February 2016. Returns are before transaction costs. Details

about the strategies and the performance measures are at the beginning of section C.
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Table 5: Performance After Transaction Costs

MSR HML DOL D-DOL MOM VAL

Mean 8.54 5.15 0.68 4.63 3.27 3.98
Vol 10.98 9.19 8.59 8.49 13.27 8.11
SR 0.78 0.56 0.08 0.54 0.25 0.49

Skew 1.04 -0.84 -0.20 -0.20 0.32 0.03
Kurt 17.16 5.80 3.90 4.04 6.85 4.66

MDD -25.52 -43.58 -73.49 -24.42 -33.51 -22.95
‖MDD‖/Mean 2.99 8.47 108.67 5.28 10.24 5.76

AC 0.10 0.10 0.04 0.00 0.00 0.04
% positive 61.72 63.44 53.12 57.33 55.05 55.27

90-% 3.59 3.52 3.08 3.31 4.65 2.95
50-% 0.33 0.58 0.06 0.32 0.17 0.18
10-% -1.85 -3.01 -2.90 -2.55 -4.05 -2.42

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 8.54 11.46 7.14 6.58 10.80 1.84
Vol 10.98 11.43 10.33 9.35 11.16 10.09
SR 0.78 1.00 0.69 0.70 0.97 0.18

Skew 1.04 2.97 -0.03 -0.42 -0.51 7.87
Kurt 17.16 29.76 18.37 3.88 4.89 146.30

MDD -25.52 -20.59 -48.42 -42.02 -42.05 -31.93
‖MDD‖/Mean 2.99 1.80 6.78 6.39 3.89 17.37

AC 0.10 0.16 0.22 0.15 0.10 0.05
% positive 61.72 65.59 67.31 61.29 67.31 60.86

90-% 3.59 4.46 3.13 3.83 4.71 0.50
50-% 0.33 0.50 0.46 0.58 0.99 0.04
10-% -1.85 -1.61 -1.51 -3.01 -2.93 -0.48

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries from January 1977 to February 2016. Returns are after transaction costs/ accounting

for bid-ask spreads (due to time variations in portfolio weights). Details about the strategies

and the performance measures are at the beginning of section C.
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Table 6: Performance After Full Round-Trip Transaction Costs

MSR HML DOL D-DOL MOM VAL

Mean 5.54 2.60 -0.68 3.46 1.48 1.41
Vol 10.86 9.18 8.59 8.48 13.26 8.12
SR 0.51 0.28 -0.08 0.41 0.11 0.17

Skew 0.20 -0.83 -0.22 -0.22 0.32 0.01
Kurt 19.74 5.77 3.90 4.08 6.90 4.68

MDD -38.80 -46.56 -86.71 -27.55 -51.02 -31.66
‖MDD‖/Mean 7.00 17.88 -126.93 7.96 34.58 22.53

AC 0.07 0.10 0.04 0.00 -0.00 0.05
% positive 58.28 58.92 51.61 55.60 51.83 50.97

90-% 3.29 3.35 2.96 3.24 4.44 2.76
50-% 0.21 0.36 0.00 0.23 0.00 0.00
10-% -1.98 -3.21 -3.03 -2.64 -4.28 -2.60

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 5.54 9.81 5.61 3.64 8.42 1.46
Vol 10.86 11.24 10.25 9.28 11.10 10.07
SR 0.51 0.87 0.55 0.39 0.76 0.15

Skew 0.20 2.89 -0.22 -0.45 -0.56 7.88
Kurt 19.74 29.86 18.66 3.88 4.93 147.20

MDD -38.80 -25.67 -52.37 -45.29 -48.12 -32.38
‖MDD‖/Mean 7.00 2.62 9.34 12.43 5.72 22.15

AC 0.07 0.14 0.21 0.13 0.09 0.05
% positive 58.28 63.44 63.66 58.28 63.66 58.28

90-% 3.29 4.11 3.02 3.59 4.49 0.47
50-% 0.21 0.42 0.37 0.30 0.77 0.02
10-% -1.98 -1.78 -1.66 -3.28 -3.14 -0.51

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries from January 1977 to February 2016. Returns are after monthly full round-trip

transaction costs/ accounting for bid-ask spreads (full turn over of portfolio every month).

Details about the strategies and the performance measures are at the beginning of section C.
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Table 7: Performance during non-NBER Recessions

MSR HML DOL D-DOL MOM VAL

Mean 8.42 5.73 1.26 5.18 4.02 3.30
Vol 10.52 8.57 8.26 8.13 12.24 7.87
SR 0.80 0.67 0.15 0.64 0.33 0.42

Skew 0.54 -0.67 -0.07 -0.07 -0.05 -0.05
Kurt 18.16 4.44 3.60 3.88 4.45 4.45

MDD -25.52 -28.93 -64.13 -24.42 -29.38 -22.95
‖MDD‖/Mean 3.03 5.05 50.96 4.72 7.30 6.96

AC 0.04 0.04 0.01 0.03 0.01 0.02
% positive 62.62 63.59 54.13 58.88 55.34 54.85

90-% 3.66 3.55 3.10 3.29 4.67 2.87
50-% 0.36 0.57 0.14 0.42 0.19 0.15
10-% -1.83 -2.48 -2.81 -2.26 -3.87 -2.45

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 8.42 12.46 8.23 7.37 12.02 2.82
Vol 10.52 11.43 10.29 9.44 11.04 9.81
SR 0.80 1.09 0.80 0.78 1.09 0.29

Skew 0.54 3.37 0.23 -0.46 -0.53 11.04
Kurt 18.16 32.61 19.35 4.00 4.87 171.49

MDD -25.52 -17.55 -48.42 -33.33 -42.05 -11.39
‖MDD‖/Mean 3.03 1.41 5.89 4.52 3.50 4.03

AC 0.04 0.16 0.26 0.14 0.10 0.05
% positive 62.62 66.50 67.96 61.89 67.96 61.89

90-% 3.66 4.47 3.42 3.86 4.89 0.52
50-% 0.36 0.61 0.47 0.63 1.11 0.05
10-% -1.83 -1.55 -1.43 -2.97 -2.88 -0.41

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries for non-NBER Recession periods from January 1977 to February 2016. Returns

are after transaction costs/ accounting for bid-ask spreads (due to time variations in portfolio

weights). Details about the strategies and the performance measures are at the beginning of

section C.
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Table 8: Performance during NBER Recessions

MSR HML DOL D-DOL MOM VAL

Mean 9.47 0.66 -3.76 0.45 -2.45 9.21
Vol 14.06 13.04 10.83 10.88 19.50 9.74
SR 0.67 0.05 -0.35 0.04 -0.13 0.95

Skew 2.54 -0.92 -0.47 -0.47 1.13 0.18
Kurt 11.30 5.69 3.75 3.85 7.74 4.62

MDD -11.60 -40.15 -34.35 -23.05 -47.82 -9.45
‖MDD‖/Mean 1.22 60.59 -9.13 51.49 -19.51 1.03

AC 0.22 0.29 0.14 -0.06 0.02 0.20
% positive 54.72 62.26 45.28 45.28 52.83 58.49

90-% 3.18 3.39 2.74 3.66 3.85 4.07
50-% 0.02 0.75 -0.20 -0.20 0.05 0.68
10-% -2.29 -4.63 -3.70 -2.94 -6.83 -2.19

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 9.47 3.83 -1.11 0.52 1.48 -5.68
Vol 14.06 11.33 10.42 8.50 11.75 11.89
SR 0.67 0.34 -0.11 0.06 0.13 -0.48

Skew 2.54 -0.10 -1.87 -0.15 -0.33 -5.60
Kurt 11.30 5.77 10.53 2.64 5.05 39.56

MDD -11.60 -17.87 -23.60 -28.49 -27.38 -36.70
‖MDD‖/Mean 1.22 4.67 -21.18 54.80 18.44 -6.46

AC 0.22 0.11 -0.10 0.19 0.09 0.08
% positive 54.72 58.49 62.26 56.60 62.26 52.83

90-% 3.18 3.49 2.59 3.55 3.44 0.43
50-% 0.02 0.14 0.25 0.05 0.49 0.00
10-% -2.29 -2.06 -2.87 -3.63 -4.46 -1.19

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries for NBER Recession periods from January 1977 to February 2016. Returns are

after transaction costs/ accounting for bid-ask spreads (due to time variations in portfolio

weights). Details about the strategies and the performance measures are at the beginning of

section C.
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Table 9: Performance before Introduction of Euro

MSR HML DOL D-DOL MOM VAL

Mean 11.70 5.57 0.76 4.90 4.50 3.62
Vol 13.64 8.16 8.72 8.63 12.87 8.03
SR 0.86 0.68 0.09 0.57 0.35 0.45

Skew 0.74 -0.90 -0.20 -0.20 -0.13 -0.05
Kurt 12.25 5.35 3.83 4.10 4.95 5.12

MDD -25.52 -28.93 -73.49 -17.63 -31.44 -22.95
‖MDD‖/Mean 2.18 5.20 97.10 3.60 6.98 6.33

AC 0.08 0.06 0.04 0.06 -0.00 0.08
% positive 66.28 67.05 54.26 58.75 57.75 56.98

90-% 4.25 3.15 3.02 3.51 4.75 2.85
50-% 0.45 0.58 0.03 0.32 0.14 0.12
10-% -2.52 -2.23 -2.96 -2.58 -3.87 -2.46

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 11.70 16.36 10.68 7.73 14.47 0.27
Vol 13.64 13.50 13.06 9.14 11.47 2.94
SR 0.86 1.21 0.82 0.85 1.26 0.09

Skew 0.74 2.86 -0.22 -0.53 -0.39 -8.29
Kurt 12.25 25.04 12.54 4.90 4.61 120.62

MDD -25.52 -15.38 -48.42 -25.03 -21.51 -11.39
‖MDD‖/Mean 2.18 0.94 4.53 3.24 1.49 42.12

AC 0.08 0.12 0.22 0.14 0.08 0.01
% positive 66.28 69.38 72.09 65.50 72.09 65.50

90-% 4.25 5.26 4.65 3.82 5.27 0.36
50-% 0.45 0.82 0.71 0.62 1.11 0.04
10-% -2.52 -1.85 -2.35 -2.70 -2.71 -0.31

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries from January 1977 to December 1998. Returns are after transaction costs/ accounting

for bid-ask spreads (due to time variations in portfolio weights). Details about the strategies

and the performance measures are at the beginning of section C.
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Table 10: Performance after Introduction of Euro

MSR HML DOL D-DOL MOM VAL

Mean 4.38 4.67 0.58 4.33 1.26 4.42
Vol 5.58 10.48 8.48 8.37 13.81 8.30
SR 0.79 0.45 0.07 0.52 0.09 0.53

Skew 0.79 -0.75 -0.20 -0.20 0.83 0.13
Kurt 5.45 5.44 3.92 3.89 8.89 3.99

MDD -16.90 -43.58 -30.24 -24.42 -30.28 -14.43
‖MDD‖/Mean 3.86 9.33 52.02 5.64 24.08 3.26

AC 0.13 0.14 0.05 -0.07 0.01 0.03
% positive 55.88 58.82 51.47 55.88 51.47 52.45

90-% 2.35 3.93 3.25 3.31 4.46 3.11
50-% 0.15 0.58 0.14 0.40 0.21 0.20
10-% -1.39 -3.55 -2.81 -2.41 -4.43 -2.32

MSR MSRV MSRI MSRCV MSRI,CV TAN

Mean 4.38 5.01 2.47 5.08 5.98 3.96
Vol 5.58 7.56 4.35 9.67 10.66 15.14
SR 0.79 0.66 0.57 0.52 0.56 0.26

Skew 0.79 0.60 -0.39 -0.29 -0.80 5.48
Kurt 5.45 7.00 6.37 2.74 5.18 67.14

MDD -16.90 -20.59 -17.73 -42.02 -42.05 -31.93
‖MDD‖/Mean 3.86 4.11 7.18 8.28 7.03 8.06

AC 0.13 0.24 0.10 0.15 0.11 0.05
% positive 55.88 60.78 61.27 55.88 61.27 54.90

90-% 2.35 2.41 1.42 3.96 3.92 0.94
50-% 0.15 0.31 0.29 0.51 0.86 0.07
10-% -1.39 -1.52 -0.98 -3.38 -3.19 -0.91

Notes: Statistics of monthly currency strategy excess returns for our set of 15 developed

countries from January 1999 to February 2016. Returns are after transaction costs/ accounting

for bid-ask spreads (due to time variations in portfolio weights). Details about the strategies

and the performance measures are at the beginning of section C.
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Table 11: Alpha of MSR

Factors MSR

α 9.304∗∗∗ 9.625∗∗∗ 8.257∗∗∗ 8.439∗∗∗ 8.144∗∗∗

(5.393) (5.408) (4.824) (4.812) (4.843)

DOL 0.051 -0.064 0.054 -0.046 0.227
(0.677) (-0.805) (0.812) (-0.659) (1.589)

D-DOL 0.122∗ 0.130∗ 0.116
(1.671) (1.777) (1.623)

HML 0.445∗∗∗ 0.410∗∗∗ 1.037∗∗∗

(6.683) (6.466) (2.744)

FMV OL -34.136∗∗∗ -31.129∗∗∗ 51.676∗

(-6.190) (-6.175) (1.710)

MOM 0.044 0.045 0.044
(1.135) (1.147) (1.155)

V AL 0.107 0.129∗ 0.088
(1.500) (1.812) (1.223)

R2 14 13 15 13 15
Obs 483 483 483 483 483

Notes: Linear regression MSRt = α +
∑
i βiFi,t + εt. α is the annualized abnormal return in

percentage (with respect to the factor pricing model under consideration). We consider six pricing

factors Fi: DOL, D-DOL, HML, FMV OL, MOM , V AL. MSR and the factors are monthly

excess returns and are described in detail in section 2.3. R2 is in percentage and measures the

regression fit, and Obs reports the number of monthly return observations in our sample. The

data is our set of 15 developed countries from January 1977 to February 2016. Newey and West

(1987) robust t-statistics are reported in parentheses below coefficient estimates. Significance at

the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Table 12: Alpha of MSR during non-NBER Recessions

Factors MSR

α 8.436∗∗∗ 8.596∗∗∗ 7.731∗∗∗ 7.819∗∗∗ 7.732∗∗∗

(5.566) (5.604) (4.970) (4.953) (4.971)

DOL 0.100 0.027 0.086 0.029 0.076
(1.221) (0.327) (1.305) (0.428) (0.907)

D-DOL 0.122 0.119 0.121
(1.630) (1.569) (1.581)

HML 0.493∗∗∗ 0.452∗∗∗ 0.376
(8.370) (6.677) (1.558)

FMV OL -46.517∗∗∗ -42.257∗∗∗ -7.548
(-8.068) (-6.427) (-0.323)

MOM -0.005 -0.005 -0.005
(-0.110) (-0.105) (-0.120)

V AL 0.094 0.119 0.097
(1.225) (1.520) (1.224)

R2 17 16 17 17 17
Obs 427 427 427 427 427

Notes: Linear regression MSRt = α +
∑
i βiFi,t + εt. α is the annualized abnormal return in

percentage (with respect to the factor pricing model under consideration). We consider six pricing

factors Fi: DOL, D-DOL, HML, FMV OL, MOM , V AL. MSR and the factors are monthly

excess returns and are described in detail in section 2.3. R2 is in percentage and measures the

regression fit, and Obs reports the number of monthly return observations in our sample. The

data is our set of 15 developed countries for non-NBER Recession periods from January 1977

to February 2016. Newey and West (1987) robust t-statistics are reported in parentheses below

coefficient estimates. Significance at the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.

22



Table 13: Alpha of MSR during NBER Recessions

Factors MSR

α 12.701 13.946∗ 13.367∗ 13.262∗ 13.363∗

(1.618) (1.684) (1.813) (1.719) (1.824)

DOL -0.114 -0.159 -0.016 -0.107 0.026
(-0.668) (-1.060) (-0.072) (-0.526) (0.115)

D-DOL 0.019 0.135 -0.010
(0.111) (0.836) (-0.050)

HML 0.332∗∗ 0.429∗∗∗ 0.505∗

(2.136) (2.808) (1.780)

FMV OL -10.195∗∗ -11.856∗∗∗ 3.700
(-2.183) (-3.233) (0.448)

MOM 0.200∗∗ 0.097 0.217∗∗

(2.477) (1.630) (2.094)

V AL -0.022 0.109 -0.048
(-0.105) (0.536) (-0.202)

R2 8 6 12 7 12
Obs 56 56 56 56 56

Notes: Linear regression MSRt = α+
∑
i βiFi,t + εt. α is the annualized abnormal return in

percentage (with respect to the factor pricing model under consideration). We consider six

pricing factors Fi: DOL, D-DOL, HML, FMV OL, MOM , V AL. MSR and the factors are

monthly excess returns and are described in detail in section 2.3. R2 is in percentage and

measures the regression fit, and Obs reports the number of monthly return observations in

our sample. The data is our set of 15 developed countries for NBER Recession periods from

January 1977 to February 2016. Newey and West (1987) robust t-statistics are reported in

parentheses below coefficient estimates. Significance at the 1%, 5% or 10% level are indicated

by ∗,∗∗ or ∗∗∗.
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Table 14: Alpha of MSR before Introduction of Euro

Factors MSR

α 11.921∗∗∗ 12.347∗∗∗ 10.616∗∗∗ 11.012∗∗∗ 10.612∗∗∗

(4.926) (5.062) (4.166) (4.217) (4.155)

DOL 0.263∗∗ 0.051 0.314∗∗∗ 0.118 0.275∗∗

(2.120) (0.441) (3.109) (1.170) (2.365)

D-DOL 0.078 0.110 0.081
(0.779) (1.093) (0.790)

HML 0.765∗∗∗ 0.698∗∗∗ 0.567∗∗

(6.316) (5.340) (2.143)

FMV OL -58.621∗∗∗ -52.567∗∗∗ -11.575
(-6.287) (-5.084) (-0.528)

MOM 0.063 0.032 0.056
(1.089) (0.492) (0.900)

V AL 0.226∗ 0.245∗ 0.222∗

(1.809) (1.942) (1.747)

R2 18 17 20 18 20
Obs 276 276 276 276 276

Notes: Linear regression MSRt = α +
∑
i βiFi,t + εt. α is the annualized abnormal return in

percentage (with respect to the factor pricing model under consideration). We consider six pricing

factors Fi: DOL, D-DOL, HML, FMV OL, MOM , V AL. MSR and the factors are monthly

excess returns and are described in detail in section 2.3. R2 is in percentage and measures the

regression fit, and Obs reports the number of monthly return observations in our sample. The

data is our set of 15 developed countries from January 1977 to December 1998. Newey and West

(1987) robust t-statistics are reported in parentheses below coefficient estimates. Significance at

the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.

24



Table 15: Alpha of MSR after Introduction of Euro

Factors MSR

α 3.893∗∗∗ 4.399∗∗∗ 3.180∗∗∗ 3.634∗∗∗ 3.163∗∗∗

(2.850) (3.184) (2.651) (2.940) (2.649)

DOL -0.040 -0.071 -0.115 -0.137∗ -0.111
(-0.631) (-1.123) (-1.599) (-1.865) (-1.522)

D-DOL 0.186∗∗∗ 0.180∗∗∗ 0.187∗∗∗

(2.993) (3.050) (2.992)

HML 0.260∗∗∗ 0.265∗∗∗ 0.279∗∗∗

(5.149) (6.456) (2.845)

FMV OL -16.460∗∗∗ -16.556∗∗∗ 1.145
(-4.984) (-7.045) (0.194)

MOM 0.053∗ 0.059∗∗ 0.053∗

(1.725) (2.208) (1.698)

V AL -0.045 -0.027 -0.045
(-0.956) (-0.542) (-0.961)

R2 28 24 30 26 30
Obs 204 204 204 204 204

Notes: Linear regression MSRt = α +
∑
i βiFi,t + εt. α is the annualized abnormal return in

percentage (with respect to the factor pricing model under consideration). We consider six pricing

factors Fi: DOL, D-DOL, HML, FMV OL, MOM , V AL. MSR and the factors are monthly

excess returns and are described in detail in section 2.3. R2 is in percentage and measures the

regression fit, and Obs reports the number of monthly return observations in our sample. The

data is our set of 15 developed countries from January 1999 to February 2016. Newey and West

(1987) robust t-statistics are reported in parentheses below coefficient estimates. Significance at

the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Table 16: Predictive Regressions

h = 1
Predictors MSRt,t+h V OLt,t+h HMLt,t+h DOLt,t+h D-DOLt,t+h MOMt,t+h V ALt,t+h

∑
i ‖θi,US,t‖ 0.286∗∗∗ -0.011∗∗∗ 0.086∗∗ -0.033 0.089∗∗ 0.226∗∗∗ 0.020∑
i θi,US,t -0.030 0.010∗∗∗ -0.080 0.076 -0.244∗∗ -0.438∗∗∗ -0.052

sign (
∑
i θi,US,t) 0.139 -0.008 -0.100 0.290∗∗ 0.077 -0.131 0.143

sign (median({rJ,t})− rUS,t) -0.012 -0.000 -0.078 0.456∗∗∗ 0.142 0.115 -0.199∗

V OLt -1.300 -0.203∗∗∗ -0.103 -0.779 -2.049∗ 1.570 1.319
Yt 0.062 NaN 0.087 -0.007 0.002 -0.012 0.042
R2 (adjusted) 13.62 10.42 0.47 5.30 1.17 1.15 -0.04

h = 6
Predictors MSRt,t+h V OLt,t+h HMLt,t+h DOLt,t+h D-DOLt,t+h MOMt,t+h V ALt,t+h

∑
i ‖θi,US,t‖ 0.214∗∗∗ -0.001 0.054∗ -0.050∗ 0.034 0.124∗∗∗ -0.008∑
i θi,US,t -0.201∗∗ -0.004∗ -0.106∗∗ 0.132∗∗ -0.038 -0.189∗∗∗ 0.048

sign (
∑
i θi,US,t) 0.266∗∗∗ -0.005∗ 0.037 0.061 -0.082 0.027 0.060

sign (median({rJ,t})− rUS,t) -0.061 0.006∗ -0.018 0.307∗∗∗ 0.063 -0.027 -0.076
V OLt -0.088 0.003 -0.069 -0.161 0.157 -0.329 0.708∗∗

Yt -0.009 NaN -0.004 0.027 0.011 -0.025 -0.038∗∗∗

R2 (adjusted) 21.74 5.15 0.35 10.35 0.09 4.12 0.35

Notes: Predictive regression Yt,t+h = c0 +
∑
i cixi,t + εt. Yt,t+h = 1

h

∑h
τ=1 Yt+τ . We check the predictability of the carry

trade returns of MSR, HML, DOL, D-DOL, MOM , V AL, and cahnges to global FX market volatility V OL. We use the

following predictors xi:
∑
i ‖θi,US,t‖ is the dollar amount risk exposure of MSR at time t,

∑
i θi,US,t measures the leverage

of MSR, i.e. exposure to the tangency portfolio, sign (
∑
i θi,US,t) indicates whether MSR takes a long or short position

in the tangency portfolio, sign (median({rJ,t})− rUS,t) indicates whether the interest rate in the US is above or below the

median interest rate across all currencies, V OLt is the change in global FX market volatility at time t, Yt is the most recent

realization of the variable to predict. R2 (adjusted) is in percentage and measures the regression fit. The data is our set of

15 developed countries from January 1977 to February 2016. Significance of predictor xi at the 1%, 5% or 10% level are

indicated by ∗,∗∗ or ∗∗∗.
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Table 17: Predictive Regressions

h = 12
Predictors MSRt,t+h V OLt,t+h HMLt,t+h DOLt,t+h D-DOLt,t+h MOMt,t+h V ALt,t+h

∑
i ‖θi,US,t‖ 0.156∗∗∗ -0.000 0.053∗∗ -0.055∗ 0.053∗∗ 0.087∗∗∗ 0.001∑
i θi,US,t -0.102∗ -0.002 -0.133∗∗∗ 0.153∗∗∗ -0.076∗ -0.110∗∗ -0.008

sign (
∑
i θi,US,t) 0.248∗∗∗ -0.005∗ 0.072 0.067 -0.012 0.043 0.083∗

sign (median({rJ,t})− rUS,t) -0.131 0.005∗ -0.058 0.250∗∗∗ 0.091 -0.005 -0.098∗

V OLt 0.009 0.027 0.189 0.267 0.476 -0.022 0.364
Yt -0.000 NaN 0.003 0.016 0.006 -0.035∗∗∗ -0.014
R2 (adjusted) 25.75 4.67 2.54 15.38 2.89 5.68 1.66

h = 24
Predictors MSRt,t+h V OLt,t+h HMLt,t+h DOLt,t+h D-DOLt,t+h MOMt,t+h V ALt,t+h

∑
i ‖θi,US,t‖ 0.119∗∗∗ -0.000 0.051∗∗∗ -0.048∗∗ 0.038∗∗∗ 0.061∗∗∗ 0.000∑
i θi,US,t -0.087∗ -0.002 -0.107∗∗∗ 0.122∗∗∗ -0.075∗∗∗ -0.060∗∗ -0.016

sign (
∑
i θi,US,t) 0.237∗∗∗ -0.005∗∗ 0.124∗∗∗ -0.015 0.050 0.009 0.069∗∗

sign (median({rJ,t})− rUS,t) -0.125∗ 0.001 0.010 0.195∗∗∗ -0.012 -0.080∗ -0.059∗

V OLt 0.114 0.012 0.273 0.149 0.308 0.204 0.209
Yt 0.009 NaN 0.000 0.008 -0.004 -0.019∗∗∗ -0.011
R2 (adjusted) 25.01 5.44 6.96 13.37 2.76 13.02 1.96

Notes: Predictive regression Yt,t+h = c0 +
∑
i cixi,t + εt. Yt,t+h = 1

h

∑h
τ=1 Yt+τ . We check the predictability of the carry

trade returns of MSR, HML, DOL, D-DOL, MOM , V AL, and changes in global FX market volatility V OL. We use the

following predictors xi:
∑
i ‖θi,US,t‖ is the dollar amount risk exposure of MSR at time t,

∑
i θi,US,t measures the leverage

of MSR, i.e. exposure to the tangency portfolio, sign (
∑
i θi,US,t) indicates whether MSR takes a long or short position

in the tangency portfolio, sign (median({rJ,t})− rUS,t) indicates whether the interest rate in the US is above or below the

median interest rate across all currencies, V OLt is the changes in global FX market volatility at time t, Yt is the most

recent realization of the variable to predict. R2 (adjusted) is in percentage and measures the regression fit. The data is our

set of 15 developed countries from January 1977 to February 2016. Significance of predictor xi at the 1%, 5% or 10% level

are indicated by ∗,∗∗ or ∗∗∗.
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Table 18: MSR vs. DOL-HML Pricing Factors

Factors 15 Test Assets 21 Test Assets
(IntP , MomP , V alP )

γMSR 21.031∗ 20.283∗∗∗

(1.807) (6.581)
γDOL 0.643 0.983

(0.457) (0.698)
γHML 5.957∗∗∗ 14.668∗∗∗

(3.835) (6.783)
R2 80.746 54.230 90.632 68.043

γMSR − E[MSR] 8.710 7.962∗∗

(0.748) (2.583)
γDOL − E[DOL] -0.123 0.216

(-0.087) (0.154)
γHML − E[HML] 0.074 8.786∗∗∗

(0.048) (4.063)

Joint Test of Cross-Sectional Regression α∗j :

χ2-test (α∗j = 0, ∀j) 8.924 22.726∗∗ 23.634 51.290∗∗∗

(p-value) (0.779) (0.030) (0.211) (0.000)

Joint Test of Time-Series Regression αj:

F-test (αj = 0, ∀j) 1.069 1.560∗ 1.460∗ 2.710∗∗∗

(p-value) (0.383) (0.081) (0.087) (0.000)

Notes: Two stage regression test of pricing factors: Time-Series (TS): Rj,t = αj +∑
i Fi,tβi,j + εj,t, Cross-Section (CS): E [Rj ] =

∑
i βi,jγi + α∗j . Test assets Rj : Columns

2-3 use 15 test assets IntPi, MomPi, V alPi ∀i ∈ {1, . . . , 5}, columns 4-5 use the same

15 test assets and add MSRV , MSRI , MSRCV , MSRI,CV , TAN and D-DOL. Pricing

Factors Fi: Columns 2 and 4 report results for the single factor pricing model MSR,

columns 3 and 5 for the 2-factor model DOL-HML. αj and α∗j are abnormal returns of

test asset j in TS and CS regressions. βi,j is the loading of asset j on factor i. γi is the

market price of risk of factor i. t-statistics are in parentheses below coefficient estimates.

R2 is the CS regression fit of the pricing model. γFi−E[Fi] for Fi ∈ {MSR,DOL,HML}
is the difference between the estimated market price of factor Fi and the average return

of factor Fi; t-statistic is in parenthesis below. χ2-test is the joint test statistic of α∗j = 0

∀j in the CS regression. F-test is the joint test statistic of αj = 0 ∀j in the TS regres-

sion. The data is our set of 15 developed countries from January 1977 to February 2016.

Significance at the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Table 19: Additional Information of MSR to DOL-HML Two Factor Model

Factors 15 Test Assets 21 Test Assets
(IntP , MomP , V alP )

γfiMSR
33.288∗∗∗ 16.287∗∗∗

(3.119) (6.079)
γDOL 0.814 0.830

(0.578) (0.590)
γHML 5.925∗∗∗ 6.905∗∗∗

(3.719) (4.045)
R2 88.006 90.968

γfiMSR
− E[‡MSR] 23.624∗∗ 6.623∗∗

(2.214) (2.472)
γDOL − E[DOL] 0.047 0.064

(0.034) (0.045)
γHML − E[HML] 0.043 1.023

(0.027) (0.599)

Joint Test of Cross-Sectional Regression α∗j :

χ2-test (α∗j = 0, ∀j) 5.898 23.018
(p-value) (0.880) (0.149)

Joint Test of Time-Series Regression αj:

F-test (αj = 0, ∀j) 0.925 1.336
(p-value) (0.536) (0.147)

Notes: We orthogonalize MSR with respect to DOL and HML, MSR = h0 +h1DOL+

h2HML + ε. We test the importance of ‡MSR = h0 + ε as a pricing factor in addition

to DOL and HML. Two stage regression test of pricing factors: Time-Series (TS):

Rj,t = αj +
∑
i Fi,tβi,j + εj,t, Cross-Section (CS): E [Rj ] =

∑
i βi,jγi + α∗j . Test assets Rj :

Columns 2 uses 15 test assets IntPi, MomPi, V alPi ∀i ∈ {1, . . . , 5}, columns 3 use the

same 15 test assets and adds MSRV , MSRI , MSRCV , MSRI,CV , TAN and D-DOL.

Pricing Factors Fi: ‡MSR, DOL, HML. αj and α∗j are abnormal returns of test asset j

in TS and CS regressions. βi,j is the loading of asset j on factor i. γi is the market price

of risk of factor i. t-statistics are in parentheses below coefficient estimates. R2 is the

CS regression fit of the pricing model. γFi − E[Fi] for Fi ∈ {‡MSR,DOL,HML} is the

difference between the estimated market price of factor Fi and the average return of factor

Fi; t-statistic is in parenthesis below. χ2-test is the joint test statistic of α∗j = 0 ∀j in the

CS regression. F-test is the joint test statistic of αj = 0 ∀j in the TS regression. The data

is our set of 15 developed countries from January 1977 to February 2016. Significance at

the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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Table 20: Additional Information of DOL and HML to MSR Single Factor
Model

Factors 15 Test Assets 21 Test Assets
(IntP , MomP , V alP )

γMSR 35.967∗∗∗ 19.403∗∗∗

(3.370) (6.948)
γfiDOL -0.813 -0.047

(-0.551) (-0.034)
γflHML

-4.593 1.231

(-1.328) (0.736)
R2 88.006 90.968

γMSR − E[MSR] 23.646∗∗ 7.082∗∗

(2.215) (2.536)

γfiDOL − E[‡DOL] -1.022 -0.256

(-0.692) (-0.182)

γflHML
− E[·�HML] -6.872∗ -1.048

(-1.987) (-0.626)

Joint Test of Cross-Sectional Regression α∗j :

χ2-test (α∗j = 0, ∀j) 5.898 23.018
(p-value) (0.880) (0.149)

Joint Test of Time-Series Regression αj:

F-test (αj = 0, ∀j) 0.925 1.336
(p-value) (0.536) (0.147)

Notes: We orthogonalize DOL and HML with respect to MSR, Yi = hi,0+hi,1MSR+εi,

and ‹Yi = hi,0 + εi ∀Yi ∈ {DOL,HML}. We test the importance of flDOL and ‡HML as

pricing factors in addition to MSR. Two stage regression test of pricing factors: Time-

Series (TS): Rj,t = αj+
∑
i Fi,tβi,j+εj,t, Cross-Section (CS): E [Rj ] =

∑
i βi,jγi + α∗j . Test

assets Rj : Columns 2 uses 15 test assets IntPi, MomPi, V alPi ∀i ∈ {1, . . . , 5}, columns

3 use the same 15 test assets and adds MSRV , MSRI , MSRCV , MSRI,CV , TAN and

D-DOL. Pricing Factors Fi: MSR, flDOL, ‡HML. αj and α∗j are abnormal returns of test

asset j in TS and CS regressions. βi,j is the loading of asset j on factor i. γi is the market

price of risk of factor i. t-statistics are in parentheses below coefficient estimates. R2 is

the CS regression fit of the pricing model. γFi−E[Fi] for Fi ∈ {MSR, flDOL,‡HML} is the

difference between the estimated market price of factor Fi and the average return of factor

Fi; t-statistic is in parenthesis below. χ2-test is the joint test statistic of α∗j = 0 ∀j in the

CS regression. F-test is the joint test statistic of αj = 0 ∀j in the TS regression. The data

is our set of 15 developed countries from January 1977 to February 2016. Significance at

the 1%, 5% or 10% level are indicated by ∗,∗∗ or ∗∗∗.
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