BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Memento EPFL//
BEGIN:VEVENT
SUMMARY:CECAM Workshop: "Chiral Phonons in Quantum Materials"
DTSTART;VALUE=DATE-TIME:20230717T123000
DTEND;VALUE=DATE-TIME:20230719T163000
DTSTAMP;VALUE=DATE-TIME:20240804T140445Z
UID:1d5324de3a31a0a85ce7f1ba950ec67dfac43281fa2627d7bea8ab89
CATEGORIES:Conferences - Seminars
DESCRIPTION:You can apply to participate and find all the relevant informa
tion (speakers\, abstracts\, program\,...) on the event website: https://
www.cecam.org/workshop-details/1202\n\nDescription\nAngular momentum coupl
ing lies at the heart of many fundamental physical phenomena. For example\
, the spin-orbit interaction\, which couples the spin and orbital angular
momenta of electrons or nuclei\, famously leads to the fine and hyperfine
splittings of electronic energy levels in atoms. In solids\, the breaking
of time-reversal symmetry by electronic angular momentum enables complex m
agnetic and topological orders exhibiting various Hall effects\, as well a
s chiral phases ranging from chiral spin liquids to chiral superconductors
. At the same time\, the angular momentum of light is a well-established q
uantity\, which can interact with the electrons and nuclei to either disti
nguish or induce chirality in atomic\, molecular\, and solid-state systems
.\nOver the last few years\, a rapidly increasing amount of research has f
ocused on the angular momentum generated by vibrations of the crystal latt
ice (phonons) in solids. Phonon angular momentum is made up by circular or
elliptical orbital motions of the atoms around their equilibrium lattice
positions and the resulting collective vibrational pattern is called a chi
ral phonon mode [1\, 2]. The existence of chiral phonons and phonon angula
r momentum leads to a rich variety of novel collective phenomena\, where r
ecent examples from theoretical\, computational\, and experimental work in
clude the phonon Hall [3\, 4]\, phonon Einstein-de Haas [5\, 6]\, phonon F
araday [7\, 8]\, and phonon Zeeman effects [8\, 9].\nSo far\, research on
chiral phonons and phonon angular momentum has evolved in parallel within
different areas of condensed matter physics and materials science\, includ
ing\, most prominently\, the spintronics community\, the two-dimensional (
2D) optoelectronics community\, the ultrafast dynamics community\, and the
thermal transport community. Although the underlying physical mechanisms
are all associated with phonon angular momentum\, there has been surprisin
gly little cross-interaction between the different fields. The methodologi
es and materials systems have mostly been orthogonal\, and even the defini
tions of chiral phonons vary. In this workshop\, we aim to bring members f
rom these different communities together in order to discuss the phenomena
arising from chiral phonons across fields under the overarching principle
of phonon angular momentum coupling. We believe that discussing chiral ph
onon physics within a unified workshop will strengthen interdisciplinary r
esearch efforts and enable cross-investigations of fundamental questions r
elated to angular momentum in solids.\nIn particular\, we aim to bring mem
bers from the following communities and working on following specific topi
cs together:\n1) Magnetism and spintronics: Spin-phonon coupling and inter
actions of chiral phonons with magnetic fields\, phonon magnetic moments\,
Zeeman and Faraday effects of chiral phonons\, chiral phonon-mediated exc
hange\, and spin relaxation.\n2) 2D optoelectronics: Electron- and exciton
-phonon coupling of chiral phonons in layered and 2D materials\, chiral ph
onons in Moiré lattices\, and phonon angular momentum coupling to topolog
ical electronic band structures.\n3) Ultrafast dynamics: Coherent excitati
on of chiral phonons with ultrashort laser pulses\, dynamical time reversa
l symmetry breaking\, dynamical multiferroicity\, generation of effective
magnetic fields\, and ultrafast control of magnetic order.\n4) Transport a
nd Hall effects: Contributions of chiral phonons to thermal transport and
expansion\, thermal Hall effects based on phonon angular momentum\, chiral
phonons in cuprate superconductors.\n\nReference\n[1] L. Zhang\, Q. Niu\,
Phys. Rev. Lett.\, 115\, 115502 (2015)\n[2] H. Zhu\, J. Yi\, M. Li\, J.
Xiao\, L. Zhang\, C. Yang\, R. Kaindl\, L. Li\, Y. Wang\, X. Zhang\, Scien
ce\, 359\, 579-582 (2018)\n[3] G. Grissonnanche\, A. Legros\, S. Badoux\,
E. Lefrançois\, V. Zatko\, M. Lizaire\, F. Laliberté\, A. Gourgout\, J.
Zhou\, S. Pyon\, T. Takayama\, H. Takagi\, S. Ono\, N. Doiron-Leyraud\, L
. Taillefer\, Nature\, 571\, 376-380 (2019)\n[4] G. Grissonnanche\, S. Th
ériault\, A. Gourgout\, M. Boulanger\, E. Lefrançois\, A. Ataei\, F. Lal
iberté\, M. Dion\, J. Zhou\, S. Pyon\, T. Takayama\, H. Takagi\, N. Doiro
n-Leyraud\, L. Taillefer\, Nat. Phys.\, 16\, 1108-1111 (2020)\n[5] C. Dor
nes\, Y. Acremann\, M. Savoini\, M. Kubli\, M. Neugebauer\, E. Abreu\, L.
Huber\, G. Lantz\, C. Vaz\, H. Lemke\, E. Bothschafter\, M. Porer\, V. Esp
osito\, L. Rettig\, M. Buzzi\, A. Alberca\, Y. Windsor\, P. Beaud\, U. Sta
ub\, D. Zhu\, S. Song\, J. Glownia\, S. Johnson\, Nature\, 565\, 209-212
(2019)\n[6] S. Tauchert\, M. Volkov\, D. Ehberger\, D. Kazenwadel\, M. Eve
rs\, H. Lange\, A. Donges\, A. Book\, W. Kreuzpaintner\, U. Nowak\, P. Bau
m\, Nature\, 602\, 73-77 (2022)\n[7] T. Nova\, A. Cartella\, A. Cantalupp
i\, M. Först\, D. Bossini\, R. Mikhaylovskiy\, A. Kimel\, R. Merlin\, A.
Cavalleri\, Nature. Phys.\, 13\, 132-136 (2016)\n[8] D. Juraschek\, M. Fe
chner\, A. Balatsky\, N. Spaldin\, Phys. Rev. Materials\, 1\, 014401 (201
7)\n[9] A. Baydin\, F. Hernandez\, M. Rodriguez-Vega\, A. Okazaki\, F. Tay
\, G. Noe\, I. Katayama\, J. Takeda\, H. Nojiri\, P. Rappl\, E. Abramof\,
G. Fiete\, J. Kono\, Phys. Rev. Lett.\, 128\, 075901 (2022)\n
LOCATION:LUGANO\, Aula Magna\, USI Lugano
STATUS:CONFIRMED
END:VEVENT
END:VCALENDAR