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1 Introduction

In this paper we revisit the impact of emerging market currencies on the risk-return

trade-off implicit in famous trading strategies. We are motivated by the fact that

the impressive performance of G10-based strategies started to level off in the mid

2000s. At the same time, an expanded universe of currencies appears to maintain

high returns to the same style strategies.

Indeed, Figure 1 shows these effects by displaying the cumulative returns for cross-

sectional carry and momentum strategies for G10 only (labeled G) and all available

currencies (labeled GEX). We see that carry based on all currencies has completely

decoupled from the G10-based carry during the first decade of the 21st century.

The latter has flattened out during the second decade, while the former continued to

grow. Momentum is exhibiting less dramatic but similar patterns with the G10-based

momentum leveling off in the early 2000s, whereas the full-sample returns continue

to grow (though leveling off in the later part of the sample).

These observations lead us to two conjectures. The first one is that incorporat-

ing emerging markets is critical to understanding the currency market risk-return

trade-off, particularly its conditional dynamics. The second one is based on the

fact that risk premiums for certain trading strategies—despite being well-diversified

portfolios—seem to approach zero, even though the volatility of the returns from

these strategies remains consistent throughout the sample period. Thus, we surmise

that the strategies are exposed to important drivers of currency return comovements

that do not command a risk premium. Understanding this evidence is important

in light of the literature, which argues that currency risk premiums are driven by

exposures to the dollar and carry factors, which in turn are strongly related to the

1



two first principal components of currency return volatility (see, e.g., Verdelhan,

2018). We call drivers of currency comovements that do not command a risk pre-

mium for “unpriced risk” and seek to conditionally disentangle priced from unpriced

risk throughout the sample. Another important dimension of this evidence is that

it appears especially relevant when considering G10 currencies versus emerging mar-

kets.1

Our first contribution is to show that the emerging market outperformance arises

from the subset of emerging market economies that are under a floating exchange

rate regime, or, put differently, the least pegged currencies. That is, we show that

strategies formed using the full set of currencies do not have significant alpha relative

to strategies formed on G10 and emerging floating-regime currencies. We label this

set GE (versus G for only G10 and GEX for G10 plus the EXtended set of all

emerging-market currencies).

Our second contribution is to construct real-time measures of the conditional ex-

pected excess returns to G10 and emerging market currencies, as well as their con-

ditional covariance matrix. Using these measures we build on Chernov, Dahlquist,

and Lochstoer (2023) and construct an estimate of the unconditional mean-variance

efficient (UMVE) portfolio (Hansen and Richard, 1987).2 Excess returns on this

portfolio represent a real-time, tradeable, single factor. We show empirically that

1We refer to non-G10 countries as emerging, although that is not correct, strictly speaking – some
of the non-G10 countries with floating exchange rate would be classified as developed. Likewise, we
refer to the remaining currencies as extended emerging-market ones, while some of the countries
corresponding to these currencies would be labeled as frontier. The developed-emerging-frontier
classification leans heavily on the properties of the stock markets, which we do not consider at all.
Therefore, we do not adhere to these labels strictly.

2The UMVE portfolio prices all dynamic admissible trading strategies. As a result, it correctly
prices the full cross-section of currencies and trading strategies associated with them conditionally
as well.
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the estimated UMVE factor prices all currency strategies conditionally and uncondi-

tionally, in sample and out of sample (OOS). This approach allows us to characterize

the risk that drives currency risk premiums at each date throughout the sample, as

well as the (conditional) factors that are important for return variance but not risk

premiums. That is, this framework allows us the address the two conjectures set out

above.

We find that the risk-return trade-off indeed is substantially affected by the floating-

regime emerging market currencies. The conditional maximal Sharpe ratio (MSR)

when using only G currencies trends down over the sample, flattening out at a

low level during the last 20 years. In contrast, the GE set delivers continued high

conditional MSR the during the last 20 years, about twice as high as those for the G

set over this period. The annualized sample UMVE Sharpe ratio (SR) for the G set

is 1.02 versus 1.34 for the GE set. We emphasize that these UMVE portfolios are

constructed in a pure out-of-sample fashion. The incremental SR, captured by the

information ratio, for the GE set over the G set is 0.86. The UMVE based on the

GE set prices trading strategies constructed using the broader GEX set, as well as

trading strategies formed on the GE and G sets. Thus, we focus on the UMVE from

the GE set as the single factor that captures priced risk in the currency market.

We implement standard “alpha” regressions of popular trading strategies on the

UMVE portfolio. Strikingly, the R2s in these regressions are low, with the highest

being around 30% for the cross-sectional carry strategy. That is, more than two

thirds of the return variation in the carry portfolio is due to unpriced risk. For other

strategies this fraction is larger. Given our estimates of the conditional covariance

matrix of returns, the conditional portfolio weights of each strategy and the UMVE

portfolio, we can hedge out this unpriced risk in real time. This leads to strong
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increases in the strategy SR as the average return is left approximately unaltered

but the return variance is substantially reduced. For example, the cross-sectional

carry strategy goes from a SR of 0.71 to 1.29 when unpriced risks are hedged out, the

dollar factor goes from about 0.33 to 0.91, the 12-month cross-sectional momentum

strategy from about 0.24 to 0.99, and the cross-sectional value goes from about 0.65

to 1.29. These are large increases, which strongly suggest that the standard trading

strategies used in the literature are not suitable to use as factors for risk pricing due

to their contamination from these unpriced risks.

We also show that the classic dollar-carry model, both unconditional and conditional,

cannot explain the cross-section of currency returns. The tricky part about testing

this model is that many strategies are spanned by the factors, especially in the

conditional setting. Thus, the model mechanically prices prominent strategies with

high SR diminishing the power of tests. Although the model is rejected despite these

concerns, we exploit the importance of unpriced risks and implement additional tests

of the model on the basis of returns on new strategies. The new strategies are simply

the traditional strategies with unpriced risks hedged out using the estimated UMVE.

There is no longer a mechanical connection between such returns and candidate

factors. Both unconditional and conditional models are rejected. Because dollar

and carry are close to the first two principal components of the variation in currency

returns, these results indicate that risk-based explanations of currency risk premiums

cannot be successful.

Overall, our results lead to the natural question of what these unpriced risks are

economically. We relate the unpriced risks to geographical factors driving currency

comovement. In particular, we show that hedging using a Europe factor and a Rest of

the World factor, where the returns are the equal-weighted returns of the currencies
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in that region, goes a long way to explain the unpriced risks. Such comovements can

be driven by common shocks to the economies of close countries (see, e.g., Lustig and

Richmond, 2020). We further verify that a factor model with the dollar and the carry

factors cannot explain the average return to the carry strategy after unpriced risks are

hedged out using the geographical factors (as opposed to the optimal UMVE-based

hedges).

Finally, it is natural to worry about the impact of trading costs when considering

less liquid currencies in the analysis. In some cases the potential costs are so large as

measured by bid-offer spreads that one may be concerned that some trading strategies

are hindered. There is a large literature on currency transaction costs, which is

primarily motivated by the concern that bid-offer spreads based on indicative quotes

in standard databases could be too conservative. As a result, many papers, which

we review later, consider various estimates of effective proportional trading costs and

price impact.

Given that each individual study considers, due to relevant data availability, a limited

time-frame, or limited set of strategies, or limited set of currencies, we consider a

range of possible transaction costs as a fraction of indicative bid-offer spreads (0%,

25%, 50%, and 100%). While we do not consider price impact, we think that one of

the points in this range should be sufficiently close to the combination of effective

proportional costs and price impact. We find that transaction costs indeed can be

important for our analysis, but that our main conclusions are robust to such frictions.

In particular, we also undertake the UMVE analysis accounting for transaction costs.

When there are no transaction costs, the UMVE returns and the Gibbons, Ross, and

Shanken (1989) (GRS) test statistic can be constructed analytically. In the presence
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of transaction costs the UMVE portfolio has to be constructed numerically, and we

adopt the approach of Detzel, Novy-Marx, and Velikov (2023), which was developed

for equities. Because currencies from the GE set are capable of spanning GEX-based

strategies when transaction costs are ignored, the costs-based analysis is a robustness

check. The main concern is that the UMVE is impacted by transaction costs more

than the strategies themselves. We find that it is progressively easier to explain

strategies based on the currencies from the largest set as transaction costs increase

from 0% to 100% of the quoted bid-offer spread.

Literature. Bansal and Dahlquist (2000) is an early paper that considers cross-

sectional currency pricing with factor models using both developed and emerging

currencies. The subsequent literature considers both emerging currencies and trans-

action costs, but more in the spirit of robustness checks relative to the main G10

data (e.g., Lustig, Roussanov, and Verdelhan, 2011, Menkhoff, Sarno, Schmeling,

and Schrimpf, 2012a). These studies document that the SRs of their carry strategies

are higher when both developed and emerging currencies are included (rather than

just developed currencies) in high-minus-low portfolios. The differences are smaller

when adjusting for transaction costs. The literature has developed both in the di-

rection of more explicit consideration of the role of emerging markets in the curency

strategy returns, and the level and impact of transaction costs.

Andrews, Colacito, Croce, and Gavazzoni (2023) observe a decline in carry returns

for G10 currencies during the post-2008 period. Nucera, Sarno, and Zinna (2024)

demonstrate that adding emerging currencies significantly improves the performance

of trading strategies. They consider a comprehensive dataset of currencies. How-

ever, they do not consider transaction costs, do not distinguish between different

types of emerging currencies, and do not consider conditional pricing. Menkhoff,
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Sarno, Schmeling, and Schrimpf (2012b) reach similar conclusions for momentum

when accounting for transaction costs. Török (2023) considers a broad selection of

currencies and the impact of transaction costs, although using an approach differ-

ent from ours. His main conclusion is that frontier currencies (similar to our GEX

minus GE) are instrumental for the impressive performance of carry. We reach the

opposite conclusion by showing that GE currencies span GEX strategies, in general,

and carry, in particular.

Lyons (2001) raises the concern that bid-offer spreads based on indicative quotes

may be overstating the impact of transaction costs. Cespa, Gargano, Riddiough,

and Sarno (2022) and Gilmore and Hayashi (2011) estimate effective trading costs.

The former paper concludes that these costs are closer to 25% of the indicative

bid-offer rates. The literature considers various fractions of the spreads when com-

puting strategy returns net of transaction costs (see, e.g., Kroencke, Schindler, and

Schrimpf, 2014, Menkhoff, Sarno, Schmeling, and Schrimpf, 2012b, Menkhoff, Sarno,

Schmeling, and Schrimpf, 2017).

Subsequent studies propose to optimize currency trading strategies with respect to

transaction costs. Korsaye, Trojani, and Vedolin (2023) solve explicit entropy min-

imization problem in the presence of general frictions. Their empirical work con-

siders proportional transaction costs such as the ones that we consider. Because of

the entropy-based SDF, the pricing cannot be tested conditionally. In their empiri-

cal work, they consider subsets of G10 and floating emerging currencies. Orlowski,

Sokolovski, and Sverdrup (2021) pursue a similar goal although the considered con-

straints are not as general. They address the difficulty of conditional testing of

entropy-based SDFs by rolling estimates every 15 years. They use returns on cur-

rencies similar to GE net of transaction costs.
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Filippou, Maurer, Pezzo, and Taylor (2024) analyze transaction costs to investor

in the foreign exchange markets. They consider a subset of our strategies net of

transaction costs using data similar to our GE set, and compare to a cost-optimized

strategies with an emphasis on price impact. These authors argue that the con-

structed cost-optimized conditional mean-variance efficient (CMVE) portfolio expe-

riences a small impact of large quoted costs. The authors do not consider testing

cross-sectional pricing. Absent price impact and incorporating full transaction costs

because of monthly portfolio turnover, their optimization problem coincides with

our SR maximization with returns net of transaction costs. Our finding is that both

versions of the UMVE portfolio, cost-optimized and not, constructed from a smaller

set of countries can explain dynamic trading strategies from a much larger set of

currencies.

2 Data

Our objective is to construct the most comprehensive dataset of exchange rates that

are traded in both spot and forward markets. The world today has around 160 cur-

rencies.We consider the WMR FX benchmarks retrieved from Refinitiv Datastream.

These spot and forward exchange rates are consistently calculated and used by equity

and bond index compilers. The requirement of traded forward prices narrows down

the list to 75 currencies in the WMR database for the period December 31, 1996

to June 30, 2023. Appendix A.1 provides more details about the database and lists

the selected currencies with their currency codes. We complement these exchange

rates versus the USD with spot exchange rates versus the GBP that go back to Jan-

uary 31, 1990 (to have a longer sample of spot exchange rates for the forecasting of
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depreciation rates). They are also from the WMR database.

We drop the currencies that were members of the EUR at the launch on January 1,

1999 (ATS, BEF, FIM, FRF, IEP, ITL, NLG, PTE, and ESP). We use the DEM

before 1999 and the EUR from 1999 and onwards. We include currencies that joined

the EUR after its launch (HRK, CYP, EEK, GRD, LVL, LTL, MTL, SKK, and SIT)

up to the date they are fixed. We drop six currencies entirely due to extreme inflation

and financial data issues (ARS, EGP, JOD, RUB, TRY, and UAH). We begin with

forward exchange rates for IDR, KES, MYR, and PEN in June 2007, January 2012,

July 2005, and April 2004, respectively, as they have had capital controls and/or

questionable data quality before. In total we have 59 spot and forward exchange

rates versus the USD.

In practice, many currencies are tightly managed by their respective governments.

Ilzetzki, Reinhart, and Rogoff (2019) (IRR) introduce currency classification to reflect

this. We use their work to separate out a smaller set of currencies, which are loosely

classified as free floating, to which we refer as floating emerging currencies. These

are currencies with typical IRR scores of 11, 12, or 13, indicating that they have had

moving bands (allowing for both appreciation and depreciation over time), managed

floats, or free floats. Typically, currencies with these scores remain above 10. Thus,

we do not change our classification throughout the sample.

The remaining set of currencies is referred to extended emerging currencies. These

are currencies with typical IRR scores 2–8, indicating that they have had currency

board arrangements, pegs, crawling pegs, bands, and crawling bands. This set also

includes TWD, which does not have an IRR score.

In the course of analysis we consider three currency datasets:
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1. G10 (AUD, CAD, EUR spliced with DEM, JPY, NZD, NOK, SEK, CHF,

GBP). We backfill this dataset to 1985 using the data considered in Chernov,

Dahlquist, and Lochstoer (2023). We refer to this dataset as G.

2. G10 combined with 12 floating energing currencies (BRL, CLP, COP, ISK,

INR, ILS, MXN, PLN, SGD, ZAR, KRW, and THB). We refer to this dataset

as GE.

3. G10 combined with 12 floating emerging currencies and 38 extended emerging

currencies. We refer to this dataset as GEX.

We complement the currency data with data on CPI, which are downloaded from

the statistical databases of OECD and IMF. We use monthly data over the period

January 1976 to June 2023, but for Australia and New Zealand we use quarterly

data (with repeated monthly values) as monthly data are not available. In the case

of quarterly data, the value observed at the end of a quarter is repeated monthly in

the next quarter to avoid a look-ahead bias. Taiwan data are from their National

Statistics.

Let the USD be the measurement (numeraire) currency, that is, all exchange rates

are expressed in USD per unit of foreign currency. Let Si
t and F i

t denote the spot

exchange rate and the one-month forward exchange rate of country i, respectively.

The payoff of a forward contract (when buying one unit of the foreign currency) is

Si
t+1 − F i

t . One common way to scale this payoff to define excess return is to divide

by F i
t :

Rei
t+1 = (Si

t+1 − F i
t )/F

i
t . (1)
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This definition implies that the amount of foreign currency bought is one “forward”

USD. Thus, this is an excess return to a trading strategy regardless of whether CIP

holds or not. Appendix A.2 describes the trading strategies constructed from these

returns. The trading strategies are taken from earlier research and, in short, they

include the currency “market” (dollar) factor, as well as various carry and momentum

factors, and a value factor.

We also consider excess returns based on quoted bid and offer exchange rates. The

excess return on the long position, net of transaction costs, is

Rei
ℓ,t+1 = (Si

b,t+1 − F i
o,t)/F

i
m,t,

where b denotes bid, o denotes offer, and m denotes the mid price. Scaling of the

position is arbitrary, so we select to keep it the same as in the no-transaction-cost

case, F i
m,t = F i

t . The excess return on the short position, net of transaction costs, is

Rei
s,t+1 = −(Si

o,t+1 − F i
b,t)/F

i
m,t.

We compute strategy excess returns, net of transaction costs, using these expressions

for individual returns but evaluate the impact of transaction costs for 25%, 50%, and

100% of the quoted bid-offer spreads.

3 Results

We start by providing the motivating evidence. Then we describe how the UMVE

portfolio is estimated both with and without accounting for transaction costs. In the
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rest of the section, we use the estimated UMVE to characterize risk-return trade-off

in the currency markets including conditional and unconditional analysis, different

groups of currencies, and different levels of transaction costs. We conclude by ex-

ploring the role of unpriced risks in the risk-return trade-off and their origins.

3.1 Preliminary evidence

We first plot the cumulative returns of four prominent strategies across our three

sets of currencies – dollar, carry, momentum, and value for the G, GE, and GEX

currency sets. Following Daniel and Moskowitz (2016), we let investors start with $1

at the beginning of the sample, December 1984. They then each month invest their

wealth in the risk-free asset and take positions in currency forwards as dictated by

the trading strategy at hand. Figure 2 shows that there is substantial heterogeneity

in the performance of the trading strategies across time and currency sets. For

instance, the dollar strategy appears to have near zero return from the financial

crisis and on for all currency sets. The cross-sectional carry strategy based on the

GEX set appears to continue to do very well in the latter half, while the carry based

on the GE set still experiences decent growth, and the carry based on the G set have

little growth in the second half of the sample. Similarly, cross-sectional one-month

momentum appears to flatten out much earlier for the G set (around 2000) than

for the GE and GEX sets (around 2010). Value has a relatively steady high return,

especially for the GE set.

A natural concern is that some of the outperformance of the GE and GEX sets are

a mirage and would disappear when accounting for transaction costs. We start by

evaluating the impact of various fractions of the reported bid-offer spreads on the
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forwards and the spot exchange rates involved in the strategy trades.

Figure 3 displays average bid-offer spreads for spot and forward exchange rates. The

reported spreads are computed as follows (and expressed in basis points, bps):

BOSi
t = (Si

b,t − Si
o,t)/S

i
m,t,

BOF i
t = (F i

b,t − F i
o,t)/F

i
m,t.

We see that early in the sample the spreads were elevated for G currencies, starting at

50 bps on average, and converging to around 5 bps by 2002 (Panel A). This pattern

is primarily driven by NZD (Panel B). The spot and forward bid-offer spreads are

similar in magnitude. To put these numbers into perspective, we consider strategies

that experience full turnover every month, thus 5 bps translate into 0.6% lower

strategy return per year. This is a substantive negative impact on returns of many

strategies.

The trading costs of emerging market currencies with floating exchange rates have

come down over time as well albeit later than the G10 currencies (Panel A). The

bid-offer spread for forwards is roughly double that for spots. The emerging market

currencies from the extended set have experienced increase in trading costs over time.

Starting with the average cost in the range of 10–20 bps, these currencies end the

sample at a much higher level of about 40 bps. This translates into a 4.8% annual

negative impact on strategy excess returns.

The increase in the average GEX bid-offer spread is partly due to the introduction

of currencies with higher bid-offer spreads later in the sample. Figure 4 shows the

number of currencies in the three sets (G, GE, and GEX) over time.
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Using quoted bid-offer prices might not be a realistic representation of costs that

a currency market participants could be facing. They could be lower because of

trading efficiencies and special banking relationships. They could be higher because

proportional costs that we consider here do not account for the price impact of

trading. Rather than getting into the details of these possible effects, for which we

have partial data at best, we simply consider different fractions of the quoted bid-

offer spreads as a true cost of transacting in these markets. We evaluate scenarios

with 25%, 50%, and 100% of the reported spreads.

Table 1 reports mean, volatility, SR, and skewness of the strategy returns across

different transaction cost scenarios and across different sets of currencies included

in the strategy (G, GE, or GEX). Volatility and skewness are stable across different

levels of transactions costs, so changes in SRs are directly linked to changes in average

returns. The two quantities are also linked via the t–statistic for significance of

average excess returns, which is equal to SR×
√
T , where T = 462/12 years. Thus,

SRs with values 0.32 and below imply insignificant average returns.

We display the SRs from Table 1 in Figure 5 to visualize their differences. Focusing

on SRs greater than 0.32 and starting with zero transaction costs, we observe a clear

pattern of SR increase as we expand the currencies from G to GEX (CS-Mom 12 is

the only exception as, despite the improvement, the largest SR is still less than 0.32).

Considering the other extreme of 100% transaction costs, most all SR drop below

0.32 and, thus, average returns associated with these strategies are insignificantly

different from zero. CS-carry and TS-carry are the two strategies whose returns

endure through these very high costs. But the benefits of the GEX set disappear as

the SRs are similar to the ones from the GE set.
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At the intermediate costs (25% and 50%), there is no general discernible advantage

to the GEX set over the GE set. A stark exception is CS-carry, where the SR is

much higher in the case of GEX. TS-Mom 1 is another strategy where considering

the GEX set seems to be advantageous.

The observations on transaction costs and their impact on strategy returns pose an

important challenge to researchers attempting to understand the risk-return trade-off

in currency markets. Ignoring transaction costs might impose unrealistic burden for

candidate models to explain the cross-section of strategy returns. Yet, incorporating

costs that are too high leaves nothing to be explained and, thus, lowers the burden on

models substantially. Keeping this in mind, we continue using different fractions of

reported bid-offer spreads as we proceed with evaluation of the risk-return trade-off

in these markets.

We note that the return volatility is stable across different assumptions for trans-

action costs. This suggests that the modeling of the impact of transaction costs on

the currency return covariance matrix is not material, and, therefore, we will simply

use midpoint prices for estimation of variances and correlations in the subsequent

analysis.

While the GEX set appears to be offering superior strategy performance in certain

scenarios, ultimately the question is whether the efficient frontier associated with

these currencies improves upon the frontier associated with the smaller sets of G or

GE. We proceed with this analysis in the next section.
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3.2 Estimating the mean-variance efficient portfolio

This section covers our methodology. First, we explain how we estimate the UMVE

returns. Second, we describe how we use the UMVE to test pricing of various cur-

rency strategies. The methodology is different depending on whether we ignore

transaction costs or account for them.

Without transaction costs

We refer the reader to Chernov, Dahlquist, and Lochstoer (2023) for details, mo-

tivation, and additional citations. We seek to correctly price currency risks both

conditionally and unconditionally. As pointed out by Hansen and Richard (1987)

and Jagannathan (1996) one can achieve this by constructing the UMVE portfolio.

Specifically, suppose we have N basis assets with an N × 1 vector of excess returns

Re
t+1. The conditional mean of this vector is µt = Et

(
Re

t+1

)
and its conditional

covariance matrix is Σt = Vt

(
Re

t+1

)
. An admissible trading strategy p in the ba-

sis assets has an N × 1 vector of weights wpt that are determined based only on

information available up until time t. The resulting excess portfolio return is then

Rp,t+1 = w⊤
ptR

e
t+1.

The UMVE portfolio is a dynamic trading strategy in these assets that obtains

the MSR, both conditionally and unconditionally. Ferson and Siegel (2001) and

Jagannathan (1996) show that the UMVE portfolio weights are:

w∗
t =

1

1 + µ⊤
t Σ

−1
t µt

Σ−1
t µt. (2)
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We largely follow Chernov, Dahlquist, and Lochstoer (2023) to estimate µt and Σt.

We modify the procedure for the covariance matrix to ensure that it applies to a

larger and unbalanced panel of currencies. See Appendix A.3 for further details.

Denote the excess return on this portfolio R∗
t+1 = w∗⊤

t Re
t+1.

The UMVE portfolio accounts for all risks conditionally in the sense that the fol-

lowing conditional linear beta pricing relationship holds for any admissible strategy

p:

Et(Rp,t+1) = βptEt(R
∗
t+1), (3)

where βpt = Covt(Rp,t+1, R
∗
t+1)/Vt(R

∗
t+1). The UMVE portfolio also implies the un-

conditional linear beta pricing relationship:

E(Rp,t+1) = βpE(R∗
t+1), (4)

where βp = Cov(Rp,t+1, R
∗
t+1)/V (R∗

t+1), for any p.

A CMVE portfolio is a dynamic trading strategy that obtains conditional MSR.

Because leverage does not affect the conditional SR, any portfolio with weights pro-

portional to Σ−1
t µt would be CMVE. All such portfolios would satisfy the conditional

linear pricing relation (3). The UMVE portfolio is the only CMVE portfolio that

maximizes the unconditional SR and satisfies the unconditional linear pricing rela-

tionship in Equation (4).

Hansen and Richard (1987) show that one can evaluate all the conditional implica-

tions of Equation (3) by testing Equation (4) using all admissible trading strategies

as test assets. Because our model’s factor represents a return on a traded asset (the
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UMVE), the model implies that αp = 0 in the time-series regression

Rp,t+1 = αp + βpR
∗
t+1 + εp,t+1 (5)

for each test asset p (e.g., Cochrane, 2005, Section 12.1). From an economic perspec-

tive, this test evaluates whether the unconditional MSR of the UMVE constructed

from the base assets and test assets is not significantly different from that constructed

from base assets alone:

MSR2(R∗, Rp)−MSR2(R∗) = α⊤
p Σεαp, (6)

where Σε is the covariance matrix of the regression residuals.

It is not clear a-priori that our estimates of µt and Σt, which are constructed OOS

are correct. That is, there is no guarantee that the resulting UMVE portfolio would

have the ex ante MSR. That is a source of non-zero αp. Therefore, we validate

our estimates of µt, Σt, and the resulting UMVE weights by performing standard

GRS joint tests of αp = 0 across a large set of trading strategies p proposed in the

literature.

Affleck-Graves and McDonald (1989) and Zhou (1993) point out that the GRS test

tends to over reject the null hypothesis when excess returns are not normally dis-

tributed. Currency returns are definitely non-normally distributed, as documented

in Table 1 and elsewhere in the literature (see, e.g., Chernov, Graveline, and Zvi-

adadze, 2018, Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan, 2009). Thus we

report bootstrapped p–values along with the traditional, more conservative, asymp-

totic ones. Our bootstrap procedure is nested within the one developed for non-zero
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transaction costs, so we postpone its description until the next section.

With transaction costs

The closed-form expression for the UMVE portfolio weights in Equation (2) no longer

applies if there are transaction costs. The reason is that absolute values of returns

on the long and short positions in the same asset are no longer identical. Thus, the

UMVE portfolio has to be constructed numerically, and we have to use bootstrap to

test whether it prices various trading strategies correctly. We apply the approach of

Detzel, Novy-Marx, and Velikov (2023) to the former problem, and develop our own

test for the latter problem.

Because long and short positions no longer produce the same returns, up to the

sign, we consider a 2N -dimensional vector of excess returns, R̃e
t+1. It contains excess

returns corresponding to long positions in individual currencies, net of transaction

costs, Re
ℓ,t+1 and excess returns corresponding to short positions, net of transaction

costs, Re
s,t+1. We denote the corresponding 2N × 1 vector of expected excess returns

by µ̃t and the 2N×2N covariance matrix of excess returns by Σ̃t. The 2N×1 vector of

portfolio weights w̃∗
t that maximizes the conditional SR, solves the following problem:

MSR(R̃∗
t+1) = max

w̃∗
t

w̃∗⊤
t µ̃t(

w̃∗⊤
t Σ̃tw̃∗

t

)1/2 ,
which we solve numerically at each time t.

Generically, a solution to this problem would yield CMVE portfolio weights. As is

the case with the no-transaction-costs case, we are interested in testing the portfolio
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using unconditional moments and, thus, require the UMVE portfolio. To ensure

that we obtain the UMVE weights, we scale the candidate w̃∗
t by

(
1 + µ̃⊤

t Σ̃
−1
t µ̃t

)−1

following Equation (2).

In the case with transaction costs, one cannot implement and reasonably interpret a

regression along the lines of Equation (5). For example, if a test asset p happens to

have a negative beta with respect to the UMVE, one has to construct a short version

of the UMVE, net of trading costs, but this is impossible to determine before running

the regression. Thus, we implement a different test that captures the economic

interpretation of GRS in Equation (6). Thus, we test whether

MSR2(R̃∗, Rp)−MSR2(R̃∗)

is significantly different from zero. Here, the SRs are constructed as the ex post MSR

combination of the assets taking into account the transaction costs. Economically,

this is the same test as the GRS test, which also tests whether the ex post MSR

combination of the test assets and the factor(s) is greater than that of the factor(s).

In particular, we impose the null hypothesis by subtracting from each strategy the

alpha in a regression of the net of transaction costs return on the strategy on the

net of transaction costs UMVE return. This ensures that all assets other than the

UMVE will have a zero weight in the MSR computation also in the transaction cost

case. We then draw from these net-of-alpha returns to get the distribution of our

test statistic under the null hypothesis that the test assets cannot increase the SR

relative to the UMVE factor.3

3There is a number of differences in our implementation as compared to that of Detzel, Novy-
Marx, and Velikov (2023) besides different asset classes. Detzel, Novy-Marx, and Velikov (2023)
maximize unconditional (in-sample) SR only. Further, because they are comparing different factor
models asset returns, their bootstrap tests are designed to select the best factor models, and thus
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The benefits of the UMVE-based approach

A typical approach in the currency literature is similar to that of Fama and French

(1993), which was developed for equities. That is, researchers select characteristics

thought to be related to expected return – interest rate differential (carry), prior

recent returns (momentum), or the real exchange rate (value). Then they form

factors based on these characteristics by going long currencies with a high value

of the characteristic and short currencies with a low value of the characteristic.

As forcefully argued by Daniel, Mota, Rottke, and Santos (2020) in the context of

equities, such construction may contaminate factors with “unpriced risks.”

Consider a simple example to appreciate the importance of this issue and how it

can be rectified via the UMVE-based analysis. Assume two currencies i and j with

excess returns:

Ri
t =

1

2
F1t + βiF2t, Rj

t = −1

2
F1t + βjF2t,

where F1t and F2t are iid true factors with unit variance. Further, assume that F1t

is “priced” with Et (F1,t+1) = 1, and F2t is “unpriced” Et (F2,t+1) = 0.

Suppose a researcher picks a characteristic with values equal to the loading of a

return on F1t. Thus, the characteristic-based factor equals

Ri
t −Rj

t = F1t + (βi − βj)F2t.

The long-short combination of returns is exposed to the unpriced risk if βi ̸= βj. The

variance of the unpriced factor will then contribute to the variance of the long-short

have a different design. Resampling is a correct procedure if the excess returns are i.i.d. If they are
not, our procedure biases towards overrejection.
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combination without increasing the expected return of the long-short combination.

The SR of the long-short combination will then be lower than for a portfolio with no

exposure to the unpriced risk.

Now, choose MVE portfolio weights instead. The mean and covariance are:

µt =

 1
2

−1
2

 , Σt =

 1
4
+ β2

i

−1
4
+ βiβj

−1
4
+ βiβj

1
4
+ β2

j

 .

Then,

Σ−1
t µt =

 2
βj

βi+βj

−2 βi

βi+βj

 .

Using these optimal weights with currency excess returns, we have:

2
βj

βi + βj

Ri
t − 2

βi

βi + βj

Rj
t = F1t.

That is, the unpriced risk is hedged out by judicious weighting of the assets. Hence,

the MVE portfolio has only priced risk, and therefore the highest SR.

Any candidate explanation of a strategy performance must be related to the priced,

rather than unpriced, component of that strategy returns. Therefore, UMVE-based

analysis delivers the relevant reference measurements directly.

3.3 Pricing performance

In this section we describe asset pricing tests of the estimated UMVE. We vary the

considered set of currencies, level of transaction costs, and whether we are testing
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unconditional or conditional model implications. We also consider a standard factor

model used in the literature as an alternative to the UMVE as the model for cross-

sectional currency pricing.

Unconditional model implications

As a starting point, we consider the UMVE portfolio constructed from G currencies

alone (in the absence of transaction costs). First we check if such UMVE can price

strategies constructed from G currencies only. This is the asset pricing exercise

performed by Chernov, Dahlquist, and Lochstoer (2023), so our main purpose here

is to confirm that the conclusions of that study still hold in an updated sample

and with slightly different estimate of the conditional covariance matrix. Appendix

A.4 demonstrates that this is indeed the case. Second, we demonstrate in the same

Appendix that this UMVE cannot price strategies constructed from GE currencies.

Thus, we no longer consider this UMVE in the sequel.

Moving on to the UMVE portfolio constructed from GE currencies, we evaluate if it

can price strategies constructed from GE currencies (in the absence of transaction

costs). Panel A of Table 2 displays test results for individual strategies. None of the

alphas are significant, and adjusted R2 are quite low indicating that the strategies

are exposed to substantial unpriced risks. The presence of the unpriced risk does not

indicate that the UMVE is misspecified. Indeed, because all alphas are insignificant,

the model does price the cross-section of test assets correctly. These conclusions echo

those of Chernov, Dahlquist, and Lochstoer (2023) for G currencies. The leftmost

column of Table 3 shows that the bootstrap p–value in this case is 0.653 (0.514 for

GRS), indicating that the model prices the strategies at a comfortable level. The SR
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of the UMVE portfolio is 1.341, much higher than those of the individual strategies,

and the maximal ex post SR from combining the test assets with the UMVE portfolio

is 1.431. Thus, there is a relatively small increase, consistent with the high p–value.

Next, we check if the same UMVE portfolio can price the more challenging set

of strategies constructed from GEX currencies. Panel B of Table 2 displays test

results for individual strategies. With the exception of TS-Mom 1, all alphas are

insignificant, suggesting that the portfolio can handle a much larger set of currencies.

The bottom part of the leftmost column of Table 3 shows that the model is not

rejected on the basis of the bootstrap p–value of 0.118 in the joint test that all

alphas are zero. The GRS p–value of 0.05 indicates a marginal rejection. As we have

observed earlier, transaction costs are much larger for the ‘X’ currencies in the GEX

set. Thus, one might anticipate that test results could be stronger at realistic levels

of bid-offer spreads.

As a warm-up, we test whether the GE-based UMVE can price the GE-based port-

folios accounting for transactions costs. Because transaction costs make returns less

challenging to explain, one would expect success given that the model could do it

without costs with a comfortable p–value above 0.5. However, this is not a priori ob-

vious as the UMVE portfolio also suffers from transaction costs. The three rightmost

columns of Table 3 display test results for fractions of bid-offer spread at 25%, 50%,

and 100%, respectively. We see that as trading costs increase, the UMVE SR drops

to 1.203, 1.157, and 0.974 respectively. However, if anything, it becomes easier and

easier to explain strategy returns with bootstrapped p–values ranging from 0.573 for

25% to 0.927 for 100%.

Testing whether the GE-based UMVE can price GEX-based portfolios is more inter-
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esting because the zero-cost p–values are lower. The last rows of the rightmost three

columns of Table 3 report the results. Here we fail to reject the model even when

costs are at 25% of bid-offer spreads (the bootstrapped p–value is 0.200). Recalling

the evidence in Table 1, the strategy performance in GEX sample is still formidable

at 25% costs. The SR are often the largest for carry and one-month momentum

strategies. Thus, the failure to reject the UMVE constructed from a much smaller

sample of GE currencies is economically significant. This result implies that there

little benefit to trading currencies from the extended emerging set.

Conditional model implications

Since the UMVE factor should price assets both conditionally and unconditionally, we

can easily implement an unconditional test of the model’s conditional implications.

This test has the additional advantage of testing the model entirely OOS. We consider

only the zero transaction cost case for these tests.

In particular, to implement the out-of-sample test of the UMVE portfolio, we follow

Chernov, Dahlquist, and Lochstoer (2023) and exploit the fact that conditional linear

beta pricing model (3) holds. Therefore, if we remove the priced component of a

portfolio return, the residual,

Rh,t+1 = Rp,t+1 − βptR
∗
t+1, (7)

referred to as hedging portfolio should have zero alpha. The conditional beta is equal

to

βpt =
w⊤

ptΣtw
∗
t

w∗⊤
t Σtw∗

t

. (8)
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Because of all its ingredients are known in real time, the beta and hedging portfolio

can be computed in real time as well. Thus, testing if E(Rh,t+1) = 0 (zero alpha)

is an unconditional test of the model’s conditional implications and also amounts to

an out-of-sample test of the model.

Table 4 reports the test results applied to Rh,t+1 when test portfolios are constructed

from GE currencies. None of the alphas are significant at the 5% level. That is,

the returns that obtain from hedging out the priced component, βptR
∗
t+1, indeed

have statistically zero average return (alpha) and SRs (SR-hedged reported in the

rightmost column). The p–value for the test that alphas are jointly zero is 0.379 thus

failing to reject the model.

The hedging return Rh,t+1 represents unpriced risks in each strategy’s return. Figure

6 shows the SR of each strategy, as well as the corresponding SRs of the strategy’s

hedging portfolio and the portfolio where unpriced risks are hedged out. The lat-

ter simply has returns Rp,t+1 − Rh,t+1. Note that the construction of the hedging

portfolios is done in real time and thus the hedged returns are indeed tradeable.

The hedging portfolios all have SRs close to zero, while the portfolios with unpriced

risks hedged out generally have much higher SRs than their original counterparts.

For instance, the cross-sectional carry strategy goes from a SR of 0.71 to 1.29 when

unpriced risks are hedged out, the dollar factor goes from about 0.33 to 0.91, the

12-month cross-sectional momentum strategy from about 0.24 to 0.99, and the cross-

sectional value goes from about 0.65 to 1.29. These large differences suggest that the

the standard strategies employed in the literature are not suitable to use as factors

for risk-pricing due to their contamination from these substantial unpriced risks.

As an additional illustration of the model’s conditional pricing implications, Figure
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7 displays the average return and average predicted return, βptEt(R
∗
t+1), for four

popular trading strategies. The top panel gives the results from the first half of the

sample, while the bottom panel gives the results for the second half of the sample.

The average realized and predicted returns are much higher in the first half of the

sample than the last half, with the exception of the cross-sectional carry strategy.

Thus, the model can account for the trends in the risk premiums over the sample,

as also seen in Figure 2.

In terms of the conditional risk-return trade-off, Figure 8 shows the conditional MSR

for the UMVE based on G currencies versus that based on GE currencies. The former

has a strong downward trend over the sample, while the latter does not to the same

extent. Thus, the floating-regime emerging markets currencies indeed materially

affect the conditional risk-return trade-off over the sample.

Testing the dollar-carry model

The seminal dollar-carry model of Lustig, Roussanov, and Verdelhan (2011) may

serve as a natural alternative to the analysis considered here. However, this model

is typically rejected using test assets beyond the various flavors of carry. Liu, Mau-

rer, Vedolin, and Zhang (2023) hypothesize that the documented rejections could be

due to the unconditional nature of the model (constant betas). Thus, they advo-

cate a conditional version (time-varying betas). Here we test the unconditional and

conditional implications of this model on the basis of the GE-based portfolios.

The test of the unconditional model is implemented via “alpha” regressions leading

to the GRS and bootstrap tests just like everywhere else in the paper. Table 5 reports

both individual alphas and the p–values for the joint test. The model matches the
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returns to dollar and cross-sectional carry perfectly. This is mechanical given that

the dollar and carry are both on the left- and right–hand sides of the regression.

The model is struggling with dollar carry, both types of time-series momentum, and

value. The p–value for the joint test is basically 0, strongly rejecting the model.

The idea of the test of the conditional model is similar to that of the UMVE test we

have considered earlier in Equation (7). Under the null of the conditional two-factor

dollar-carry model, the excess returns on the hedging portfolio

Rh,t+1 = Rp,t+1 − βF⊤
t RF

t+1

should be equal to zero, on average; here βF
t is a bivariate vector of conditional dollar

and carry betas, and RF
t+1 is a vector of corresponding factor returns. Conditional

betas can be computed in real time via Equation (8).

Table 5 gives the alphas of the individual strategies (see the column labeled OOS

α) and the joint test. As is the case with the unconditional model, dollar and cross-

sectional carry should be fitted perfectly, and they are. Furthermore, dollar carry is

also spanned conditionally. Thus, a zero alpha for this strategy is mechanical as well.

The model has trouble matching the time-series 12-month momentum and cannot

price the cross-sectional value strategy. For that reason, the p–value is 0.017 and the

model is rejected in the joint test.

Both tests indicate that test portfolios other than the ones related to dollar and

carry contain important information that clashes with the two-factor structure pf

the model. One concern that might arise is that the model is rejected on the basis

of just a few portfolios and, thus, might serve as an attractive alternative to the

more involved UMVE approach. First, we note that the conditional model cannot
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be implemented without computing the conditional covariance matrix of currency

returns, which is a key ingredient to the UMVE portfolio. Second, these tests could

have weak power because they do not include the new information from our UMVE

construction and the importance of hedging out unpriced risks from the strategy

under consideration. Thus, we turn to the implications arising from these findings.

The most direct way to account for the large amount of unpriced risks is to hedge

them out as per Equation (7). Next, we ask whether these new strategy returns can

be priced by dollar and carry. We test the unconditional and conditional versions of

the model again. Table 6 reports the results.

Now there is no mechanical relationship between hedged dollar and carry returns

with straight dollar and carry returns. either unconditionally or conditionally. The

model struggles with capturing returns on the hedged strategy both unconditionally

and conditionally (OOS). All individual alphas are significant and the joint p–value

is zero.

A model with the standard dollar and carry factors on the right-hand side can account

for the original dollar, carry, and dollar carry trading strategies, but it cannot account

for the these strategies when unpriced risks are hedged out. A corollary to this is

that the two first principal components, which are closely related to the standard

dollar and carry factors, are not in fact good factors for determining currency risk

premiums.
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3.4 Implications of the unpriced risks

In this subsection we delve deeper into the implications of the large unpriced risks

that appear in common currency trading strategies. First, we consider, as a ro-

bustness check, an alternative method for real-time identification of unpriced risks.

Second, we propose a more intuitive description of what these risks actually repre-

sents by relating these risks to geographically-based currency factors. Finally, we

discuss the implications for models of currency market risk premiums. For brevity,

in this subsection we focus our attention on the cross-sectional carry since this is

the strongest strategy for emerging markets and, indeed, across all markets for the

second half of the sample.

An alternative method of real-time identification of unpriced risks

An alternative, but related, way to identify unpriced risks in the carry portfolio

is to first assume that conditional expected returns are linear in the interest rate

differential of country i versus the dollar. That is, µit = Si
t/F

i
t − 1. The conditional

covariance matrix, Σt, is estimated as before. The standard carry factor does not

use Σt to determine portfolio weights. Thus, the original way to create the factor is

not optimal even in this case of a more simple expected excess return.

Denote the classic factor construction weights as wcarry
pt . The hedging portfolio then

has weights w∗
t − wcarry

pt . In fact, this is what Daniel, Mota, Rottke, and Santos

(2020) propose in their analysis of unpriced equity risks.4 Given this link, we label

this alternative way of generating the carry hedge portfolio as the DMRS hedge

4They have to approximate w∗
t because the equity market does not allow for estimation of the

conditional covariance matrix due to the large number of assets.
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portfolio and use it as a robustness test relative to our optimal UMVE-based hedge

portfolio. It has the benefit of relying only on the interest differential as the signal for

expected returns, so it does not it involve other return signals such as the momentum

or value, nor does it require a forecasting regression.

Figure 9 shows the SR of the original carry strategy and the SRs of the UMVE- and

DMRS-hedged versions of the carry strategy. The former is 0.71 whereas the latter

are 1.29 and 0.99, respectively. That is, there is a substantial increase in the SR.

The figure also plots the information ratio (capturing the marginal increase in SR)

of the carry hedged for unpriced risks, which is in both cases higher than the SR

for the original carry. In sum, the alternative hedging strategy yields similar results

with substantial increases in the carry risk-return trade-off.

Unpriced risks and geographic factors

A natural question is what these unpriced risks might represent. In the equity

market. Daniel, Mota, Rottke, and Santos (2020) argue that the industry risks

are unpriced risks affecting standard equity expected-return factors. We evaluate

whether a similar phenomenon could arise in currency markets based on geographic

proximity (see, Lustig and Richmond, 2020, and Richmond, 2019).

To this end, we construct a Europe factor, which is long an equal-weighted portfolio

of European countries, and a Rest of the World factor which is long an equal-weighted

portfolio of the remainder of the GE countries.5 Next, we at each time t project the

optimal portfolio weights of either the UMVE- or DMRS-based hedging portfolio

5A Europe factor has been proposed in prior research to account for currency comovements (see,
Aloosh and Bekaert, 2022, and Greenaway-McGrevy, Mark, Sul, and Wu, 2018).
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weights onto the portfolio weights for these two portfolios. We use the projection as

our hedge, which then only uses these two geographic portfolios.

The projected weights are shown in Figure 10. The hedging portfolio is generally

short Europe and long Rest of the World, with the exception of the European cur-

rency crisis in the early 1990s. The weights are relatively stable and of reasonable

magnitude.

Figure 9 shows the Sharpe and information ratios of the carry when unpriced risk is

hedged out using the UMVE- and DMRS-based weights for the geographic factors as

outlined above. In both cases, the SR increases substantially relative to the original

carry, although not by quite as much as with the unconstrained UMVE- and DMRS-

based hedges. Nevertheless, it appears that these simple geographic factors go a long

way towards explaining what the unpriced risks are. It is natural to draw a parallel to

the unpriced industry risks in the equity market (Daniel, Mota, Rottke, and Santos,

2020) – shocks and flows to a geographic area causes currency comovements but

arguably are not priced sources of risk in the currency market. Because the carry

trade also loads on these shocks, the risk-return trade-off improves when these shocks

are hedged out.

A new hurdle: Implications for models of currency market risk premiums

Reconstructing popular trading strategies by real-time hedging of unpriced risks

represents a new hurdle for testing asset pricing models for the currency market.

Table 7 reports standard “alpha” regressions of various versions of the hedged carry

on the dollar and the cross-sectional carry factors for the GE currencies. The alphas

are large, positive, and strongly statistically significant. That is, the results and
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conclusions that we have reached using the optimal UMVE-based hedge hold for

both DMRS-based simplified version and for further simplification on the basis of

the geographical factors. The robustness of this conclusion calls for models that

focus on explaining hedged returns.

Further, theoretical models should explain why geographic risks are not priced, that

the standard carry trade loads on these unpriced risks and that there is a substantial

increase in the SR of the carry trade once hedging out these unpriced risks. Finally,

the models should explain that currency risk premiums in the G10 economies have

trended down, while the carry premium and interest rate differentials the emerging

markets remain high.

4 Conclusion

In this study, we explore the risk-return trade-off in the currency market. We consider

common trading strategies when expanding the focus from G10 currencies to includ-

ing emerging-market currencies. While the extant literature argues for improved

performance when expanding the set of currencies, we find that this only enhance

carry strategies, especially when accounting for transaction costs. Moreover, the

benefit of including emerging economies extends only to a handful economies with

floating currencies.

We construct an out-of-sample mean-variance efficient portfolio from G10 and floating-

regime emerging-market currencies. This portfolio prices trading strategies for all

types of currencies and characterizes risk premiums at each point in time. It yields
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risk premium dynamics consistent with both declines in average returns of G10 trad-

ing strategies over the sample and continued high carry returns of the emerging

market trading strategies. Furthermore, it makes it possible for us to conditionally

decompose returns into priced and unpriced components.

We show that trading strategies, including dollar and carry, contain significant

amounts of unpriced risks (that increase the return variance but do not command

risk premiums). By hedging out the unpriced risks, we properly characterize the

risk-return trade-off in the currency market and provide new benchmarks for models

of currency risk premiums. We relate the unpriced risks to currency comovements

arising from geographical factors.
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Figure 1
Investments in carry and momentum currency strategies

The figure shows dollar values of investments in the cross-sectional carry and momentum strategies
(log-scale on the vertical axis). Curry and momentum investments are for both G10 currencies only
(labeled G) and all currencies in our sample (labeled GEX). The cumulative gross return of an
investment between t and T is given by ΠT

s=t+1(1 +Rf,s +Rp,s), where Rf is the simple return of
a risk-free asset and Rp is the excess return of a currency strategy p. The right of the figure shows
the final dollar value for each of the investments, given a $1 investment in end-December 1984. The
sample is monthly from 1985 to 2023.
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Figure 2
Investments in currency strategies

(A) Dollar (B) Carry

(C) Momentum (D) Value

The figure shows dollar values of investments in the dollar, and cross-sectional carry, one-month
momentum, and value strategies (log-scale on the vertical axis). The three lines in each panel
correspond to strategies constructed from G10 currencies only (G, red line with circles), from G10
and floating-regime emerging-market currencies (GE, blue line with plus signs), and G10 and all
emerging-market currencies in our sample (GEX, green line with crosses). The sample is monthly
from 1985 to 2023. See also the caption of Figure 1.
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Figure 3
Average bid-offer spreads of exchange rates

(A) Bid-offer spreads

(B) Bid-offer spreads for G10 subgroups

Panel A shows the average bid-offer spreads for spot (dashed lines) and forward (solid lines) markets
for the three currency sets: G10 (G), floating emerging (GE ex G), and extended emerging (GEX
ex GE). Panel B shows the impact of NZD costs on the G10 set by breaking it up into NZD only
and G10 ex NZD. This panel is truncated at 70 bps to facilitate comparison with Panel A. The
sample is monthly from 1985 to 2023.
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Figure 4
Number of currencies

The figure shows the number of currencies within each currency set over time: G10 (G), G10 plus
floating-regime emerging markets (GE), and G10 plus all emerging market currencies in our sample
(GEX).
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Figure 5
Sharpe ratio of strategies with different transaction costs

(A) 0% (B) 25%

(C) 50% (D) 100%

The figure shows annualized sample Sharpe ratios for the nine trading strategies computed for the
different levels of transaction costs. The sample is monthly from 1985 to 2023.
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Figure 6
Sharpe ratio of hedging portfolios and hedged strategies

The figure shows annualized sample Sharpe ratios for three portfolios associated with each strategy.
The “original” refers to the baseline version of the strategy, “hedge portfolio” refers to the hedging
portfolio that hedges out unpriced risks in real time, and “hedged original” refers to the portfolio
consisting of the original strategy return minus the hedging portfolio. The sample is monthly from
1985 to 2023.
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Figure 7
Mean realized and expected returns in subsamples

(A) 1985–2004

(B) 2005–2023

The figures shows sample average annualized returns for four strategies as given on the horizontal
axis, as well as the average annualized conditional risk premium as given by our real-time UMVE
construction. The upper panel shows these quantities for the first half of the sample, while the
lower panel shows the results for the second half of the sample.
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Figure 8
Conditional price of risk for G and GE UMVEs

The figure shows the conditional annualized Sharpe ratio of the UMVE portfolio constructed from
G10 (G) and G10 plus floating-regime emerging markets (GE) currencies. The sample is monthly
from 1985 to 2023.

47



Figure 9
Sharpe and information ratios for hedging strategies

The figures gives sample annualized sample Sharpe ratios and information ratios for the cross-
sectional carry and various versions of the strategy where different proxies for unpriced risks are
hedged out. The sample is monthly from 1985 to 2023.
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Figure 10
Geographic hedging exposures

(A) UMVE-based hedging betas

(B) DMRS-based hedging betas

The figure shows the conditional beta on two geographic factors for the hedging portfolio for hedging
out unpriced risks from the cross-sectional carry factor. The geographic factors are European
currencies and Rest of the World currencies. The currency set this refers to is the G10 plus
floating-regime emerging markets (GE) set. The sample is monthly from 1985 to 2023.
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Table 1: Summary statistics

TC = 0 TC =0.25 TC =0.50 TC =1.00
Strategy Stat G GE GEX G GE GEX G GE GEX G GE GEX
Dollar mean 1.75 2.54 2.68 1.51 2.23 2.28 1.28 1.92 1.88 0.80 1.31 1.07

std 8.04 7.64 6.49 8.03 7.63 6.49 8.02 7.63 6.48 8.01 7.62 6.48
SR 0.22 0.33 0.41 0.19 0.29 0.35 0.16 0.25 0.30 0.10 0.17 0.17
skew -0.07 -0.28 -0.12 -0.07 -0.28 -0.12 -0.07 -0.28 -0.13 -0.08 -0.29 -0.14

Dollar Carry mean 4.34 3.47 3.19 4.11 3.17 2.78 3.87 2.86 2.38 3.40 2.25 1.57
std 7.95 7.61 6.47 7.95 7.60 6.47 7.94 7.60 6.47 7.93 7.59 6.47
SR 0.55 0.46 0.49 0.52 0.42 0.43 0.49 0.38 0.37 0.43 0.30 0.24
skew -0.05 -0.07 0.01 -0.06 -0.07 0.00 -0.06 -0.07 -0.01 -0.06 -0.08 -0.02

CS-Carry mean 4.19 5.80 6.52 3.69 5.13 5.58 3.19 4.51 4.64 2.18 3.21 2.76
std 8.64 8.18 6.95 8.63 8.18 6.95 8.63 8.18 6.95 8.64 8.19 6.96
SR 0.49 0.71 0.94 0.43 0.63 0.80 0.37 0.55 0.67 0.25 0.39 0.40
skew -0.75 -0.76 -0.98 -0.76 -0.77 -0.98 -0.76 -0.78 -0.98 -0.78 -0.80 -0.97

TS-Carry mean 3.12 3.24 3.01 2.88 2.94 2.61 2.65 2.63 2.21 2.17 2.02 1.41
std 5.11 4.72 4.02 5.11 4.72 4.02 5.11 4.72 4.02 5.11 4.72 4.03
SR 0.61 0.69 0.75 0.56 0.62 0.65 0.52 0.56 0.55 0.43 0.43 0.35
skew -0.53 -0.79 -0.77 -0.53 -0.78 -0.77 -0.53 -0.78 -0.76 -0.52 -0.79 -0.75

CS-Mom 1 mean 1.36 0.99 3.35 0.87 0.39 2.50 0.39 -0.21 1.65 -0.57 -1.41 -0.05
std 8.04 7.39 7.49 8.04 7.39 7.50 8.03 7.39 7.51 8.03 7.39 7.53
SR 0.17 0.13 0.45 0.11 0.05 0.33 0.05 -0.03 0.22 -0.07 -0.19 -0.01
skew 0.14 0.33 0.20 0.12 0.31 0.20 0.11 0.30 0.20 0.09 0.28 0.19

CS-Mom 12 mean 1.29 0.13 1.88 0.82 -0.46 1.03 0.35 -1.05 0.17 -0.58 -2.24 -1.54
std 8.14 7.43 7.69 8.14 7.44 7.69 8.14 7.45 7.51 8.14 7.47 7.71
SR 0.16 0.02 0.24 0.10 -0.06 0.13 0.04 -0.14 0.22 -0.07 -0.30 -0.20
skew -0.48 -0.26 -0.54 -0.49 -0.28 -0.54 -0.50 -0.30 0.20 -0.52 -0.34 -0.55

TS-Mom 1 mean 2.31 1.97 3.12 2.07 1.68 2.72 1.84 1.39 2.32 1.36 0.82 1.52
std 6.19 5.60 4.94 6.19 5.60 4.95 6.19 5.60 4.95 6.18 5.59 4.95
SR 0.37 0.35 0.63 0.33 0.30 0.55 0.30 0.25 0.47 0.22 0.15 0.31
skew 0.53 0.62 0.45 0.52 0.60 0.44 0.52 0.59 0.43 0.50 0.56 0.40

TS-Mom 12 mean 2.26 1.19 1.90 2.03 0.90 1.51 1.80 0.62 1.11 1.34 0.04 0.33
std 6.86 6.14 5.32 6.85 6.14 5.32 6.85 6.14 5.32 6.85 6.14 5.33
SR 0.33 0.19 0.36 0.30 0.15 0.28 0.26 0.10 0.21 0.20 0.01 0.06
skew -0.20 -0.37 -0.50 -0.20 -0.38 -0.51 -0.21 -0.39 -0.51 -0.22 -0.42 -0.53

CS-Value mean 3.66 4.68 3.43 3.20 4.07 2.63 2.75 3.45 1.82 1.83 2.21 0.21
std 7.45 7.18 6.83 7.44 7.17 6.82 7.43 7.16 6.82 7.42 7.15 6.82
SR 0.49 0.65 0.50 0.43 0.57 0.38 0.37 0.48 0.27 0.25 0.31 0.03
skew -0.04 -01.6 -0.24 -0.04 -0.17 -0.24 -0.05 -0.18 -0.24 -0.06 -0.19 -0.24

We report basic summary statistics for nine high Sharpe ratio trading strategies. The sample is
monthly from 1985 to 2023. We group the statisticians by the level of transaction costs (TC) as
a fraction of bid-offer spread in the market and by the different set of included currencies: set G
means G10 currencies, set GE means a combination of G10 and floating emerging currencies, set
GEX is a combination of GE and remaining emerging currencies in our sample.
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Table 2: Testing the GE-UMVE

Panel A GE

Strategy SR E[Re] t–stat α t–stat β t–stat R2
adj

Dollar 0.332 2.54 2.06 1.04 0.76 0.15 2.67 0.019
Dollar Carry 0.457 3.47 2.84 1.87 1.35 0.16 2.82 0.023
CS-Carry 0.710 5.80 4.41 -0.35 -0.26 0.60 11.38 0.314
TS-Carry 0.686 3.24 4.26 0.56 0.69 0.26 9.97 0.178
CS-Mom 1 0.257 1.95 1.60 0.95 0.57 0.10 1.27 0.008
CS-Mom 12 0.237 1.80 1.47 -1.58 -1.19 0.33 5.37 0.109
TS-Mom 1 0.417 2.38 2.59 1.38 1.28 0.10 1.98 0.015
TS-Mom 12 0.346 2.12 2.15 0.31 0.27 0.18 3.62 0.046
CS-Value 0.653 4.69 4.06 1.64 1.20 0.30 5.07 0.098

Panel B GEX

Strategy SR E[Re] t–stat α t–stat β t–stat R2
adj

Dollar 0.413 2.68 2.57 1.59 1.39 0.13 2.23 0.014
Dollar Carry 0.491 3.18 3.05 1.68 1.46 0.17 3.06 0.028
CS-Carry 0.938 6.52 5.82 1.56 1.31 0.57 9.82 0.281
TS-Carry 0.749 3.01 4.65 0.86 1.24 0.25 8.72 0.157
CS-Mom 1 0.448 3.35 2.78 2.66 1.70 0.08 0.92 0.003
CS-Mom 12 0.245 1.88 1.52 -1.04 -0.75 0.34 4.53 0.078
TS-Mom 1 0.632 3.12 3.92 2.38 2.59 0.09 1.67 0.011
TS-Mom 12 0.357 1.90 2.21 0.39 0.40 0.17 3.41 0.043
CS-Value 0.503 3.43 3.12 0.83 0.63 0.30 4.44 0.079

The table shows the annualized Sharpe ratio, average excess return, and t–statistic of the average
excess returns to each trading strategy, along with its “alpha”, “beta”, and R2 with respect to
the UMVE portfolio, which is constructed using the GE set of currencies. The t–statistics are
heteroskedasticity-adjusted. Panel A shows results for strategies constructed from GE currencies.
Panel B considers GEX currencies. The sample is monthly from 1985 to 2003.
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Table 3: Unconditional GRS-style tests with transaction costs

Transaction costs
0 0.25 0.5 1

MSR(R∗) 1.341 1.203 1.157 0.974

GE
MSR(R∗, Rp) 1.431 1.260 1.190 0.984
p–value 0.653 0.573 0.721 0.927

(0.514)

GEX
MSR(R∗, Rp) 1.524 1.297 1.200 0.985
p–value 0.118 0.200 0.572 0.904

(0.050)

This table shows unconditional tests of the UMVE portfolio formed on G10 and floating-regime
emerging markets (GE) countries implemented via bootstrap. The transaction costs refers to
the fraction of the reported bid-offer spread that is used when computing returns. We consider
fractions of 0%, 25%, 50% and 100%. The first row reports the sample (maximal) SR of the UMVE
portfolio, MSR(R∗). The middle part reports the maximal ex post sample SR obtained from
combining strategies formed on the GE countries with the UMVE portfolio. The p–value reported
corresponds to a bootstrap of the null hypethesis that the ex ante SR of (R∗, Rp) is the same as
that of the ex ante SR of R∗, similar in spirit to the classic GRS test. The bottom part corresponds
to the case where the test assets are formed using the GEX sample (G10, floating-regime emerging,
and the rest of emerging). The p–values reported in parentheses for zero transaction-cost case are
computed using the asymptotic GRS test. The sample is monthly from 1985 to 2023.
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Table 4: Conditional tests of GE UMVE

Strategy SR E (Re) OOS α t–stat SR-hedged

Dollar 0.33 2.54 0.79 0.67 0.11
Dollar Carry 0.46 3.47 2.28 1.94 0.31
CS-Carry 0.71 5.80 −0.08 −0.08 −0.01
TS-Carry 0.69 3.24 0.52 0.78 0.13
CS-Mom 1 0.26 1.95 0.14 0.13 0.02
CS-Mom 12 0.24 1.80 −1.66 −1.53 −0.25
TS-Mom 1 0.42 2.38 1.07 1.24 0.20
TS-Mom 12 0.35 2.12 0.33 0.34 0.05
CS-Value 0.65 4.69 0.72 0.68 0.11

p–value 0.379 (0.379)

This table shows unconditional tests of the conditional implications of the GE UMVE model. The
p–value for joint test is computed by bootstrap (p–value reported in parentheses is computed using
the asymptotic GRS statistic). The sample is monthly from 1985 to 2023.
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Table 5: Tests of dollar/carry model

Strategy SR E (Re) α t–stat R2
adj OOS α t–stat SR-hedged

Dollar 0.33 2.54 0 1.000 0 0
Dollar Carry 0.46 3.47 2.74 2.04 0.091 0 0
CS-Carry 0.71 5.80 0 1.000 0 0
TS-Carry 0.69 3.24 0.59 1.13 0.626 0.02 0.11 0.02
CS-Mom 1 0.26 1.95 2.32 1.67 0.008 0.17 0.23 0.04
CS-Mom 12 0.24 1.80 1.39 1.10 0.016 0.75 0.95 0.15
TS-Mom 1 0.42 2.38 2.77 2.65 0.006 0.17 0.68 0.11
TS-Mom 12 0.35 2.12 2.23 2.13 0.001 0.42 1.66 0.27
CS-Value 0.65 4.69 3.48 2.70 0.053 2.49 3.05 0.49

p–value 0.001 (0.000) 0.017 (0.017)

This table shows unconditional and conditional tests of the of the dollar/carry model using strategy
returns. The p–value for joint test is computed by bootstrap (p–value reported in parentheses
is computed using the asymptotic GRS statistic). The first (second) set corresponds to the
unconditional (conditional) model. The sample is monthly from 1985 to 2023.
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Table 6: Tests of dollar/carry model on hedged strategies

Strategy SR E (Re) α t–stat OOS α t–stat

Dollar 0.91 1.75 1.10 3.71 0.81 4.16
Dollar Carry 0.61 1.19 0.77 2.47 0.65 3.31
CS-Carry 1.29 5.89 3.97 6.29 3.00 6.36
TS-Carry 1.31 2.72 1.82 6.36 1.40 6.51
CS-Mom 1 0.61 1.81 1.43 2.71 1.01 3.54
CS-Mom 12 0.99 3.46 2.44 4.85 2.07 5.87
TS-Mom 1 0.83 1.31 0.97 3.89 0.56 3.46
TS-Mom 12 0.81 1.78 1.12 3.56 0.90 4.49
CS-Value 1.29 3.97 2.84 6.56 1.99 6.13

p–value 0.000 (0.000) 0.000 (0.000)

This table shows unconditional and conditional tests of the of the dollar/carry model using
strategy returns with unpriced risks hedged out (using the UMVE). The p–value for joint test is
computed by bootstrap (p–value reported in parentheses is computed using the asymptotic GRS
statistic). The first (second) set corresponds to the unconditional (conditional) model. The sample
is monthly from 1985 to 2023.
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Table 7: Hedged CS-carry versus standard dollar/carry factor model

CS-carry
hedged by: E (Re) α t–stat R2

adj

UMVE 5.89 3.97 6.29 0.34
DMRS 8.62 7.02 4.90 0.06
UMVE Geo 6.81 2.45 4.17 0.74
DMRS Geo 6.43 2.22 3.50 0.69

This table shows the result from regressing different versions of hedged CS-carry on a standard
factor model consisting of the dollar factor and the CS-carry factor. All factors and test assets
are constructed from the G10 plus the floating-regime emerging markets currencies (GE). The
labels in the leftmost column refer to the dependent variable in each regression and the method
by which unpriced risks are hedged in real time for the hedged CS-carry strategy. UMVE refers to
the optimal hedging given the UMVE portfolio construction. DMRS refers to the optimal hedging
assuming the only expected return signal is the interest rate differential. UMVE Geo refers to the
hedging portfolio that obtains from a conditional projection of the optimal hedging weights onto
two geographical factors – a Europe factor and a Rest of the World factor. Finally, DMRS Geo
refers to a conditional projection of the DMRS hedging weights onto the same geographic factors.
The sample is monthly from 1985 to 2023, and all hedging is done in an out-of-sample fashion to
ensure that the test assets are tradeable portfolios.
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A Appendix

A.1 Details of the dataset

We consider daily spot and one-month forward exchange rates for 75 currencies versus
the USD in the WM Refinitiv database (retrieved from Refinitiv Eikon) for the period
December 31, 1996 to June 30, 2023. The closing bid and offer spot exchange rates
are fixings around 4pm in London. Mid rates are calculated as the mean of bid and
offer rates.

We complement the currency data with consumer price index (CPI) data, retrieved
from the statistical databases of OECD (https://stats.oecd.org/) and IMF
(https://www.imf.org/en/Data). For OECD, we use the data under “General Statis-
tics” and then “Key Short-Term Economic Indicators”; for IMF, we use the data
under “National Accounts and Price Statistics” and then “Consumer Price Index”.
For both OECD and IMF we retrieve “Consumer Price Index, All items.” We use
monthly data over the period January 1976 to June 2023, but for Australia and New
Zealand we use quarterly data (with repeated monthly values) as monthly data are
not available. In the case of quarterly data, the value observed at the end of a quarter
is repeated monthly in the next quarter to avoid a look-ahead bias. Taiwan data are
from the National Statistics website (https://eng.stat.gov.tw/cp.aspx?n=2327).

The countries (with currency ISO codes) are: Argentina (ARS), Australia (AUD),
Austria (ATS), Bahrain (BHD), Belgium (BEF), Brazil (BRL), Bulgaria (BGN),
Canada (CAD), Chile (CLP), China (CNY), Colombia (COP), Croatia (HRK),
Cyprus (CYP), Czech Republic (CZK), Denmark (DKK), Egypt (EGP), Estonia
(EEK), Eurozone (EUR), Finland (FIM), France (FRF), Germany (DEM), Ghana
(GHS), Greece (GRD), Hong Kong (HKD), Hungary (HUF), Iceland (ISK), In-
dia (INR), Indonesia (IDR), Ireland (IEP), Israel (ILS), Italy (ITL), Japan (JPY),
Jordan (JOD), Kazakhstan (KZT), Kenya (KES), Kuwait (KWD), Latvia (LVL),
Lithuania (LTL), Malaysia (MYR), Malta (MTL), Mexico (MXN), Morocco (MAD),
Netherlands (NLG), New Zeeland (NZD), Norway (NOK), Oman (OMR), Pakistan
(PKR), Peru (PEN), Philippines (PHP), Poland (PLN), Portugal (PTE), Qatari
(QAR), Romania (RON), Russia (RUB), Saudi Arabia (SAR), Serbia (RSD), Sin-
gapore (SGD), Slovakia (SKK), Slovenia (SIT), South Africa (ZAR), South Korea
(KRW), Spain (ESP), Sri Lanka (LKR), Sweden (SEK), Switzerland (CHF), Taiwan
(TWD), Thailand (THB), Tunisia (TND), Turkey (TRY), Uganda (UGX), Ukraine
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(UAH), United Arab Emirates (AED), Vietnam (VND), Zambia (ZMW), United
Kingdom (GBP).

The main text describes how we go from 75 to 59 currencies and divide the currencies
into three currency sets (labeled G, GE, and GEX).

We complement the above currency data with daily spot and forward exchange rates
for the G10 currencies (AUD, CAD, DEM & EUR, JPY, NZD, NOK, SEK, CHF,
GBP) from January 1, 1976 to December 31, 1996 (used in Chernov, Dahlquist, and
Lochstoer, 2023). We use WMR and Thompson Reuters exchange rates versus the
GBP up to October 1983 or December 1984, and Barclays Bank International (BBI)
exchange rates versus the USD from October 1983 or December 1984 (when available
earliest). We use Financial Times exchange rates for the JPY versus the USD from
January 31, 1976 to June 30, 1978, obtained from David Hsieh. Forward exchange
rates for AUD and NZD are available from December 1984, and thus January 1985
is the common starting month for currency excess returns.

The monthly dataset keeps the last day of every month in the daily dataset.

When we cumulative returns in figures we use the risk-free rate from the Kenneth
R. French Data Library
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).

A.2 Trading strategies

Below we describe nine leading trading strategies, which were proposed in the liter-
ature.

The portfolio excess return of a trading strategy is:

Rp,t+1 =
N∑
i=1

wi
ptR

ei
t+1, (A.1)

where wi
pt is the portfolio’s weight in currency i at time t and N is the number of

currencies. The weight of a given portfolio p can be based on a signal, zipt, and chosen
such that the portfolio has an exposure to the USD or not. We use so-called rank and
sign weights based on these signals. See Asness, Moskowitz, and Pedersen (2013),
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Koijen, Moskowitz, Pedersen, and Vrugt (2018), and Moskowitz, Ooi, and Pedersen
(2012) for the use and further discussions of such weights.

We use rank weights for cross-sectional (CS) strategies. The rank of a currency is
based on the signal and the weight is based on the rank according to:

wi
pt = κ

(
rank(zipt)−N−1

N∑
i=1

rank(zipt)

)
, (A.2)

where the scaling constant κ makes the portfolio one USD long and one USD short
(and hence USD neutral). For example, for the G10 with nine currencies versus the
USD, the possible weight values are +0.4, +0.3, +0.2, +0.1, 0.0, −0.1, −0.2, −0.3,
and −0.4. Note that the weights depend on the currency ranks, the long and short
positions sum to +1 and −1, respectively, and the net exposure to the USD is zero.
This extends straightforwardly when we consider GE and GEX currencies.

We use sign weights for time-series (TS) strategies. The weights are then +1 or −1,
depending on the sign of the signal, and the net exposure to the USD can be positive
or negative. We further scale these sign weights with N to get a portfolio volatility
similar to the ones of the cross-sectional strategies. However, this scaling does not
affect the inference of a strategy’s risk-adjusted performance.

Lastly, the dollar strategy differs from both CS and TS approaches as it is an equal-
weighted average of the individual currency returns (Lustig, Roussanov, and Verdel-
han, 2011).The dollar strategy can be seen as an equal-weighted market portfolio of
currencies. It simply goes long all currencies versus the USD.

We consider three carry strategies. The dollar carry strategy uses the average forward
discount (across all currencies) as a signal. Specifically, it goes long (short) all
currencies versus the USD when the average forward discount is positive (negative)
(Lustig, Roussanov, and Verdelhan, 2014). Hence, the dollar carry strategy is a
conditional version of the dollar strategy above: when the average forward discount
is positive, it goes long the dollar strategy; when the forward discount is negative, it
goes short the dollar strategy.

The CS-carry strategy uses an individual currency’s forward discount as a signal
and the ranking weights as described above. Currencies with relatively high forward
discounts have positive weights and currencies with relatively low forward discounts
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have negative weights (similar to Lustig, Roussanov, and Verdelhan, 2011, who con-
struct a high-minus-low carry portfolio rather than using the rank weights). Recall
that the CS strategies are USD neutral.

The TS-carry uses the sign of the individual currency’s forward discount as a sig-
nal. It goes long (short) currencies with a positive (negative) discount (Burnside,
Eichenbaum, Kleshchelski, and Rebelo, 2011a, Daniel, Hodrick, and Lu, 2017). At
each point in time, a varying number of currencies may have a positive or negative
forward discount, so there is a time-varying exposure to the USD.

We consider two CS momentum strategies, which use the currency’s performance as
a signal. The CS-mom 1 strategy uses the performance in the most recent month
as a signal (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012b, Burnside, Eichen-
baum, Kleshchelski, and Rebelo, 2011a) and the CS-mom 12 strategy uses the per-
formance in the most recent year skipping the most recent month as a signal (Asness,
Moskowitz, and Pedersen, 2013). Specifically, weights are rank-based as described
above.

We also consider two TS momentum strategies, which use the sign of the currency’s
recent performance as a signal. The TS-mom 1 strategy uses the currency’s last
month performance (Burnside, Eichenbaum, and Rebelo, 2011b) and the TS-mom
12 strategy uses the currency’s performance in the last twelve months as a signal
(Moskowitz, Ooi, and Pedersen, 2012). They both go long (short) currencies with a
positive (negative) performance. Similar to Moskowitz, Ooi, and Pedersen (2012).

Lastly, the CS-value strategy uses the real exchange rate signal in Equation (A.4),
whereby a relatively low (high) real exchange rate today indicates that the foreign
currency is cheap (expensive) (Asness, Moskowitz, and Pedersen, 2013). Specifically,
weights are again based on the rank weights as described above.

This set of trading strategies comprises our main set of testing results.

A.3 Estimating conditional mean and covariance of currency
returns

Our starting point for µt is the RWH for spot exchange rates. The RWH implies
that expected excess currency returns are given by:

µit ≡ Et(R
ei
t+1) = γ ·

(
Si
t/F

i
t − 1

)
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with γ = 1. This is a particular violation of UIP, which posits γ = 0. We refer to
Si
t/F

i
t − 1 as the (normalized) forward discount. Next, we add mean-reversion and

trend signals for exchange rate forecasting. Our trend signal is a one-year deprecia-
tion rate.

Our mean-reversion signal is motivated by the literature on the role of RER in
forecasting and capturing risk premiums. The RER is defined as

Qi
t = Si

t · P i
t /Pt, (A.3)

where Pt and P i
t are the US and foreign consumer price index (CPI), respectively.

Given that the CPI is published with a lag, and we want to ensure that all variables
are observable at time t, we construct the RER in Equation (A.3) using CPIs lagged
by three months. The weak form of PPP implies mean-reversion in the RER. Thus,
when the RER is far from its long-run mean it should forecast the currency depre-
ciation. As Jorda and Taylor (2012) emphasize, the RER’s long-run mean is not a
clearly defined object empirically. We divide each RER by its five-year smoothed
lag (specifically the average RER from 4.5 to 5.5 years ago) as a way to remove
the dependence on the long-run mean while still preserving the long-run nature of
mean-reversion signals:

Q̃i
t ≡ Qi

t ·

(
1

13

6∑
j=−6

Qi
t−60+j

)−1

.

Lastly, we cross-sectionally demean the signal at each time t to create a cross-sectional
ranking of “cheap” and “expensive” currencies. That is, our signal is

ziQt ≡ Q̃i
t −

1

N

N∑
i=1

Q̃i
t. (A.4)

This definition has the virtue of removing any time and currency fixed effects.

In summary, we forecast excess returns OOS via:

µit = γi
t ·
(
Si
t/F

i
t − 1

)
+ δit · ziQt + ϕi

t ·
(
Si
t/S

i
t−12 − 1

)
. (A.5)

We set γi
t = 1 to match the RWH baseline. The coefficients δit and ϕi

t are re-estimated
every month t using historical exchange rates up until time t.

Because both the mean-reversion and trend signals rely on spot exchange rates, for

61



which we have data going back to 1976, we have nine years of data to estimate the
first conditional means and covariance matrix for January 1985 when the currency
excess return sample starts. We then each month expand the sample by one month
to update these estimates in an OOS fashion. This strategy gets us to the target
Equation (A.5) in two steps. First, we forecast percentage changes in spot rates via:

Si
t+1/S

i
t − 1 = δ̄t · ziQt + ϕ̄t ·

(
Si
t/S

i
t−12 − 1

)
+ εit+1.

The coefficients δ̄t and ϕ̄t are re-estimated via a panel regression using historical data
up to month t. Second, using the definition of the return on a forward position given
in Equation (1), the time t expected excess currency return is obtained via:

µit = (Si
t/F

i
t ) · Et(S

i
t+1/S

i
t)− 1

= (Si
t/F

i
t − 1) + (Si

t/F
i
t )δ̄t · ziQt + (Si

t/F
i
t )ϕ̄t ·

(
Si
t/S

i
t−12 − 1

)
with (Si

t/F
i
t )δ̄t and (Si

t/F
i
t )ϕ̄t corresponding to δit and ϕi

t in Equation (A.5), respec-
tively.

We use daily data within each month to construct monthly realized variance for each
currency depreciation rate. We compute conditional variance by running a panel
AR(1) with currency fixed effects on the monthly realized variances up until time
t, and forecast the realized variance for month t + 1 based on this estimation. We
proceed in an expanding manner through the sample so our conditional variance
estimates are computable in real time. Next, we estimate the conditional correlation
matrix using the last five years of daily depreciation rate data, where we normalize
the depreciation rates by their conditional volatility. We take this time t correlation
matrix and the vector of conditional variances to form the conditional covariance
matrix Σt.

A.4 Testing the UMVE constructed from G10 currencies

Tables A1 and A2 report tests of trading strategies using the G-UMVE.
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Table A1: Testing strategy returns in G only using G-UMVE

Strategy SR E[Re] t–stat α t–stat β t–stat R2
adj

Dollar 0.218 1.75 1.35 1.02 0.75 0.09 1.39 0.006
Dollar Carry 0.546 4.34 3.39 2.15 1.63 0.27 4.84 0.071
CS-Carry 0.486 4.19 3.02 0.51 0.36 0.45 6.15 0.172
TS-Carry 0.610 3.12 3.79 1.02 1.23 0.26 9.91 0.160
CS-Mom 1 0.169 1.36 1.05 0.63 0.40 0.09 1.05 0.006
CS-Mom 12 0.158 1.29 0.98 -1.09 -0.78 0.29 4.20 0.080
TS-Mom 1 0.373 2.31 2.32 1.06 1.00 0.15 2.62 0.037
TS-Mom 12 0.330 2.26 2.05 0.26 0.23 0.24 4.36 0.080
CS-Value 0.492 3.66 3.05 0.97 0.72 0.33 5.22 0.123

UMVE SR 1.023 GRS p–value 0.714

The table shows the annualized Sharpe ratio, average excess return, and t–statistic of the
average excess returns to each trading, along with its “alpha”, “beta”, and R2 with respect
to the UMVE portfolio, which is constructed using the G set of currencies. The t–statistics
are heteroskedasticity-adjusted. The p–value is computed using the asymptotic GRS test. The
strategy returns are constructed using the G set. The sample is monthly from 1985 to 2023.
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Table A2: Testing strategy returns in GE only using G-UMVE

Strategy SR E[Re] t–stat α t–stat β t–stat R2
adj

Dollar 0.332 2.54 2.06 1.95 1.50 0.08 1.15 0.004
Dollar Carry 0.457 3.47 2.84 1.46 1.14 0.26 4.46 0.065
CS-Carry 0.710 5.80 4.41 2.42 1.79 0.43 6.28 0.162
TS-Carry 0.686 3.24 4.26 1.44 1.85 0.23 7.48 0.138
CS-Mom 1 0.257 1.95 1.60 1.24 0.82 0.09 1.09 0.006
CS-Mom 12 0.237 1.80 1.47 -0.32 -0.25 0.27 3.99 0.073
TS-Mom 1 0.417 2.38 2.59 1.29 1.27 0.14 2.42 0.033
TS-Mom 12 0.346 2.12 2.15 0.51 0.49 0.21 4.06 0.064
CS-Value 0.653 4.69 4.06 2.62 1.97 0.27 4.15 0.078

UMVE SR 1.023 GRS p–value 0.083 (0.041)

The table shows the annualized Sharpe ratio, average excess return, and t–statistic of the
average excess returns to each trading, along with its “alpha”, “beta”, and R2 with respect to
the UMVE portfolio, which is constructed using the G set of currencies. The t–statistics are
heteroskedasticity-adjusted. The p–value is computed using bootstrap (and the asymptotic GRS
test in parenthesis). The strategy returns are constructed using the GE set. The sample is monthly
from 1985 to 2023.
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