EPFL PHYSICS COLLOQUIUM

The magic of moiré quantum matter	Prof. Pablo Jarillo-Herrero MIT	The u quant decac resea lattice talk I strong quant when angle Dirac electro
zoom: https://epfl.zoom.us/j/84048962946	Monday	exhibi correl magn
	November 16th	Furthe
	16:15	quant magic
	zoom	outloc emerç

understanding of strongly-correlated tum matter has challenged physicists for des. Such difficulties have stimulated new arch paradigms, such as ultra-cold atom es for simulating quantum materials. In this will present a new platform to investigate gly correlated physics, namely moiré tum matter. In particular, I will show that n two graphene sheets are twisted by an e close to the theoretically predicted 'magic e', the resulting flat band structure near the c point gives rise to a strongly-correlated ronic system. These flat bands systems bit a plethora of quantum phases, such as elated insulators, superconductivity, netism, Chern insulators, and more. nermore, it is possible to extend the moiré tum matter paradigm to systems beyond ic angle graphene, and I will present an ok of some exciting directions in this rging field.