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Abstract

We develop novel methodology to construct forecast confidence intervals (FCI) for

machine learning predictions in asset pricing. We show FCIs for machine learning

predictions obtained from sophisticated ML methods, such as neural networks, can be

accurately approximated by simpler nonparametric methods such as B-splines. We

prove that these FCIs provide correct coverage probabilities. In addition, we also

establish the validity of a version of the wild bootstrap. We illustrate the practical use

of the obtained confidence intervals in the context of a portfolio selection application

for an uncertainty averse investor.
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1 Introduction

The asset pricing literature has seen a rapid growth of papers that applies machine learning

models in return prediction, portfolio selection and stochastic discount factor estimation.

The vast majority of studies in this field makes use of out-of-sample predictions obtained

from machine learning models. While he gains in forecasting performance are impressive

(e.g. Gu et al. (2020); Bianchi et al. (2021)), the theoretical properties of these forecasts are

studied to a much lesser extent. Instead, the literature typically focuses on point predictions,

which are silent about the associated uncertainty.

In this paper, we develop novel methods to quantify the uncertainty of return predictions

obtained from machine learning models. In particular, we show how to construct forecast

confidence intervals for return predictions obtained from neural networks. We provide two

methods for obtaining such forecast confidence intervals. The first relies on closed-form ap-

proximations and the second on the bootstrap. For the first method, we prove the following

fundamental result: ML-specific forecast methods do not possess an ML-specific asymptotic

distribution. This claim will be defined clearly and proved rigorously in our formal analy-

sis. This result will significantly simplify the analysis and pave the way for relatively easy

approximations for the FCI. Armed with these results, we can derive the formula for the

machine learning forecast standard error, where the impact of strong cross-sectional depen-

dence appears explicitly. For the bootstrap approach, we show that a simple time-series

bootstrap provides asymptotically valid inference for ML-forecast of expected returns while

also e↵ectively addressing strong cross-sectional dependencies. Through extensive simula-

tions, we demonstrate that alternative bootstrap methods, such as bootstrapping across

firms or jointly across firms and time series, fail to produce valid FCIs for ML forecasts.

We show that both methods provide the correct coverage. While these results are of great

theoretical interest, the bootstrap may appear to be less attractive from a computational

point of view. However, we illustrate an implementation of the so-called k-step bootstrap to

also obtain forecast confidence intervals.

In general, statistical inference for ML models such as neural networks is technically

demanding and rarely available in “plug-in” form. Researchers often resort to rather crude

heuristics without formal justification. In a seminal paper Chen and White (1999) set the

stage for a rigorous analysis of the distributional property of neural network predictions.
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In our context, however, we cannot merely invoke their results as they are developed for

independent and identically distributed (iid) data. This assumption is grossly violated in

asset pricing. Asset returns are driven by common factors and thus exhibit strong cross-

sectional dependence. This dependence is at the heart of the theoretical challenge. Our

approach explicitly accounts for this dependence, moving beyond simple extensions of FCI

for weakly dependent time series like autoregressive models.

Standard mean-variance portfolio theory relies on expected returns and (co)variances to

compute optimal portfolios. Theoretical studies often assume that agents know the popu-

lation parameters to streamline the analysis. In many empirical studies, researchers obtain

point predictions and act as-if these were the true parameters. By now, it is however well

recognized in portfolio selection that estimated parameters should be be treated as the true

population parameters (e.g. Garlappi et al. (2007); DeMiguel et al. (2009)). These findings

confront researchers with choice between unsatisfactory alternatives. Either use inferior re-

turn predictions from simple models with well-studied forecast confidence intervals or use

superior return predictions from machine learning estimators and ignore the associated un-

certainty. The central objective of this paper is therefore to provide the a sound theoretical

justification for the uncertainty associated with machine learning predictions and incorporat-

ing them in portfolio selection. To formally incorporate estimation uncertainty in portfolio

selection, we adopt the view of an uncertainty averse (UA) investor. We characterize two

distinct approaches of UA-portfolios. The first leads to a “no-holding” position, i.e. the

uncertainty averse investor may decide not to invest in a risky asset at all if the uncertainty

exceeds a certain level.

We characterize two distinct forms of UA-portfolio allocations: one leading to a “no-

holding” position in the risky asset. Building Garlappi et al. (2007), we formally show that

the resulting optimal portfolio is a solution to an `1-regularized optimization problem, known

as the “Lasso” in the ML literature. The second UA-portfolio follows the proposal in Hansen

and Sargent (2008). It yields a “shrinkage” solution which is not sparse, i.e. it does not set

many portfolio weights to zero.

Empirically, we find that incorporating the uncertainty into portfolio selection decisions

helps to improve the risk-reward trade-o↵.
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Related Literature

The literature on machine learning in asset pricing has seen a rapid growth over the past

years. Kozak et al. (2020), Freyberger et al. (2020), Gu et al. (2020), Chen et al. (2020)

are concerned with improving predictions in various panel applications. While their objec-

tives di↵er subtly, they all find improvements from applying ML methods relative to simple

parametric alternatives.

Recently, several papers in asset pricing make progress in the theoretical analysis of ma-

chine learning predictions in asset pricing. Fan et al. (2022) derive rates of convergence for

neural network estimators in return predictions and also show that any regression of excess

returns on characteristics can be interpreted through the lens of characteristics based factor

models. Jagannathan et al. (2023) develop FCI for the so-called “period-by-period” ML,

which relies on estimating the latent risk factors. We instead focus exclusively on the popu-

lar “pooled machine learning” approach which is the most popular approach in forecasting

applications that do not involve in estimating factors. Kelly et al. (2021); Didisheim et al.

(2023) derive exciting results about the out-of-sample properties of portfolios in the con-

text of overparametrized models, i.e. models in which the number of parameters is (much)

larger than the sample size. In a very di↵erent setting, Liao et al. (2024) also study over-

parametrized models. All these recent contributions find stronger support for dense rather

than sparse models. The paper by Allena (2021) also deserves special mention. He develops

confidence intervals for risk premia from a Bayesian perspective in a regression setting.

The statistical theory of machine learning predictors typically focuses on convergence

properties such as rates of convergences and approximation error bounds, e.g., Bartlett et al.

(2019); Bauer and Kohler (2019); Schmidt-Hieber (2020). Fewer papers deal with quantifying

forecast uncertainty, and research on objects such as confidence intervals, forecast standard

errors, and forecast distributions is still in its infancy. We briefly review some of the primary

studies in this field in below.

In the field of econometric program evaluation, there is a popular method known as

“doubly robust machine learning inference”, which aims to develop asymptotic confidence

intervals of some “structural parameters” in econometric models, e.g., Chernozhukov et al.

(2018). These methods develop sophisticated procedures that require so-called orthogonal

moment conditions and cross-fitting, which are not the usual way of implementing the ma-

chine learning forecast in asset pricing. In a seminal contribution, Chen and White (1999)

3



derive a theoretical distribution theory for the neural network regression. However, both the

“doubly robust machine learning” and Chen-White approach rely on the assumption of i.i.d.

(or weakly dependent) data, which is not a valid assumption in the context of asset pricing

due to the strong cross-sectional dependence driven by common risk factors.

Our proposed method for computing the FCI is also valuable for areas of economics in

which quantifying forecasting precision and uncertainty is needed. For instance, in financial

accounting issuing earnings forecasts is an important channel that managers use to convey

information to investors. Ciconte et al. (2014) documented that over eighty percent of

quarterly earnings forecasts issued between 2002 and 2010 are range forecasts, and there has

been a dramatic shift towards issuing range forecasts since then. Prior research has shown

that managers have incentives to report forecast precision and range forecasts to investors,

and forecast precision significantly a↵ects the sensitivity of market prices to forecast news

(Cheng et al., 2013).

Finally, there is a strand of literature in asset pricing that studies the model uncertainty,

Avramov (2002); Avramov et al. (2023); Anderson and Cheng (2016). In this line of research,

no stance is taken of the “correct model” and the goal is often to achieve robust portfolio

allocations and predictions via Bayesian model averages. Researchers therefore often specify

a probability distribution over the di↵erent models, but do not derive the forecast uncertainty

within a given model.

2 Background and Intuition

2.1 Pooled Machine Learning

Let yi,t denote the observed excess return for asset i at period t. In addition, researchers also

observe asset-specific “characteristics” (features), xt�1 = (x1,t�1, ..., xN,t�1), where xi,t�1 is a

vector of characteristics for asset i, such as momentum, volatility, financial liabilities, etc;

for instance, Jensen et al. (2022) provide a large dataset of more than one hundred firm-level

characteristics. The goal is to forecast a portfolio return zt+1. This contains the special case

of an individual asset, i.e., zt+1 = y1,t+1, or a broad market index. In either case, zt+1 can
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be represented as a portfolio:

zt+1 =
NX

i=1

wiyi,t+1,

where the portfolio weights wi are assumed to be known and may also vary over time.

In this setting, “pooled machine learning” Gu et al. (2020); Bianchi et al. (2021) has

become a very successful and popular methodology to obtain point predictions. Pooled ML

builds on the nonparametric model,

yi,t = g(xi,t�1) + ei,t

with an unknown function g(·), where ei,t is the error term. The unknown function g is

learned by pooling all observed data (cross-sectionally and over time) and solving a least

squares problem:

bg(·) = arg min
g2GML

NX

i=1

TX

t=1

(yi,t � g(xi,t�1))
2, (2.1)

where the optimal solution is searched for in a space GML that often corresponds to a fixed

machine learning method. For instance, for deep neural networks (DNN), GML includes all

possible neural network functions with predetermined width and length of the layers as well

as the activation function for each neuron; then bg(·) is found to be the one with the optimal

“bias” and “weights” for the neurons. Once bg(·) has been computed, the future return zT+1

is predicted by plugging in the most recent characteristic xi,T and constructing a portfolio:

bzT+1|T :=
NX

i=1

wibg(xi,T ). (2.2)

This method is very popular in academic studies and industry application. It will thus be

the primary forecasting method analyzed in this paper. Since all observations are pooled in

the cross-section and over all time periods, we call it “pooled ML”.

Despite the great popularity and empirical success of pooled ML, little work has been de-

voted to understanding the structure and sources of predictability. However, understanding

the structure of the prediction, bzT+1|T , is crucially important to quantifying the prediction

uncertainty. Recently, Fan et al. (2022) provide an insightful analysis by creating a natural
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bridge between the machine learning model and factor models, commonly used in empirical

asset pricing. Suppose the excess return yi,t can be represented as:

yi,t = ↵i,t�1 + �0
i,t�1

ft + ui,t

where ↵i,t�1 and �i,t�1 are respectively the “alpha” and “beta” of the asset; ft is the set

of (possibly latent) risk factors, and ui,t is the idiosyncratic return. In addition, suppose

characteristics are informative about factor loadings (betas) and mispricing (alpha), i.e.,

there are functions g↵ and g� so that we can rewrite alpha and beta as:1

↵i,t�1 = g↵(xi,t�1), �i,t�1 = g�(xi,t�1).

We can thus rewrite the asset pricing model as

yi,t = g↵(xi,t�1) + g�(xi,t�1)
0Eft + g�(xi,t�1)

0vt + ui,t, (2.3)

where vt := ft�Eft. Both vt and ui,t are mean-zero processes contributing to the error term:

ei,t := g�(xi,t�1)
0vt + ui,t, (2.4)

then the first term is the exposure to factor shocks, while the second term is the idiosyncratic

return. Next, suppose that the price of risk, i.e. Eft does not change over time. We can

define

g(x) := g↵(x) + g�(x)
0Eft. (2.5)

Then indeed, (2.3) can be formulated as the machine learning model yi,t = g(xi,t�1) + ei,t,

with g(·) and ei,t defined in (2.4) and (2.5) respectively. Therefore, by applying pooled ML

within the context of this model, Fan et al. (2022) show that the learned ML function bg(x)
is estimating g↵(x) + g�(x)0Eft. More formally, let Et denote the conditional expectation

given information up to t. Write

zT+1|T := ET zT+1.

1This formulation is formalizing the notion that firm characteristics are informative about risk exposures
which is also documented in Jagannathan and Wang (1996); Ferson and Harvey (1999); Gagliardini et al.
(2016); Kelly et al. (2019).
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The pooled ML function has the following (probability) limit:

bzT+1|T !P zT+1|T :=
NX

i=1

wi[g↵(xi,T ) + g�(xi,T )
0Eft].

This illustrates the source of the pooled ML predictability in forecasting the future ex-

pected return: it forecasts portfolio alpha,
PN

i=1
wi↵i,T and the risk premium of the portfolio,

PN
i=1

wi�0
i,TEft; both are key components of expected returns.

Understanding the forecast object of bzT+1|T is an essential first step towards understand-

ing machine learning predictability. The next and equally crucial problem is quantifying the

uncertainty of bzT+1|T . For instance, what is the standard error of bzT+1|T ? Can the forecast

standard error be used to interpret economists’ behaviors?

2.2 The Challenge of Non-iid Data

First, we discuss a main technical di�culty in deriving the forecast confidence interval for

pooled ML – strong cross-sectional dependence. Recall the standard ML model:

yi,t = g(xi,t�1) + ei,t. (2.6)

If the error term, ei,t, were independent over both i and t, then obtaining the FCI of the ML

forecast is considerably less complicated. We could merge i, t and treat the stacked data as

a long i.i.d. series. The model then would be equivalent to a standard forecast model:

yi = g(xi) + ei, i = 1, ..., NT.

In this formulation, the asymptotic distribution of Chen and White (1999) can potentially

be adapted to derive a forecast standard error.

However, the problem in the asset pricing context is far more sophisticated: the “noise”

term ei,t is far from being independent. The errors are not even weakly dependent (in the

near-epoch dependence sense). Take two firms, i, j then we can characterize their covariance

by using equation (2.4). We have the following expression,

Cov(ei,t, ej,t) = Eg�(xi,t�1)
0 Cov(ft)g�(xj,t�1) 6= 0.
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Clearly, we expect to see strong correlation because the firms are exposed to the same sources

of systematic risk. Hence, the pooled model (2.6) is not a usual ML model with i.i.d. errors.

This is the main reason why new methods are needed to incorporate the strong cross-sectional

dependence structure explicitly.2

3 The ML Forecast Confidence Interval

We shall propose two methods to derive a valid FCI for zT+1|T , when expected returns are

predicted by the ML model of equation (2.6). Our approach builds on two insights which

we will formally establish in Section 3.3.

The first is a relatively surprising theoretical result. In Theorem 1 we will show that the

forecast distribution is “not ML-specific”, in the sense that the asymptotic distribution of

bg(xi,T ) is the same regardless of the specific ML method – chosen from a relatively broad

class. This insight allows us to approximate the forecast standard error using an “easier

ML” method.

The second insight establishes that the dominant sources of uncertainty comes from the

time series. This is also far from obvious. The errors have strong cross sectional correlation,

but the asymptotic distribution of the ML predictor is largely driven by the time series

variation. Since asset returns are almost serially independent and the factor shocks can be

modelled as a martingale di↵erence sequence we can apply the time-series bootstrap. In the

following, we illustrate both methods.

3.1 Method I: “Easier ML” Approximation

We will show that there exists a function, ⇣⇤(·), so that we can write, asymptotically,

bzT+1|T � zT+1|T =
1

T

TX

t=1

At + oP (T
�1/2)

where
2One possibility of avoiding the strongly dependent noise is to treat factors as “interactive fixed e↵ects”

as in Bai (2009) and explicitly estimate them. However, the method in Bai (2009) or Freyberger (2018) does
not cover the case of sophisticated machine learning methods, nor is it the “standard” implementation in
the applied forecasting literature. We will therefore not pursue this approach.
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At :=
1

N

NX

i=1

⇣⇤(xi,t�1)�
0
i,t�1

(ft � Eft). (3.1)

The expression of At has three important implications:

First, the prediction error is mainly driven by the common factor shocks rather than the

idiosyncratic errors. Thus, the rate of convergence is OP (1/
p
T ), which is much slower than

OP (1/
p
NT ) for the usual panel data models. This is consistent with the previous discussion

that the errors of the pooled ML are cross-sectionally strongly dependent. The theoretical

analysis that leads to (3.1) is novel and cannot be deduced from existing results in the ML

literature.

Second, the precision of the ML forecast, measured by the standard error of At, is neg-

atively associated with the aggregated betas, the systematic risk exposures. Forecasts con-

ducted at times with higher systematic risk exposures are less precise than those conducted

at times with lower systematic risk exposures. This observation has broad implications as

it explains the mechanisms of some empirical findings. For instance, in financial accounting,

Choi et al. (2011) find that the width of disclosed firms’ earnings forecast range is positively

associated with the magnitude of the forecast surprise, which is also associated with periods

of high systematic risk.

The third implication is the most fundamental and perhaps quite surprising: while the

closed-form expression for the function ⇣⇤(·) is very di�cult to derive, it is completely de-

termined by the quantities from the asset pricing model (2.3), and does not depend on

the specific machine learning model GML in (2.1). That is, the ML-specific bzT+1|T does not

have an ML-specific asymptotic distribution. This is a powerful result. We can thus apply

various kinds of machine learning methods, neural networks, random forests, XG-boosting,

B-splines, etc., to estimate g(·), and they all have the same asymptotic distribution as deter-

mined by (3.1). The main intuition is that the predictor is obtained by optimizing a regular

loss function; it is the loss function rather than GML that completely determines the asymp-

totic distribution.This seemingly surprising result is not entirely unfamiliar in econometrics.

For instance, the asymptotic distribution of neural networks in the i.i.d. case, derived by

Chen and White (1999), also has the same insight that the asymptotic variance is “neural

network free”.

As the explicit expression of ⇣⇤(·) is very di�cult to derive, it is challenging to estimate
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the forecast standard error (FSE) directly. Fortunately, the insight that At is “not ML-

specific” motivates us to seek an “easier machine learning” method only for the purpose of

deriving its FSE, which is much easier to derive but asymptotically will be the same as that

of At. One of the simplest nonlinear ML methods are B-splines, which require specifying a

set of B-spline basis functions: �(x) = (�1(x), ...,�J(x)). Then B-spline regression searches

for the optimal function within a much smaller space:

GB := {�(x)0✓ : ✓ 2 RJ}.

Hence, the B-spline predictor is:

bgB(·) = �(x)0b✓, where b✓ := argmin
✓

NX

i=1

TX

t=1

(yi,t � �(xi,t�1)
0✓)2,

bzT+1|T,B :=
NX

i=1

wibgB(xi,T ). (3.2)

The fact that B-spline is an easier machine learning method arises from its OLS-type

analytic solution:

bgB(x) = �(x)0( 0 )�1
X

i,t

�(xi,t�1)yi,t

where  is the NT ⇥ J matrix stacking all �(xi,t�1) from the data. Therefore, we can easily

derive:

bzT+1|T,B � zT+1|T =
TX

t=1

H 0�0
t�1

�t�1vt + oP (T
�1/2) (3.3)

where W = (w1, ..., wN), �t�1 = (�(x1,t�1), ...,�(xN,t�1)), and H 0 = W 0�T ( 0 )�1. This

immediately gives us an asymptotic standard error:

SE(bzT+1) :=

vuut
TX

t=1

H 0�0
t�1

�t�1 Cov(ft)�0
t�1
�t�1H. (3.4)
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This is straightforward to estimate by: (for bet be the vector of bei,t := yi,t � bg(xi,t�1))

cSE(bzT+1) :=

vuut
TX

t=1

H 0�0
t�1

betbe0t�t�1H. (3.5)

It is important to keep in mind that we employ the B-spline only to compute the forecast

standard error. The forecast itself is still from a sophisticated neural network. The fact

that B-spline is also an ordinary machine learning method ensures that bzT+1|T,B should have

the same “not ML-specific” expression (3.1). This means the standard error SE(bzT+1) also

applies to At. Formally, we prove the following result:

cSE(bzT+1)
�1(bzT+1|T � zT+1|T ) !d N (0, 1), (3.6)

where bzT+1 is obtained via neural networks and SE(bzT+1) is obtained via B-splines.

Why sophisticated machine learning?

The above discussion may suggest that sophisticated ML methods, once they satisfy

some conditions, lead to the same standard error as the “simpler ML” does. It is therefore

tempting to ask why we should employ more sophisticated methods such as DNN in the first

place? The answer is that the benefits from using DNNs or related methods do not arise from

a smaller standard error, but from fewer constraints in handling highly nonlinear functions

and the capability of approximating a much larger class of functions. For instance, the

so-called “curse of dimensionality” has been a long-time challenge for usual nonparametric

methods (e.g., B-splines) even when the number of input features is only mildly large. The

simpler ML methods also have larger biases or slower rates of convergence due to more

constraints on their required assumptions, limiting their application. In contrast, DNN can

automatically adapt to the “intrinsic dimension” of the input features so that it converges to

the true unknown function with the fastest possible approximation rate, e.g., Schmidt-Hieber

(2020); Kohler and Langer (2021) for detailed theoretical analysis and Gu et al. (2020); Fan

et al. (2022) for more in-depth discussion of the advantages of using ML based forecasts in

asset pricing. Meanwhile, all we need from the simpler ML method is its standard error,

which requires much weaker conditions than using it as a predictor, so the aforementioned
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constraints are no longer concerns.

3.2 Method II: The k-step Bootstrap

The expression in equation (3.1) also admits the bootstrap as an alternative way of con-

structing a forecast confidence interval. The bootstrap requires fewer conditions than the

easy-ML-approximation method. For instance, it does not require that the simpler method

such as the B-spline approximates the true underlying function well. The bootstrap com-

putes the critical value by repeatedly resampling from the original dataset and using the

quantile of the recomputed ML-predictor from the resampled data. By doing so, it allows

avoiding explicitly estimating the standard error.

However, a limitation of the bootstrap procedure is its high computational demand.

For instance, estimation using B = 100 bootstrap datasets within each estimation window

would require training 100 separate neural networks, one for each bootstrap sample. Fully

training these neural networks is computationally very costly, thus limiting the applicability

of bootstrap-based DNN inference. To address this challenge, we propose a k-step bootstrap

method for DNN inference, which significantly reduces the computational burden.

The k-step bootstrap was originally proposed and studied by Davidson and MacKinnon

(1999); Andrews (2002). The idea is that, instead of fully training the neural network for

each bootstrap sample, we only train it iteratively for k epochs, with a relatively small k such

as 10 or 20. This approach leverages the observation that the fully trained DNN function

using the original data, bg(·), should provide an excellent starting point for training on the

bootstrap data. Thus, we initialize with bg⇤
0
(·) = bg(·) and then proceed with k epochs of

training, for example, using the Adam optimizer.

An important next question is how to generate bootstrap data. It is well known that

the validity of the bootstrap procedure crucially depends on how the bootstrap data is

generated, which in the asset pricing context, should properly capture the primary sources

of uncertainty in predicting expected returns. By studying the expression,

bzT+1|T � zT+1|T =
1

T

TX

t=1

At + oP (T
�1/2)

we find that the sampling uncertainty of pooled ML is mainly driven by the time series
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variation. Thus, we can cluster at the time-level, by applying the wild bootstrap to mimic

the sampling distribution of bzT+1|T .3 Specifically, let ⌘⇤t denote an i.i.d. sequence of standard

normal random variables and let bg(·) denote the learned prediction function using pooled-

ML. Define the bootstrap residuals as:

e⇤i,t = (yi,t � bg(xi,t�1))⌘
⇤
t . (3.7)

We then apply pooled ML (e.g., deep neural network) to the resampled excess return y⇤i,t =

bg(xi,t�1) + e⇤i,t and xi,t�1 to estimate the function bg in the bootstrap world, and repeat this

step many times to obtain bg⇤,1(xi,T ), ..., bg⇤,M(xi,T ) for a large numberM . The forecast critical

value, q⇤↵ would then be the 1� ↵ quantile of

�����
X

i

wibg⇤,1(xi,T )� bzT+1|T

����� , ...,

�����
X

i

wibg⇤,M(xi,T )� bzT+1|T

����� .

The full algorithm is given as follows:

k-step Bootstrap Algorithm.

Step 1. Generate ⌘⇤t ⇠ N (0, 1) independently; generate

e⇤i,t = (yi,t � bg(xi,t�1))⌘
⇤
t

y⇤i,t = bg(xi,t�1) + e⇤i,t.

Step 2. Run pooled-ML on the bootstrap resampled data: initialize at bg(·), and iterate over

k epochs. Obtain bg⇤(·).

Step 3. Repeat Steps 1-2, M times to get bg⇤1(·), ..., bg⇤M (·). Let q⇤↵ be the 1� ↵ quantile of

�����
X

i

wibg⇤,b(xi,T )� bzT+1|T

����� , b = 1, ...,M.

3If serial correlations are to be allowed, then block-bootstrap (Kunsch (1989)) or the stationary bootstrap
(Politis and Romano (1994)) is also applicable.
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The bootstrap 1� ↵ level FCI for zT+1|T is

[bzT+1|T � q⇤↵, bzT+1|T + q⇤↵].

Although the bootstrap is conceptually easy to apply, justifying its validity to approxi-

mate the asymptotic distribution correctly is typically hard. Theorem 3 in Section 3.3 does

just that. It is important to note that the bootstrap may fail, and it is not a panacea. For in-

stance, it is now well known that the usual bootstrap fails to provide valid inference when the

Lasso is used. Also, in the panel data setting, whether one should bootstrap cross-sectional

units or time series units is also crucial to determine the success of bootstrap, which does

not have a universal solution and has to be decided model-by-model. In our context, ex-

pression (3.1) clearly shows that it is the time series variation that determines the sampling

distribution of the pooled machine learning.4 In contrast, clustering at the firm-level (i.e.,

cross-sectional bootstrap) would fail to capture the strong cross-sectional dependence and

would lead to inconsistent results. We shall illustrate this in the simulation.

Therefore, our procedure’s novelty lies in the mathematically solid analysis of the pro-

posed bootstrap procedure. It is critical to let our theory guide the bootstrap, and to properly

reflect that the forecast uncertainty should be driven by the time-variation of factor-shocks

instead of the idiosyncratic noise. Due to the strong cross-sectional dependence, the boot-

strap residual, e⇤i,t, should depend on ⌘⇤t , the time series residuals. Resampling, ⌘⇤i , the

cross-sectional residuals or even, ⌘⇤it, the time-series and cross-sectional residuals will lead

to an incorrect implementation, and inference will no longer be valid. Intuitively, this hap-

pens because these implementations will vastly understate the uncertainty. We will illustrate

these failures in simulation in Section 6.

3.3 Theory

In this section we formally characterize the asymptotic distribution of predictor. It will

be shown that the predictor, learned from a sophisticated ML space GML, has the same

asymptotic distribution of the predictor learned from an “easier” nonparametric predictor

4In an asset pricing setting, the bootstrap is also applied in Kosowski et al. (2006); Fama and French
(2010); Harvey and Liu (2020); Chordia et al. (2020); Giglio et al. (2021).
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from GB. Formally, by an “easier” nonparametric predictor, we mean a space GB that collects

functions of the form �(x)0✓ with a growing number of basis functions in �(x).

The key technical assumption of our analysis is that both GML and GB should have well

controlled complexity should approximate the true underlying function well. The formal

assumption is stated below. Let G be a generic space of functions which can be either GML

or GB. Define the pseudo dimension p(G) as the Vapnik-Chervonenkis dimension of the

subgraph class {f(x, y) := sgn(h(x)� y) : h 2 G}. We shall require

p(G) log(NT ) = o(T 1/2)

Hence the machine learning method being used should not be over-parametrized. Assump-

tion 2 in the appendix provides a formal condition on the complexity of the ML methods.

Kelly et al. (2021); Didisheim et al. (2023) work with over-parametrized models in the

context of portfolio construction and show that complex models often perform better than

relatively simple models. Extending the theory to over-parametrized models as in their

setting for neural networks is a challenging an interesting research question, which we leave

for future research.

The following theorem characterizes the asymptotic expansion of the DNN index predictor

bzT+1|T , and shows that it is the same as if the index were predicted using a simpler method,

e.g. such as B-splines.

Theorem 1. Suppose
P

i |wi| < 1 and Assumption 1 and Assumption 2 in the appendix

hold. There is a function ⇣⇤(·) so that

bzT+1|T � zT+1|T =
1

T

X

t

1

N

X

i

⇣⇤(xi,t�1)�
0
i,t�1

vt + oP (T
�1/2). (3.8)

The function ⇣⇤ only depends on the joint distribution of (xi,t�1) and the realization xi,T , but

does not depend on whether GML or GB were used for constructing bzT+1|T . In other words,

the same asymptotic expansion holds with the same function ⇣⇤(·) if the “easier” ML space

GB were used in place of GML in the definition of bzT+1|T .

The important implication of this theorem is that, while it might be challenging to

directly compute the asymptotic standard error of the DNN predictor from the expansion,

we can easily adopt the standard error of the B-spline predictor cSE(bzT+1) as given in (3.5).
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The following theorem is one of our main results. It shows that this simple formula of

FSE can be used as the standard error for the DNN predictor to construct forecast confidence

intervals.

Theorem 2 (Easier ML approximation). Suppose
P

i |wi| < 1. Let bzT+1|T be the index

predictor using DNN. Then

cSE(bzT+1)
�1(bzT+1|T � zT+1|T ) !d N (0, 1).

In contrast to the “easier-ML”, the bootstrap does not require computing the analytical

standard error. For ease of technical proofs however, Theorem 3 below establishes the

asymptotic validity of the fully trained bootstrap neural networks. That is, let (y⇤i,t) denote

the bootstrap data. We prove for the case when the bootstrap DNN bg⇤(·) is defined as:

bg⇤(·) = arg min
g2GML

NX

i=1

TX

t=1

(y⇤i,t � g(xi,t�1))
2, (3.9)

where GML is the pooled-ML space, such as DNN.

Theorem 3 (Bootstrap). Suppose Assumptions 2 in the appendix holds, but it is only re-

quired to hold for the sophisticated ML GML, and the B-spline machine learning does not need

to satisfy it. Also Assumption 1 holds. Then for any ↵ 2 (0, 1),

P (|bzT+1|T � zT+1|T | < q⇤↵) ! 1� ↵,

where q⇤↵ is the 1� ↵ bootstrap sample as in Step 3 in the bootstrap algorithm.

4 Uncertainty-Aversion Under Deep-Learning Forecasts

In classic portfolio theory, it assumed that the investor knows the population moments that

determine her portfolio decision. One of the major challenges in operationalizing the theory

has been that these parameters have to be estimated and that estimation error can often

dominate the portfolio decision, see e.g. Jagannathan and Ma (2003); DeMiguel et al. (2009)

for classic examples.
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If the economist is aware of the forecast uncertainty, she will deviate from the population

solution of the mean-variance problem and transition to uncertainty-aversion (UA) positions.

Our goal of this section is to embrace the merits of good point predictions obtained from

machine learning models, while at the same time incorporating the estimation uncertainty

into the portfolio section problem.

While risk aversion and uncertainty-aversion share similarities in applications, economic

theory carefully distinguishes between the two, see Ellsberg (1961); Gilboa and Schmeidler

(1989, 1993); Schmeidler (1989); Epstein and Wang (1994). In the context of portfolio

selection, a risk-averse expected utility investor would behave exactly as if she knew the

expected return and (co)variances. An uncertainty averse investor however, would take

the estimation uncertainty into consideration and incorporate it into the portfolio selection

problem.

In this section, we show how uncertainty-aversion investors behave when using DNN

forecasts of expected returns with the quantified uncertainty we derived in the previous

section. We separately discuss two types of uncertainty-aversion implementations. The first

is a “no-holding” approach, e.g. (Dow and da Costa Werlang, 1992). This approach implies

that when the forecast uncertainty is too high, the dominating strategy would be not to

invest at all in risky assets, i.e. not hold a given risky asset at all. The other strategy

stems from the framework of robust optimization (Hansen and Sargent, 2008), which is less

conservative, but still leads to more cautious holdings of risk assets compared to the standard

mean-variance solution.

4.1 No-holding positions

We consider the allocation among multiple factor portfolios. Therefore, in this section we

shall use zT+1|T to denote a multivariate expected return of a set of factor portfolios, predicted

by bzT+1|T using pooled ML:

zT+1|T = (z1,T+1|T , ..., zR,T+1|T )
0, bzT+1|T = (bz1,T+1|T , ..., bzR,T+1|T )

0.

For instance,

bz1,T+1|T =
NX

i=1

wi,1bg(xi,T ),
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where wi,1 are the weights in the individual stock returns for the first asset.

Let ⌃T denote the covariance matrix of a set of portfolios zT+1 = (z1,T+1, ..., zR,T+1).

We focus only on the uncertainty of zT+1|T , setting aside the estimation uncertainty in the

covariance matrix, ⌃T .

Consider the following portfolio problem:

MV problem max
!

!0(bzT+1|T � 1rf )�
�

2
!0⌃T! (4.1)

where rf is the return on the risk-free asset, and � > 0 is the coe�cient of risk aversion. The

MV problem is often used for determining the mean-variance e�cient portfolio. However, it

takes bzT+1|T as given without accounting for its associated uncertainty. When the forecast

uncertainty is taken into account, bzT+|T yields a forecast confidence interval for the true

expected return

FCI = [bz1,T+1|T � q1,↵, bz1,T+1|T + q1,↵]⇥ · · ·⇥ [bzR,T+1|T � qR,↵, bzR,T+1|T + qR,↵]

where qi,↵ is the critical value for bzi,T+1|T � zi,T+1 under significance level ↵ obtained using

either the analytic forecast standard error or bootstrap. For instance, using the “easier ML”

FSE, we can take

qi,↵ = SE(bzi,T+1)⇥ ✏↵

where ✏↵ is the quantile of the standard normal distribution. If the investor has high uncer-

tainty aversion, she could use ✏↵ = 2.5758, corresponding to a 99% confidence interval. For

the bootstrap, we can use

qi,↵ = q⇤i,↵

which is the 1� ↵ quantile of the bootstrap critical value for bzi,T+1|T . In practice, it is also

desirable to control for the Type I error rate for multiple testing, in which case, one can set

↵ = 0.05/R as in the Bonferroni correction.

To incorporate the FCI into the portfolio selection problem, (4.1), consider the max-min

problem as follows.

UA-MV problem max
!

min
µ2FCI

!0(µ� rf )�
�

2
!0⌃T!. (4.2)
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It aims to find the optimal portfolio weights under the “worst scenario” of the predicted

expected return within the FCI. Therefore, unlike the classical mean-variance portfolio se-

lection in which the predicted bzT+1|T in place of ET zT+1, the UA-constraint problems admit

more possible values the expected return might take due to forecast uncertainty.

In this section we shall characterize the solutions to (4.2). A key result is that the solution

yields a “no-holding” position.

4.1.1 One risky and one risk-free asset

We will start with the classic example of allocating between one risky asset and the risk-free

asset. Denote the portfolio weight in the risky assets as !. The estimated expected return

of the risky asset is bzT+1|T , the true but unknown expected return is µ and its variance

is denoted �2. With the additional uncertainty from estimation, the mean-variance (MV)

problem is studied by Garlappi et al. (2007) and is given by:

max
!

min
µ

!µ+ (1� !)rf �
�

2
!2�2, (4.3)

subject to:

|µ� bzT+1|T |  q↵. (4.4)

Here �2 is the variance of zT+1. There are also two scalar parameters: � is the coe�cient

of risk aversion and q↵ is the constraint that reflects the investor’s aversion to uncertainty,

which also corresponds to the (1� ↵)-confidence level for the predicted expected return.

The uncertainty-averse MV problem has an insightful representation, as shown as in the

following theorem. We denote (x)+ = max{x, 0} and sgn(x) denote the sign of x. Extending

the study of Garlappi et al. (2007), the following theorem shows that the solution can be

characterized using `1-penalization, known as “Lasso” regularization:

Theorem 4. The uncertainty-constraint MV problem (4.3)- (4.4) is equivalent to the fol-

lowing Lasso-problem:

!NH = argmin
!

1

2

�
! � !MV

�2
+ �↵|!|

and the optimal solution is

!NH = sgn(!MV)(|!MV|� �↵)+
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where

!MV =
bzT+1|T � rf

��2
, �↵ =

q↵
��2

.

In the above theorem, !MV is the classic mean-variance portfolio without uncertainty

constraints, i.e. the solution to

max
!

!bzT+1|T + (1� !)rf �
�

2
!2�2.

The theorem explains the reason why the UA-MV problem yields no-holding positions in the

solution, as solving the uncertainty-constraint problem is equivalent to solving a Lasso-type

`1-penalized regression problem, which has an analytic solution !NH that yields zero as one

of the solutions. This facilitates the practical computations.

More importantly, this result gives a direct economic interpretation of the UA-MV prob-

lem. First, the optimal !NH is zero (“no-holding”) whenever |bzT+1|T � rf |  q↵. That is,

when the investor’s prediction bzT+1|T is close enough to the risk-free rate, whose di↵erence

is smaller than her uncertainty tolerance, she would hold no position in the risky asset. The

intuition lies in the nature of uncertainty aversion: we note that |bzT+1|T � rf |  q↵ means

the investor finds insignificance for testing the following null hypothesis:

H0 : zT+1|T = rf .

Her preference is then investing solely in the risk-free rate without bearing any risk.5

Second, the optimal !NH continuously evolves when |bzT+1|T � rf | > q↵, that is, the

investor predicts that the expected return of the risky asset is significantly di↵erent from the

risk-free rate. She will then start investing in the risky asset, and the decision of whether

short- or long- the risky asset (the sign of !NH) is determined by the sign of bzT+1|T � rf .

But even in this case, the investor will still invest more cautiously in the risky asset, by

shrinking her investment towards the risk-free rate. For instance, suppose the investor finds

that bzT+1|T > rf + q↵, then her allocation in the risky asset is

!NH = !MV � q↵
��2

> 0.

5Bessembinder (2018) performs an extensive empirical investigation of this hypothesis and finds that
many stocks indeed do not outperform treasuries ex-post.
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Instead of adopting the classical mean-variance portfolio, she reduces her allocation to the

risky asset, and the amount of reduction, q↵/(��2), reflects her tolerance of uncertainty,

which is also due to the nature of risk aversion.

-1 0 1

MV
 

0

NH

0 0.2 0.4 0.6

FSE 

0

NH (when MV>0)

Figure 1: The !NH position. The left panel fixes the level of FSE and compares !NH with
the regular !MV, whereas the right panel fixes the value of !MV and plots !NH as a function
of FSE.

To illustrate !NH, the left panel of Figure 1 plots the lasso function with respect to

various magnitudes of the classical MVE portfolio. Here we fix the level of FSE and thus

q↵. As we can see, !NH is zero for small magnitudes of |!MV|, i.e. the investor does not

allocate towards this asset. It starts to increase but with cosntant shrinkage relative to the

MVE as the later deviates from zero. The right panel plots !NH with respect to the change

of forecast standard error and a fixed !MV. As FSE increases meaning that the economists

starts to takes into account the forecast uncertainty, her position in the risky asset decays

linearly, and eventually becomes zero.

In their seminal work, Dow and da Costa Werlang (1992) extend the expected-utility

framework to incorporate the uncertainty arising from unknown probabilities for portfolio

choices. Their study reveals that, under uncertain distributions of present values, there exists

a range of prices within which investors have no position in the asset, and that this range of

prices depends only on the attitudes and beliefs about uncertainty. Crucially, their findings

elucidate an inherent economic intuition – uncertainty aversion induces a “no-holding” e↵ect

in investors’ positions, reflecting a range of estimated payo↵s in which no-holding is strictly

better than investing in the asset.
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Similarly, we have established the e↵ect of “no-holding” position in the context of forecast

uncertainty in portfolio allocation: there exists a range of forecast expected returns within

which uncertainty-averse investors would not invest in the risky asset. Notably, this range

of expected returns is determined by the sign of |bzT+1|T � rf | � q↵, i.e., the significance of

comparing the predicted mean return and the risk-free rate. It is then clear that uncertainty-

averse investors would reduce their exposure to the risky asset by shrinking their investment

in the risky asset towards the risk-free asset.

4.1.2 Multiple risky assets

We now consider the problem where at the end of period T , the investor would like to

allocate her portfolio into R risky asset whose expected returns are zT+1|T . To incorporate

her uncertainty constraints for allocating her portfolio onto these R risky assets, the investor

then formulates a multivariate, constrained, mean-variance problem:

max
!=(!1,...,!R)

min
µ1,...,µR

RX

i=1

!iµi �
�

2
!0⌃T!

subject to the constraint on (!, µ1, ..., µR):

RX

j=1

!j = 1, |µi � bzT+1|T,i|  q↵,i, i = 1, ..., R.

The following theorem shows that the uncertainty constraint MV-problem can also be

formulated as a Lasso-type problem, which shrinks the portfolio weights w1, ..., wR towards

zero. In addition, the Lasso penalty equals q↵,i, which is proportional to the length of the

ML-based forecast confidence interval.

Theorem 5. The multivariate constraint MV portfolio allocation can be cast as a Lasso-

problem as follows:

min
!=(!1,...,!R)

�

2
!0⌃T! �

RX

i=1

!ibzT+1|T,i +
RX

i=1

q↵,i|!i|, subject to
X

i

!i = 1.

To see how the portfolio shrinkage is determined by the investor’s risk aversion, let us
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focus on the case when there are two risky assets (R = 2). Then the optimal portfolio has

a closed form solution: (the proof is given in the appendix) for k, j 2 {1, 2} and k 6= j, and

c0 = ��1 Var(zT+1,1 � zT+1,2)�1

!⇤
k =

8
>>><

>>>:

0 when � c0(q↵,1 + q↵,2) < !MV

k < c0(q↵,k � q↵,j)

!MV

k + c0(q↵,1 + q↵,2) when !MV

k < �c0(q↵,1 + q↵,2)

!MV

k � c0(q↵,k � q↵,j) when !MV

1
> c0(q↵,1 � q↵,2) and !MV

2
> c0(q↵,2 � q↵,1)

.

(4.5)

Here !MV

k is the usual mean-variance e�cient portfolio: !MV

2
= 1� !MV

1
and

!MV

1
:= argmax

!2R
!bzT+1|T,1 + (1� !)bzT+1|T,2 �

�

2
!0⌃T!, ! = (!, 1� !)0.

As the expression of the optimal portfolios !⇤
1
and !⇤

2
is symmetric, we focus on !⇤

1
. To

explain the economic insights, let us consider and compare the behavior of two investors:

one MV-investor, who would adopt the classical unconstrained mean-variance portfolio !MV

1
;

and one UA-investor, who is uncertainty averse and would adopt !⇤
1
.

Consider the first case of (4.5). The “no-holding” position !⇤
1
= 0 appears whenever

|!MV

1
+ q↵,2c0|  q↵,1c0. (4.6)

To understand the intuition, recall that q↵,k measures the UA-investor’s degree of uncertainty

aversion. The higher q↵,k, the more cautious she is when allocating to asset k, and vice versa.

Suppose q↵,2 ! 0 and is much smaller than q↵,1. When (4.6) holds, then

|!MV

1
|  q↵,1c0[1 + o(1)],

meaning that the MV-investor will not invest much in zT+1,1, whose allocated portfolio weight

is no more than approximately q↵,1c0. Meanwhile, as q↵,2 is very small, the UA-investor has

little uncertainty about the predictor bzT+1|T,2, so she would be better o↵ allocating all her

assets in zT+1,2, and thus !⇤
1
= 0.

Next, consider the second case of (4.5). Suppose !MV

1
< �c0(q↵,1 + q↵,2), then !MV

1
< 0,

meaning that the MV-investor would short zT+1,1. Meanwhile, the UA-investor would also

short zT+1,1, because !⇤
1
= !MV

1
+ c0(q↵,1 + q↵,2) < 0, but she would short less on zT+1,1
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and shrink her allocation towards zT+1,2 as !MV

1
< !⇤

1
< 0. The amount of shrinkage is

c0(q↵,1 + q↵,2). Therefore, the UA-investor is more cautious than the MV-investor when

shorting zT+1,1.

Finally, consider the third case of (4.5). Then

!⇤
1
= !MV

1
� c0(q↵,1 � q↵,2), which is

8
<

:
< !MV

1
if q↵,1 > q↵,2

> !MV

1
if q↵,1 < q↵,2.

When q↵,1 > q↵,2, this case implies !MV

1
> c0(q↵,1� q↵,2) > 0, so the MV-investor would long

zT+1,1. Meanwhile, because the UA-investor is more uncertain about zT+1,1 than zT+1,2, so

her allocation in the first asset would satisfy 0 < !⇤
1
< !MV

1
, meaning that she would shrink

her allocation toward zT+1,2, and the amount of shrinkage is c0(q↵,1 � q↵,2), proportional to

the di↵erence of the degrees of uncertainty. The case when q↵,1 < q↵,2 follows from a similar

insight due to the symmetry between !⇤
1
and !⇤

2
.

In summary, the UA-constrained portfolio will contain many zero positions, reflecting the

caution of the uncertainty averse investor. In general, the UA-investor allocates her portfolios

more cautiously than the MV-investor by shrinking her allocation towards assets that she

is less uncertain about their predicted mean returns. Such a shrinkage e↵ect reduces the

allocation compared to the classical mean-variance portfolios, and the amount of reductions

depends on the investors’ degree of uncertainty aversion.

4.2 Risk-Sensitive Optimization

The UA-constraint portfolio allocation, as we studied in the previous subsection, takes a

typical no-holding position, which may be considered too conservative by some economists.

In this subsection we consider a less conservative framework that also accounts for the

forecast uncertainty, following closely to the ambiguity literature in Hansen and Sargent

(2008), among many others.

4.2.1 One risky and one riskless asset

Anderson and Cheng (2016) formulate a mean-variance optimization for choosing portfolio

allocations that are robust to misspecifications in the predictive model. To take an example
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where there is one risky asset with return zT+1 and a risk-free asset rf , their problem is

formulated as:

max
!

min
pT

!EpT (zT+1) + (1� !)rf �
�

2
!2 VarpT (zT+1) +

1

⌧
D(pT ||fT ) (4.7)

where both pT and fT are probability density functions, and EpT (zT+1) and VarpT (zT+1)

respectively denote the expectation and variance of the future risky return with respect

to the distribution pT ; D(pT ||fT ) denotes the Kulback-Leibler divergence from fT to pT .

Therefore, di↵erent from the UA-constrained problem, (4.7) introduces an inner optimization

with respect to the density function pT with an additional measure D(pT ||fT ). This problem
is also called “risk-sensitive optimization” by Hansen and Sargent (2008).

The idea is that the investor takes fT as the benchmark predictive density of zT+1, but

she is concerned that fT might be misspecified. So she considers an alternative predictive

density pT for the risky return, and constructs portfolio choices to maximize utility on the

worst specification of pT . Meanwhile, the investor also has the belief that fT is “reasonably

specified”, so by introducing the penalization term D(pT ||fT ), she focuses on alternatives

that are close to fT . The scalar parameter ⌧ is a measure of the investor’s uncertainty

aversion. One suggestion of Anderson and Cheng (2016) is to use the benchmark predictive

density

fT ⇠ N (bzT+1|T , �
2

T ), (4.8)

which directly uses the predicted return bzT+1|T as the mean of the predictive density, and is

interpreted as “the agent’s best approximation for the distribution (of returns)”.

Importantly, in the Anderson-Cheng model, the incorporated uncertainty is from the

density ft of the true future return, rather than the uncertainty from the prediction bzT+1|T .

It can be easily shown that the solution is equivalent to the MV-portfolio with an increased

risk-aversion parameter ⌧ + �. Hence benchmarking against (4.8) does not incorporate the

prediction uncertainty, which could yield portfolios that are too aggressive to be robust to

sudden changes of market and idioscyncratic risk.

To account for the uncertainty of the prediction bzT+1|T , which in our applications is

the pooled ML (e.g., DNN) forecast, we suppose the investor as a prior distribution of the

expected return:

p(zT+1|T ) ⇠ N (⇡, v)
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where (⇡, v) respectively denote the prior mean and prior variance. Meanwhile, the asymp-

totic distribution of the ML forecast is approximately (as proved in Theorem 2):

p(bzT+1|T |zT+1|T ) ⇠ N (zT+1|T ,FSE
2)

where FSE = SE(bzT+1) is the forecast standard error obtained using easy-ML. This distribu-

tion serves as the likelihood function, which then yields a posterior distribution of the future

raw return zT+1:

fT (zT+1) =

Z
p(zT+1|zT+1|T )p(zT+1|T )p(bzT+1|T |zT+1|T )dzT+1|T ⇠ N (ezT+1, e�2

T )

where ezT+1 and e�2

T are the posterior mean and variance, respectively given by

ezT+1 = (1�W1)bzT+1|T +W1⇡, e�2

T = vW1 + �2

T , W1 =
FSE2

FSE2 +v
.

In addition, we focus on pT taking the form:

pT ⇠ N (µ, e�2

T ),

where µ 2 R is unspecified and we search for the optimal µ in the inner optimization of (4.7).

This allows us to concentrate on the mean forecast as the main source of misspecification. In

this case, the Kullback-Leibler divergence for two normal distributions is simply D(pT ||fT ) =
1

2e�2
T
(ezT+1|T � µ)2. Therefore, the optimal portfolio can be obtained as:

!RS := argmax
!

min
µ

!µ+ (1� !)rf �
�

2
!2e�2

T +
1

2⌧e�2

T

(ezT+1|T � µ)2

To characterize the solution, let

!MV =
bzT+1|T � rf

�2

T�
, !MV

⇡ =
⇡ � rf
�2

T�

be the MV portfolios based on the predicted mean bzT+1|T and the prior mean ⇡. Then it
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can be shown that the solution is

!RS =
⇥
!MV(1�W1) + !MV

⇡ W1

⇤ �2

T

vW1 + �2

T

�

⌧ + �
. (4.9)

Therefore, when taking into account the forecast uncertainty, !RS conducts a double shrink-

age: First, it shrinks !MV towards !MV

⇡ due to the weight W1. Second, it shrinks the overall

portfolio towards zero due to the factor
�2
T

vW1+�2
T
.

To further shed light on the e↵ect of incorporating forecast uncertainty to the shrinkage

portfolio, we recall that W1 = FSE2 /(FSE2 +v), hence !RS can be written as an explicit

function of FSE that shrinks the mean-variance portfolio: !RS = g(FSE), where

g(s) :=
⇥
!MV(1�W (s)) + !MV

⇡ W (s)
⇤ �2

T

vW (s) + �2

T

�

⌧ + �

W (s) :=
s2

s2 + v
.

The monotonicity of g(·) depends on the relative magnitude between !MV and a ⇥ !MV

⇡ ,

where a =
�2
T

v+�2
T
. If !MV > a!MV

⇡ , then g(·) is decreasing; otherwise g(·) is increasing. As SE
increases, the ML-forecast becomes more uncertain, which means we should rely less on the

mean-variance portfolio !MV because it is built on bzT+1|T . This prompts uncertainty-averse

investors to adopt strategies that move in the opposite direction relative to the traditional

MVE-position that does not incorporate the forecast uncertainty.

As an illustration, the left panel of Figure 2 compares !RS with !MV as the latter increases

with a fixed FSE. Clearly !RS increases linearly in !MV but at a slower rate because of the

linear shrinkage e↵ect. The right panel plots the g(·) function with respect to the forecast

standard error. in the case !MV > a!MV

⇡ . This case intuitively means that the traditional

MVE-position suggests holding a “large” position in the risky asset. As FSE increases, the

uncertainty-averse investor would decrease her position on the risky asset, i.e., moving in

the opposite direction relative to !MV. There is however, no zero-position. As forecast

uncertainty increases, !RS converges to a “discounted” MV portfolio that relies solely on

prior beliefs:

g(1) = !MV

⇡

�2

T

v + �2

T

�

⌧ + �
,

Essentially, when forecast uncertainty is extremely high, the portfolio is predominantly
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Figure 2: The !RS position. The left panel fixes the level of FSE and compares !RS with
the regular !MV, whereas the right panel fixes the value of !MV and plots !RS as a function
of FSE for the case !MV > a!MV

⇡ .

guided by prior beliefs, minimizing the impact of the predicted expected returns.

4.2.2 Multiple risky assets

The framework outlined in the previous subsection can be extended to the scenario of multiple

risky assets. We obtain the pooled ML forecast bzT+1|T for the R-dimensional expected return

zT+1|T . Let SE
2 be the forecast covariance matrix of bzT+1|T , and let ⌃T be R⇥R covariance

of zT+1� zT+1|T . We impose a multivariate normal prior zT+1|T ⇠ N (⇡, v), where v is R⇥R

prior covariance matrix, set to v = g⌃T for some g > 0 as in Zellner’s g-prior. Then the

posterior of the predictive density for the N -dimensional zT+1 is fT (zT+1) ⇠ N (ezT+1, e⌃),
where for W1 = SE2(SE2 +v)�1,

ezT+1 = (I �W1)bzT+1|T +W1⇡, e⌃ = ⌃T + vW 0
1
.

Now consider the problem: for pT ⇠ N (µ, e⌃):

!RS := arg max
!2RN

min
µ2RN

!0(µ� 1Nrf )�
�

2
!0e⌃! +

1

⌧
D(pT ||fT )

=
�

⌧ + �
e⌃�1⌃T

⇥
(I �W1)

0!MV +W 0
1
!MV

⇡

⇤
(4.10)
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where

!MV = ⌃�1

T (bzT+1|T � 1Nrf )
1

�
, !MV

⇡ = ⌃�1

T (⇡ � 1Nrf )
1

�

are respective the mean-variance portfolios based on bzT+1|T and ⇡. Hence !RS still conducts

a double shinkage: First, it shrinks !MV towards !MV

⇡ due to the weight W1. Secondly, it

shrinks the overall portfolio towards zero due to the factor e⌃�1⌃T .

Note that as g ! 1, the prior becomes more di↵usive, then W1 ! 0, hence more

weights are imposed on !MV. The resulting portfolio !RS becomes less robust to the forecast

uncertainty in bzT+1|T . We shall see the impact of this in the empirical study.

4.3 Comparing the two uncertainty-aversion strategies

It is interesting to note that unless FSE= 0, !RS will never hold zero positions in the risky

asset. That is, the “no-holding” position never appears in the risk-sensitive optimization

framework. As such, while both !NH and !RS are uncertainty-averse, the latter is less

conservative in the sense of always holding a non-zero position on the risky asset, even

though the position monotonically varies with the FSE. This feature can distinguish the

application scopes of the two strategies for which each strategy is more suitable. The risk-

sensitive strategy !RS, being less conservative, is suitable to scenarios when economists prefer

to always investing on the risky asset to stimulate the economy growth. In contrast, the !NH,

due to the no-holding position, is suitable when the economist is highly concerned about the

forecast uncertainty.

Quantifying the uncertainty in machine learning forecasts is also crucial beyond finan-

cial economics, especially in applications that involve high-stakes decision-making. In au-

tonomous driving (AD), for instance, complex sensing systems installed on autonomous

vehicles predict the real-time locations of surrounding vehicles to assess whether it is safe to

change its driving trajectory (as illustrated in the leftmost panel of Figure 3). Uncertainty

estimation in such ML predictions helps enhance the safety and reliability of autonomous

vehicles, as it allows the system to account for potential errors or anomalies in its predictions

(Han et al., 2022; Su et al., 2023).

An uncertainty-averse approach in AD aims to handle prediction uncertainty by estab-

lishing an “uncertainty circle,” similar to a confidence interval, around the forecast position

of nearby vehicles. The AD system then plans a robust trajectory that completely avoids
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this uncertainty circle. By doing so, it takes a max-min approach, optimizing the trajectory

to account for the worst-case scenario: the possibility that the front vehicle might be at any

point within this uncertainty circle. This approach takes a conservative risky action that

reduces the risk of collision or other hazards (as depicted in the middle panel of Figure 3).

Figure 3: Uncertainty-aversion of the AD system. Left panel: AD designs a trajectory based
on the forecast position of the front vehicle without considering uncertainty; middle panel:
AD adjusts to a “shrinkage” trajectory for the worst-case position within the uncertainty
circle; right panel: AD opts for a “no-holding” position when uncertainty is too high.

Furthermore, if the uncertainty circle becomes large enough to significantly overlap with

an adjacent lane, the AD system will conclude that the optimal strategy is to remain in the

current lane rather than adjusting its trajectory. In this scenario, the system opts for a no-

action position or no-holding position (as shown in the rightmost panel). This conservative

approach reflects a cautious, uncertainty-averse approach where the system avoids any risky

actions associated with a lane change.
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5 Empirical Analysis

5.1 Data

We take the dataset of Jensen et al. (2022) as our starting point. It uses stock returns, volume

and price data from the Center for Research in Security prices (CRSP) monthly stock file.

Following standard conventions in the literature, we restrict the analysis to common stocks

of firms incorporated in the US trading on NYSE, Nasdaq or Amex. Balance sheet data

is obtained from Compustat. In order to avoid potential forward looking biases, we lag all

characteristics that build on Compustat annual by at least six months and all that build on

Compustat quarterly by at least four months. In order to mitigate a potential back-filling

bias as noted by Banz and Breen (1986), we discard the first 24 months for each firm.

We use moving windows for estimation and predicting the market excess returns, in which

we fix the window size at T = 240 for estimation. The first prediction occurs for December

1964, and the last prediction is for December 2021.

5.2 Implementation

In each estimation window, we fit a DNN function bg(·), which is a three-layer feedforward

neural networks with 32, 16 and 8 neurons the hidden layers. After fitting the neural network,

we substitute in the firm level characteristics xi,T , and predict the individual stocks at month

T + 1 as

byi,T+1|T = bg(xi,T ).

Note that the DNN function is fit using an unbalanced panel in the 240-month estimation

window. We then focus on R risky assets zT+1 = (zT+1,1, ..., zT+1,R)0, where each asset is a

portfolio: zT+1,k = W 0
kYT+1 with Yt = (y1,t, ..., yN,t)0. These risky asset returns are predicted

by

bzT+1|T,k = W 0
k
bYT+1|T , bYT+1 = (bg(x1,T ), ..., bg(xN,T ))

0. (5.1)

To determine Wk, we use the principal components of sorted portfolios. To this end, we

first construct d = 110 sorted portfolios S 0
j,tYt+1, one from each characteristic:

S 0
j,t =

�
x0
t,jMtxt,j

��1

x0
t,jMt, j = 1, ..., d
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where xt,j is the Nt- dimensional characteristic vector of the j th characteristic, and Mt =

I � 1Nt1
0
Nt
/Nt with Nt being the number of stocks at period t. Let St = (S1,t, ..., Sd,t)Nt⇥d be

the matrix of sorted portfolio weights. We then take zt+1,k as the k th principal component

from {S 0
tYt+1, t = 1, ..., T} by computing ⇠k as the d-dimensional eigenvector corresponding

to the k th largest eigenvalue. Hence

W 0
k = ⇠0kS

0
T/

p
d, k = 1, ..., R.

We implement the “easy ML approximation” method to compute the forecast standard

error, which uses a Fourier basis expansion �(x) = (sin(2j⇡x), cos(2j⇡x), j = 1...4) and Wk

as the portfolio weighting vector for the k the index. The standard error cSE(bzT+1,k) is then

used for the uncertainty averse portfolio allocation. We set the risk-averse parameter � = 1

throughout the study.

As for the volatility ⌃T , we apply the factor-based covariance estimator of Fan et al.

(2013) to S 0
tYt and denote it by V . Then

⌃T =
1

d
⇠0V ⇠, ⇠ = (⇠1, ..., ⇠R)d⇥R.

We do not consider the uncertainty from estimating ⌃T in this paper, leaving the FCI of ML

forecasts of the volatility for future research.

5.3 The out-of-sample performance of the no-holding strategy

The out-of-sample performance is assessed by the annualized Sharpe ratio, computed by the

actual out-of-sample excess return !⇤0(zT+1 � rf ) from January 1983 to December 2021.

We implement the uncertainty-portfolio !⇤, setting the uncertainty level respectively as

25%, 50%, 75% and 95% confidence levels. As the confidence level becomes larger, the in-

vestor has higher uncertainty aversion, and is more cautiously investing based on the forecast

mean return. The benchmark portfolio is taken as the usual mean-variance (MV) e�cient

portfolio, which is a normalized vector of ⌃�1

T bzT+1|T . Each chosen portfolio is normalized so

that the annualized in-sample standard deviation is fixed to twenty percent in each estima-

tion window.

Table 1 shows the annualized mean, standard deviation and Sharpe ratio of the out-of-
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Table 1: Annualized Results of No-holding uncertainty-averse portfolios

This table shows annualized mean, standard deviation (STD), and Sharpe ratio (SR) of the out-of-sample
return !0zT+1. Here MV represents the mean-variance e�cient portfolio and UA-MV represents the no-
holding uncertainty-averse portfolios with confidence levels 25%, 50%, 75% and 95%. The specified R is the
number of risky factor to invest. The forecast standard error is computed using 240 months in-sample data
for each monthly forecast.

MV and UA-MV portfolios
MV 25% 50% 75% 95% MV 25% 50% 75% 95%

R = 20 R = 40
mean 0.715 0.703 0.681 0.651 0.583 0.932 0.916 0.887 0.837 0.721
STD 0.390 0.376 0.355 0.331 0.289 0.580 0.556 0.524 0.480 0.399
SR 1.831 1.871 1.917 1.968 2.018 1.607 1.648 1.693 1.742 1.805

R = 60 R = 110
mean 1.213 1.193 1.155 1.099 0.958 1.994 1.957 1.902 1.843 1.608
STD 0.740 0.713 0.677 0.621 0.524 1.147 1.111 1.052 0.970 0.817
SR 1.639 1.671 1.706 1.768 1.827 1.738 1.761 1.806 1.900 1.967

sample excess returns of these portfolios. In general, as we increase the confidence level,

the investment is indeed more cautious, yielding less expected returns. Take R = 60 as

an example, the out-of-sample annualized excess return is 1.213 for the MV-portfolio, and

reduces to 0.958 for the 95% uncertainty-averse portfolio. Meanwhile, the uncertainty-averse

investment yields reduced risk, with standard deviation reduces from 0.74 of the MV-portfolio

to 0.524 of the 95% uncertainty-averse portfolio. The annualized Sharpe ratio increases as

the level of uncertainty aversion increases.

The upper panels of Figure 4 plots the annualized mean, standard deviation (STD) and

Sharpe Ratios of out-of-sample excess returns of the UA-portfolios versus various confidence

levels. The label “MV” corresponds to the usual mean-variance portfolio directly using the

DNN predicted return. Both mean and STD of the returns decrease as the level of confidence

increases. The Sharpe ratio monotonically increases with the confidence level. The bottom

panels of Figure 4 plots the same quantities with respect to the and number of indices R.

Both mean and STD of excess returns increase as R increases. Meanwhile, the Sharpe ratio

exhibits a “W” shape as R increases across all confidence levels. From the bottom right

panel, the amount of change in Sharpe ratio with respect to R is less pronounced at higher

confidence levels, indicating that tolerating more uncertainties help to stabilize the economic
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Figure 4: Upper panels: Annualized Mean, STD and Sharpe Ratios versus various confidence
level; Bottom panels: Annualized Mean, STD and Sharpe Ratios versus R.

performance in managed portfolios.

Next, we analyze the impact on the no-holding position from forecast standard errors.

We take R = 110 as an example, and compute the average forecast standard error, as well

as the percentage of no-holding positions in the ⌧ th estimation window:

FSE⌧ =
1

R

RX

k=1

cSE(bzT⌧+1,k), NH⌧ =
1

R

RX

k=1

1{|!⇤
T⌧ ,k| < c},

where zT⌧+1,k and !⇤
T⌧ ,k respectively denote the forecast return and the UA-MV portfolio of

the k the asset of the ⌧ th estimation window. We set c = 10�4 as the threshold to determine

whether a position is “nearly zero”. Figure 5 plots the 24-month moving averages of FSE⌧

and NH⌧ . Except for a brief period in 2003, the two series demonstrate roughly similar trend

over most time periods.
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Figure 5: Moving averages of no-holding percentages and averaged FSE. The no-holding
percentage is defined as NH⌧ with R = 110 portfolios.

5.4 The Risk-Sensitive approach

We now implement the alternative uncertainty-averse portfolio using the Risk-Sensitive ap-

proach as described in (4.10). In each estimation window of size 240 months, we set the

prior mean ⇡ as the in-sample average return of the portfolio zt with Zellner’s g 2 {0.5, 1, 2}.
Table 2 reports the annualized results.

Recall that as g increases, the UA-RS portfolio is closer to the regular MV- portfolio,

hence becomes less robust to the forecast uncertainty in the predicted returns. This is clearly

illustrated in Table 2: larger g in the prior yields larger out-of-sample risk in the managed

portfolio, resulting smaller annualized Sharpe ratio in all settings.

6 Simulation

We conduct Monte Carlo simulations to assess the constructed confidence intervals, using a

data generating process (DGP) calibrated from real excess return data, the monthly returns

of 3184 firms from January 2015 through December 2017 (calibrated period). Simulated

data are generated from a conditional three–factor model, with d characteristics as follows:

xi,t,k =
1

N
rank(x̄i,t,k), x̄i,t,k = 0.7x̄i,t�1,k + 0.5✏i,t,k, ✏i,t,k ⇠ N (0, 1).
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Table 2: Annualized Results of Risk-Sensitive uncertainty-averse portfolios

This table shows annualized mean, standard deviation (STD), and Sharpe ratio (SR) of the out-of-sample
return !0zT+1. Here MV represents the mean-variance e�cient portfolio and UA-RS represents the
uncertainty-averse Risk-sensitive portfolios, in (4.10) with prior N (⇡, g⌃T ). The specified R is the num-
ber of risky factor to invest. The forecast standard error is computed using 240 months in-sample data for
each monthly forecast.

MV and UA-RS portfolios
MV g = 0.5 g = 1 g = 2 MV g = 0.5 g = 1 g = 2

R = 20 R = 40
mean 0.715 0.732 0.726 0.724 0.932 0.946 0.937 0.932
STD 0.390 0.338 0.346 0.352 0.580 0.452 0.469 0.480
SR 1.831 2.162 2.096 2.056 1.607 2.091 1.997 1.939

R = 60 R = 110
mean 1.213 1.206 1.196 1.189 1.994 1.913 1.913 1.914
STD 0.740 0.548 0.570 0.584 1.147 0.716 0.743 0.765
SR 1.639 2.199 2.099 2.036 1.738 2.670 2.573 2.502

The characteristics are generated via AR(1), then normalized by taking the cross-sectional

ranking. Characteristics within firm i have strong temporal dependence over time, but they

are independent across firms. The �-functions are generated as follows:

g�,1(x) = x1x2, g�,2(x) =
1

d

dX

j=1

x2

j , g�,3(x) = median{x1, ..., xd}.

The three factors are generated from a multivariate normal distribution whose mean-vector

and covariance matrix are calibrated from the monthly return of Fama-French-three factors in

the calibrated period. Finally, the idiosyncratic noises are generated from a heteroskedastic

normal distribution: ui,t ⇠ N (0, s2i�
2), and si ⇠ Unif[0.1, 0.9]. Here we set � so that

Median(s2i�
2/Var(yi,t)) = 50%. Therefore, the idiosyncratic variances are determined so

that the overall signal-noise ratio is fifty percent.

Throughout we fix N = 500 firms, T = 240 periods and d = 80 characteristics. The goal

is to forecast zT+1 := 1

N

P
i yi,T+1 using pooled neural network, and examine the forecast

distribution using proposed two methods. We train three-layer feedforward neural networks
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with 4 neurons on each layer.6

Figure 6: Histogram of t-statistics over 1000 simulation replications, and the standard normal
density. The t-statistics are standardized by either the analytical standard error cSE(bzT+1)
(top left panel) or the bootstrap interquartile range �⇤ (top right panel). The bottom panels
use ⌘i and ⌘it to generate bootstrap residuals.

As for quantifying the forecast uncertainty, we compute the forecast standard error of

the neural networks, using either of the proposed methods. For method I “easier ML”, we

compute the t-statistic
bzT+1|T � zT+1|T

cSE(bzT+1)
,

where the standard error cSE(bzT+1) has an analytical form (3.5). Here we use five Fourier

bases for �(x). For method II “k-step bootstrap”, we generate the wild residual ⌘t from

the standard normal, bootstrap 100 times, and implement the k-step DNN bootstrap with

6The training algorithm is Adam with learning rate 0.01. All codes are written in Flux on Julia.
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k = 10. Then we compute the interquartile range of bootstrap, defined as

�⇤ :=
q⇤
0.75 � q⇤

0.25

z0.75 � z0.25

where q⇤↵ denotes the ↵-quantile of bootstrap samples
P

i wibg⇤,b(xi,T )�bzT+1|T , and z↵ denotes

the ↵-quantile of the standard normal distribution. Then we also compute the t-statistic

using �⇤ in place of cSE(bzT+1). The interquantile range is a good proxy to the standard error

obtained using bootstrap distribution, which is often used instead of the usual bootstrap

standard error, because the former is guaranteed to be consistent but the latter is not.

The top two panels of Figure 6 plot the histograms of the t statistics over 1000 simulations,

superimposed by the standard normal density function. The t-statistics are standardized by

either cSE(bzT+1) (left panel) or �⇤ (right panel). We see that although there are only 100 repli-

cations, the histograms of the t-statistics fit reasonably well to the standard normal density.

Hence both proposed methods for quantifying the forecast uncertainty seem promising.

It is critical to let the bootstrap be guided by the theory of the proposed research, and to

properly reflect that the forecast uncertainty should be driven by time-variations of factor-

shocks. So we also compare the outcome if the bootstrap is misued. The bottom two panels

of Figure 6 are the histograms of the bootstrap t-statistics (standardized by the bootstrap

interquartile range), but the bootstrap residual is generated as e⇤i,t = (yi,t � bg(xi,t�1))⌘⇤i (the

bottom left panel) and e⇤i,t = (yi,t � bg(xi,t�1))⌘⇤i,t (the bottom right panel), where ⌘⇤i , ⌘
⇤
i,t ⇠

N (0, 1). These bootstraps mistreat the forecast uncertainty as mainly driven by the cross-

sectional variations of idiosyncratic noises. Indeed, we see from Figure 6 that the misuse of

bootstrap vastly understates the uncertainty.

7 Conclusion

Investors are often uncertainty-averse in asset pricing, seeking optimal portfolio allocations

under ambiguity, particularly when faced with uncertainty in forecasting future returns us-

ing ML. A critical factor in this context is the forecast confidence interval (FCI) of ML

predictions, which quantifies forecast uncertainty and plays a key role in uncertainty-averse

asset pricing. In this paper, we develop a novel methodology for constructing FCIs for ML

predictions of expected returns and establish their asymptotic validity. Remarkably, we
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find that the FCIs of sophisticated ML methods can be closely approximated by simpler

nonparametric approaches. We then apply the proposed FCI methodology to two portfolio

allocation frameworks under uncertainty aversion, rigorously characterizing the solutions as

“no-holding” and “shrinkage” positions. These positions lead to di↵erent optimal behaviors

compared to traditional approaches that do not account for uncertainty aversion.
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A Assumptions and Technical Intuitions

A.1 Assumption on the ML space

We shall use two machine learning spaces: the “forecast ML” GML, which is the space for deep

neural networks, and the “easier ML” GB, which is the B-spline to compute the standard

error. Let N (�,G, k.k1) denote the entropy cover of G, which is the smallest number of

k.k1-balls of radius � to cover G.

Assumption 1. Conditioning on X, (vt, ui,t) and are independent over time and are sub-

Gaussian. Also suppose xi,t�1 are independent across i.

Assumption 2. The following conditions hold for both G = GML and G = GB:

(i) There is p(G) so that the covering number satisfies: for any � > 0,

N (�,G, k.k1) 
✓
CT

�

◆p(G)

. (A.1)

(ii) Let

'2

G = inf
v2G

sup
h2{⌧T g+G}[{g}

kv � hk21.

Suppose 'G = o(T�1), p(G) log(NT ) = o(T 1/2) and 'Gp(G) log(NT ) = o(1).

(iii) Define the best approximation to the true g function under the k.kL2-norm:

gNT,G := argmin
h2G

1

NT

X

it

E(h(xi,t�1)� g(xi,t�1))
2.

Suppose
p
T maxjN |gNT,G(xj,T )� g(xj,T ))| = oP (1).

(iv) Let J be the number of basis adopted by the “easier ML” method GB. Then J5/2 =

o(T ) and (p(GML) log(T )

T + 'GML)J
2  o(1).

The above assumption is well known to be satisfied by many well known classical non-

parametric methods as well as modern machine learning spaces. For instance, if DNN is

used as the sophisticated ML space GML, Schmidt-Hieber (2020) showed that a multilayer

feedforward network with ReLu activation functions at each layer can well approximate a

rich class of functions with compact support. It also follows from Anthony and Bartlett
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(2009) that (A.1) holds with p(GML) as the pseudo dimension of the neural network, with

p(GML) = O(J2M2), where J, L are respectively the maximum width and depth of the net-

work. In addition, if B-splines are used as the “easier ML” GB, it is well known that it can

well approximate a Hölder class of smooth functions; and (A.1) holds with p(G) being the

number of basis functions.

A.2 Technical intuitions

In this subsection we briefly explain the technical intuition on how we derive the expression

bzT+1|T � zT+1|T =
1

T

TX

t=1

At + oP (T
�1/2)

and why the leading term At does not depend on the specific choice of the ML space.

The Riesz-representation plays a key role in the asymptotic analysis, and has been com-

monly used in the inferene for semiparametric models, e.g., Newey (1994); Shen (1997);

Chen and Shen (1998); Chen and White (1999); Chernozhukov et al. (2018), among many

others. The use of Riesz-representation allows to directly span the ML forecast using the

least squares loss function, which also requires studying the object of interest in a Hilbert

space. To do so, define an inner product:

hh1, h2i :=
1

NT

X

it

Eh1(xi,t�1)h2(xi,t�1)

where the expectation is taken jointly with respect to the serial and cross-sectional distribu-

tion of xi,t�1, treating h1, h2 as fixed functions. Define

gNT,G := arg min
h2GML[GB

kh� gk2L2 ,

which is the best approximation to the true g on the space GML [ GB under the norm kL2 .

Then ANT := span(GML[GB �{gNT,G}) is a finite dimensional Hilbert spaced endowed with

the inner product h·, ·i. Next, evaluated at the out-of-sample characteristics xi,T , define a
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sequence of linear functionals:

Ti(h) := h(xi,T ), i = 1, ..., N.

Because Tj is a linear functional it is always bounded on the finite dimensional Hilbert

space ANT . The Riesz representation theorem then implies that there is a function m⇤
j 2

ANT , called Riesz representer, so that

Tj(h) = hh,m⇤
ji, 8h 2 ANT .

The key fact to our argument is that m⇤
j does not depend on the specific machine learning

space being used (whether GNT,G or GB) for bzT+1|T . It only depends on the joint distribution

of {xi,t�1}, the realization {xj,T} and the union space GML [ GB.

Next, using an argument for M-estimations (e.g. Theorem 3.2.5 of van der Vaart and

Wellner (1996)), we show in Lemma 8 that uniformly for j  N ,

hbg � g,m⇤
ji =

1

NT

X

it

ei,tm
⇤
j(xi,t�1) + oP (T

�1/2).

Then heuristically,

bzT+1|T � zT+1|T =
X

j

wj[bg(xj,T )� g(xj,T )] =
X

j

wjTj(bg � g)

⇡
X

j

wjhbg � g,m⇤
ji

⇡ 1

NT

X

it

X

j

wjei,tm
⇤
j(xi,t�1).

This yields the desired expansion with At ⇡ 1

N

P
i

P
j wjei,tm⇤

j(xi,t�1). It is clear from this

expression that At does not depend on the specific choice of the ML method.

Many papers in the literature, when adopting the Riesz representation theorem on the

linear functional, lacks the rigor that the Riesz representer may not exist on an infinite-

dimensional Hilbert space unless the linear functional is bounded with respect to the en-

dowed norm from the inner product. The boundedness of the functional requires additional

assumptions and technical arguments to verify. In our case, A is indeed infinite dimensional
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because the true g is. Meanwhile, the Riesz representer always exists on an finite dimensional

Hilbert space, because linear functionals are always bounded on the finite dimensional space.

This requires a careful argument in the proof, where we follow the guidelines in Chen and

Pouzo (2015).
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