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Bail-ins and Bail-outs: Incentives, Connectivity,

and Systemic Stability

Benjamin Bernard, Agostino Capponi, and Joseph E. Stiglitz∗

This paper endogenizes intervention in financial crises as the strategic negotiation between

a regulator and creditors of distressed banks. Incentives for banks to contribute to a voluntary

bail-in arise from their exposure to credit and price-mediated contagion. In equilibrium, a bail-in

is possible only if the regulator’s threat to not bail out insolvent banks is credible. Contrary to

models without intervention or government bailouts only, sparse networks are beneficial in our

model for two main reasons: they improve the credibility of the regulator’s no-bailout threat for

large shocks and they reduce free-riding incentives among bail-in contributors when the threat

is credible.

Financial institutions are linked to each other via bilateral contractual obligations and are

thus exposed to counterparty risk of their obligors. If one institution defaults on its liabilities, it

affects the solvency of its creditors. Since the creditors are also borrowers, they may not be able

to repay what they owe and default themselves—problems in one financial institution spread to

others in what is known as financial contagion. Large shocks can trigger a cascade of defaults,

which impose negative externalities on the economy. The extent of these cascades—the magnitude

of the systemic risk—depends on the nature of the linkages, i.e., the structure of the financial

system. In the 2008 crisis, it became apparent that the financial system had evolved in a way

which enhanced its ability to absorb small shocks but made it more fragile in the face of a large

shock. While a few studies called attention to these issues before the crisis, it was only after the

crisis that the impact of the network structure on systemic risk became a major object of analysis.1

Most of the existing studies analyze the systemic risk implications of a default cascade, taking

into account the network structure, asset liquidation costs, and different forms of inefficiencies that
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arise at default. Many of these models, however, do not account for the possibility of intervention

to stop the cascade. There is either no rescue of insolvent banks or the regulator (or central

bank or other government institution) intervenes by following an exogenously specified protocol.

The goal of our paper is to endogenize the intervention mechanism as the equilibrium outcome

of the strategic interaction between regulator and financial institutions. We show that endogenizing

the intervention plan affects the socially desirable network structure.

The most common default resolution procedure during the 2007–2009 financial crisis was the

bailout.2 In a bailout, the government injects liquidity to help distressed banks service their debt,

effectively transferring liabilities from the private sector to the public sector. For example, the

U.S. Treasury Department’s Troubled Asset Relief Program (TARP) authorized expenditures of

$700 billion to prevent fire sale losses. (See also Duffie (2010) for a related discussion.) Some

governments, such as Germany’s, have called for private-sector participation through bail-ins, in

which creditors write down their interbank claims against troubled banks.3 Bail-ins effectively

amount to a transfer of liabilities within the private sector, which places the burden of losses on

creditors as opposed to taxpayers. A prominent example of a bail-in is the consortium organized by

the Federal Reserve Bank of New York to rescue the hedge fund Long-Term Capital Management.4

In our paper, we will also consider assisted bail-ins, in which the regulator provides some liquidity

assistance to incentivize the formation of a bail-in.

We model the provision of liquidity assistance as a three-stage sequential game between regulator

and the banks. In the first stage, the regulator proposes an assisted bail-in allocation, which specifies

the contributions by each solvent bank, as well as the additional liquidity injections that he will

provide to each bank. In the second stage, each bank decides whether or not to participate in the

proposed rescue. If all designated participants accept, the game ends with the proposed rescue

consortium. Otherwise, the game proceeds to the third stage, in which the regulator chooses

among three options: (i) use taxpayer money to contribute the debt amount that was supposed to

be forgiven by the banks which rejected the proposal, (ii) abandon the bail-in coordination and

resort to a public bailout, or (iii) avoid any intervention. After transfers are made, the banks’

liabilities are cleared simultaneously in the spirit of Eisenberg and Noe (2001), possibly leading to

a default cascade if the outcome of the negotiation leaves some banks insolvent.

Financial contagion in our model occurs through price-mediated contagion and credit contagion,

the two most prominent channels of contagion identified by historical events.5 First, distressed

2The Bush administration bailed out large financial institutions (AIG insurance, Bank of America, Bear Stearns and Cit-
igroup) and government sponsored entities (Fannie Mae, Freddie Mac) at the heart of the crisis. The European Commission
intervened to bail out financial institutions in Greece and Spain.

3In spite of such calls and the design of instruments to make private-sector participation automatic, there have been few
successful bail-ins. Automatic participation is implemented through the use of “bail-inable debt” such as contingent-convertible
bonds in order to reduce the banks’ credit risk. The focus of this paper is on the welfare impact of default resolution policies
after these risk-mitigating instruments have already been used.

4Long-Term Capital Portfolio collapsed in the late 1990s. On September 23, 1998, a recapitalization plan of $3.6 billion was
coordinated under the supervision of the Federal Reserve Bank of New York. A total of fourteen banks agreed to participate
and two banks (Bear Stearns and Lehman Brothers) rejected the proposal.

5Quoting Greenspan (1998): “It was the judgment of officials at the Federal Reserve Bank of New York, who were monitoring
the situation on an ongoing basis, that the act of unwinding LTCM’s portfolio in a forced liquidation would not only have
a significant distorting impact on market prices but also in the process could produce large losses, or worse, for a number of
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banks may have to liquidate some of their asset holdings in order to fulfill their obligations. Doing so

over a short time period will have a knock-on effect on the asset price, causing losses to other holders

of the asset. If several banks liquidate the asset simultaneously, this leads to a self-reinforcing

mechanism, where a price drop forces banks to sell more in order to raise the needed liquidity,

causing further price drops, and so on. Second, if a distressed bank defaults on its obligations, it

will transmit losses to its creditors. Bankruptcy imposes deadweight losses, which are amplified by

the feedback loops among defaulting banks.

We investigate the structure of default resolution plans that arise in equilibrium when the regu-

lator cannot credibly commit to an ex-post suboptimal resolution policy. The lack of commitment

power has important consequences for the regulator’s negotiation power: if banks are aware that

without their participation, the regulator prefers a bailout over no intervention, then they have no

incentive to participate in any assisted bail-in the regulator proposes. We say that, in this case,

the regulator’s no-intervention threat fails to be credible.6 Only if the threat is credible can an

assisted bail-in be organized in equilibrium. Individually, a bank is willing to contribute up to the

maximum it would lose in a default cascade. However, because losses are amplified as the shock

propagates through the system, losses exceed the required ex-ante contributions. Therefore, it is

not necessary that every bank contributes and banks have an incentive to free-ride on the contri-

butions of others. In the equilibrium bail-in, the set of contributing banks minimizes free-riding

incentives by consisting of the banks with the largest exposure to contagion. It thus follows that

banks are willing to contribute more in sparser networks: because losses are more concentrated,

the benefits of a bail-in are more targeted to the contributors than in more diversified networks,

thereby reducing free-riding incentives.

A key determinant of the equilibrium outcome is the credibility of the regulator’s no-intervention

threat. We show that it is credible if and only if the losses generated by the regulator’s inaction—

equal to the amplification of the shock as it propagates through the network—does not exceed

a given threshold. Whether the shock amplification increases with the size of the initial shock

faster than the threshold rises depends on asset illiquidity and on the network structure. We

identify a variable, which we call the total throughput of defaulting banks, as a sufficient statistic

for the dependence of the credibility on the network structure, conditional on the banks’ levels

of solvency and their total claims on solvent banks. The total throughput measures the rate of

spillover losses transmitted to the solvent banks in the system. Conditional on the banks’ solvency,

the total throughput depends only on the network structure and not the banks’ balance sheet

quantities, making it a particularly convenient measure to compare different networks’ potential to

propagate losses. We demonstrate that the throughput increases as the connectivity of defaulting

banks increases. As a result, in sparsely connected networks, the regulator’s threat may not be

credible for small shocks, but the credibility improves as the shock grows larger. Because the total

creditors and counterparties, and for other market participants who were not directly involved with LTCM. In that environment,
it was the FRBNY’s judgment that it was to the advantage of all parties–including the creditors and other market participants–
to engender if at all possible an orderly resolution rather than let the firm go into disorderly fire-sale liquidation following a set
of cascading cross defaults.”

6Several attempted bail-ins failed because the threat of not undertaking a bail-out was not credible; see Stiglitz (2002).
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Figure 1: The figure compares equilibrium welfare losses in a diversified (blue) and a concentrated network (red) in
the presence (solid lines) and absence (dashed lines) of intervention.7 Because the total throughput is small (large)
in sparse (dense) networks, welfare losses in absence of intervention are concave (convex). When the no-intervention
losses exceed the costs of a public bailout (black dashed line), the government’s threat to not intervene fails to be
credible and a public bailout is the only possible equilibrium rescue. If the threat is credible, contributions from the
private sector are possible. Contributions are larger in the sparse network because losses without intervention are
more concentrated, thereby reducing free-riding incentives. Without intervention or in a model with bailouts only,
the diversified network is preferable up until shock size S2. Endogeneity of the intervention reverses the relative
desirability of the two network structures for intermediate shock sizes between S1 and S2.

throughput is small, the systemic threat does not increase much with the size of the shock. By

contrast, in more diversified network structures, small losses can be well absorbed and the threat

not to intervene is credible. However, because the total throughput is large, the threat becomes less

credible as the shock size increase. As illustrated in Figure 1, endogeneity of the default resolution

plan thus reverses the relative desirability of network structures for intermediate shock sizes when

compared to models without intervention or models with bailouts only.

In any intervention plan—bail-in or bailout—the regulator trades off the cost of taxpayer con-

tributions with the fire-sale losses caused by inefficient asset liquidation and broader societal losses

from a bankruptcy cascade. In a bail-in, this trade-off is further affected by the size of the banks’

incentive-compatible contributions, which are increasing in the attained price: the higher the asset

price under the proposed resolution, the more attractive this resolution becomes relative to the de-

fault cascade where asset prices would collapse. The regulator thus sustains a higher asset price in

a bail-in than in a bailout. We show that banks, in fact, benefit from additional market illiquidity.

Not only does it decrease the credibility of the regulator’s threat not to intervene, but the larger

potential knock-on effects on the asset price also warrant larger liquidity assistance from the regu-

lator. This results in a net increase of asset prices—at the cost of taxpayer contributions. These

findings imply that banks have an incentive to specialize in thinly-traded assets. Policies which

require banks to hold a certain proportion of highly liquid assets, such as the liquidity coverage

ratio, thus help improve the credibility of the no-intervention threat.

We then proceed to investigate the structure of optimal intervention plans, that is, the set of

banks that are rescued. A bank is not rescued in a bailout if the loss-absorption capacity of its

creditors is high enough to absorb a significant portion of the losses due to contagion. In a bail-in,

not only the total loss absorption capacity matters but also its distribution among the creditors.

When a bank has a single creditor, that creditor cannot free-ride on the contributions of others.

Proposing a bail-in for a bank whose losses are absorbed by a single creditor thus leads to an

increase in welfare. However, if contagion effects are spread among many creditors, rescuing that
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bank does not substantially increase contributions from the private sector because of the banks’

inherent free-riding incentives. It may then be welfare-enhancing to not rescue such a bank. Banks

rescued in the optimal bail-in may thus default in the optimal bailout and vice versa.

Our results uncover the economic forces behind the decision to rescue banks which default due

to idiosyncratic fundamental shocks versus those failing as a result of contagion. For example,

the government opted to rescue AIG as opposed to Goldman Sachs during the global financial

crisis.8 Because loss absorption capacities were low in the aftermath of Lehman Brother’s default,

bankruptcy filings of AIG might have had far-reaching consequences, bringing under many of its

creditors including Goldman Sachs. If the financial system had been in a more resilient state,

in which Goldman Sachs was the only contagiously defaulting bank, it might have been welfare-

enhancing to let AIG default and provide liquidity assistance only to Goldman Sachs after the

depletion of Goldman’s capital buffers.

The remainder of the paper is organized as follows. In Section 1, we put our work in perspective

with the existing literature. We develop the model in Section 2. We characterize incentives and the

equilibrium intervention outcome for any financial network in Section 3. We analyze the impact of

the network structure, the shock size, and asset illiquidity on the public bailout and the credibility

in Section 4. In Section 5, we characterize the set of banks to be optimally rescued in bail-ins

and bailouts. We discuss the impact of the network structure on the equilibrium intervention plan

in Section 6 using a model calibrated to a data set of the European Banking Authority (EBA).

Section 7 concludes. The proofs of the main results are contained in the appendix. Supplementary

results and auxiliary proofs are in the online appendix Bernard, Capponi and Stiglitz (2019).

1 Literature Review

Our paper is related to a vast branch of literature on financial contagion in interbank networks.

Pioneering works include Allen and Gale (2000) and Eisenberg and Noe (2001), and further devel-

opments were made in more recent years by Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), Elliott,

Golub and Jackson (2014), Gai, Haldane and Kapadia (2011), Glasserman and Young (2015), and

Capponi, Chen and Yao (2016). We refer to Glasserman and Young (2016) for a thorough survey

on financial contagion.9 These works study how an initial shock is amplified through the inter-

bank network based on the network structure, the inefficient liquidation of non-interbank assets,

the trade-off between diversification and integration on the level of interbank exposures, and the

complexity of the network. Different from our study, in these models agents execute exogenously

specified contractual agreements but do not take any strategic action to resolve distress in the net-

8The bailout of AIG was widely speculated to be an indirect bailout of Goldman Sachs, to which it had sold millions of
dollars worth of insurance. Because of the large exposure, AIG’s default might have lead to the contagious default of Goldman
Sachs, the largest investment bank at the time.

9Other related contributions include Gai and Kapadia (2010), which analyze how knock-on effects of distress can lead to write
down the value of institutional assets; Cifuentes, Ferrucci and Shin (2005), which analyze the impact of fire sales on financial
network contagion; Cabrales, Gottardi and Vega-Redondo (2017), which study the trade-off between the risk-sharing generated
by more dense interconnection and the greater potential for default cascades; Battiston et al. (2012), which demonstrate that
systemic risk does not necessarily decrease if the connectivity of the underlying financial network increases; and Elsinger, Lehar
and Summer (2006), which study transmission of contagion in the Austrian banking system;
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work. A different branch of the literature has focused on the coordinating role of the central bank

in stopping financial contagion through provision of liquidity (Freixas, Parigi and Rochet (2000)

and Gorton (2010)). These studies, however, do not consider resolution strategies that involve

the private sector, such as the bail-ins considered in our paper. The viability of private-sector in-

volvement depends on the credibility of the no-intervention commitment by the government, which

we show to be tightly linked to the network structure. The importance of integrating bottom up

approaches based on network models and top down frameworks that design regulatory measures is

stressed in a recent survey on systemic risk by Benoit et al. (2017).

In our model, the regulator determines the optimal rescue plan after the banks have already

decided on the amount of risk undertaken, and shocks to outside assets have occurred. We do not

consider here the moral hazard problem of banks taking excessive risks, knowing that they will be

rescued if the market moves against them. Moral hazard problems arising in this context have been

thoroughly investigated in the literature, though not in the context of a strategic bail-in policy.

Doing so represents a next step in our research agenda, discussed briefly in Section 7. Important

contributions include Gale and Vives (2002), who argue that a bailout is optimal ex post, but ex

ante it should be limited to control moral hazard; Acharya and Yorulmazer (2007), who show that

banks may find it optimal to invest in highly correlated assets in anticipation of a bailout triggered

by the occurrence of many simultaneous failures; Farhi and Tirole (2012), who support Acharya

and Yorulmazer (2007)’s findings by showing that safety nets can provide perverse incentives and

induce correlated behavior that increases systemic risk; Chari and Kehoe (2016), who show that

if the regulator cannot commit to avoid bailouts ex post, then banks may overborrow ex ante;

and Keister (2016), who finds that prohibiting bailouts may lead intermediaries to invest into too

liquid assets which lower aggregate welfare. Our model, like the rest of the literature on default

resolution policies in financial networks, does not account for the endogenous structure of the

interbank network. The exception is a recent study by Erol (2018), which develops an endogenous

network formation model in the presence of government bailouts. Different from Erol (2018), the

regulator in our model is strategic and cannot commit to a bailout or a no-intervention policy.

Related to our model is the study by Rogers and Veraart (2013), which analyze situations in

which banks can stop the insolvency from spreading by stabilizing the financial system through

mergers. In their paper, however, a merger need not be incentive compatible for the shareholders

of an individual bank and the government does not take an active role. By contrast, our model

focuses on the credibility of the regulator’s actions and the free-riding problem that arises because

the stability of the financial system is to the benefit of every participant. Duffie and Wang (2017)

consider a bargaining model, in which bail-ins are done contractually rather than through a central

planner. Unlike our paper, they crucially assume the absence of cross-network externalities. In the

limit as disagreement is disallowed, Duffie and Wang (2017) show that the bargaining equilibrium

in a 3-bank network is efficient. In our paper, externalities from asset liquidation and bankruptcy

losses are at the heart of the analysis, driving our characterization of the endogenous ex-post default

resolution plan that arises from the negotiation between regulator and financial institutions.

6



2 Model

We consider an economy consisting of n risk-neutral financial institutions i = 1, . . . , n, called

“banks”, which lasts for three periods t = 0, 1, 2. At the initial period, each bank i is endowed with

capital that it can lend to other banks, invest into a liquid asset, called “cash”, or invest into an

illiquid asset, yielding a random return at time t = 1 and a non-pledgeable return at t = 2. Because

long-term returns are non-pledgeable, liabilities have to be cleared at time t = 1. After short-term

returns are realized, banks may liquidate their risky assets to help service their debt, but because

of market illiquidity, doing so will cause a downward impact on the asset’s price.

Banks negotiate debt contracts with each other at t = 0. We denote by Lji bank i’s liabilities

to bank j at time t = 1 and use Li :=
∑n

j=1 L
ji to denote bank i’s total interbank liabilities. Let pi

denote the market value of bank i’s liabilities. This market value may be lower than the notional

value Li because bank i may be unable to repay its liabilities in full. If pi < Li, we say that bank i

defaults. All interbank liabilities have equal seniority: if bank i defaults, each creditor j receives

πjipi from bank i, where

πji =

Lji/Li if Li > 0,

0 otherwise.

The relative liability matrix π = (πij)i,j=1,...,n captures the structure of the financial network. In

addition to its liabilities within the financial network, bank i has financial commitments wi outside

the financial sector due at time t = 1, which have higher seniority than the interbank liabilities.

These commitments include wages, depositors’ claims, and other operating expenses.10

For each bank i, we denote by ei the long-term returns of the illiquid asset held by i. We denote

by ci the sum of i’s cash holdings and the short-term returns realized at time t = 1. If a bank i

is not able to meet its liabilities out of current income, it will liquidate a portion `i ∈ [0, ei] of its

illiquid asset. Liquidation imposes a downward impact on the price α of the asset given by

α(`) = exp

(
−γ

n∑
i=1

`i

)
, (1)

where γ ≥ 0 is the elasticity of the asset price.11 A defaulting bank liquidates all of its assets to

repay the maximal amount to its creditors. Because liquidation is costly, a solvent bank liquidates

just enough to meet its liabilities. When prices are equal to (p, α), bank i thus liquidates an amount

`i(p, α) = min

(
1

α

(
Li + wi − ci −

n∑
j=1

πijpj
)+

, ei

)
, (2)

10Our framework can accommodate lending from outside the financial sector with equal seniority as interbank liabilities by
adding a “sink node” that has only interbank assets but no interbank liabilities.

11Such a downward sloping inverse demand function has also been used in Cifuentes, Ferrucci and Shin (2005). For this
choice of inverse demand function, the infinitesimal price impact is proportional to the asset’s price. The elasticity parameter γ
typically depends on the asset class: Ellul, Jotikasthira and Lundblad (2011) find that γ is in the order of 10−8 for corporate
bonds (see Table 8 therein).
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where ( · )+ = max( · , 0) denotes the positive part.12 If a bank i cannot meet its liabilities even after

liquidating all of its assets, it will default. The default creates losses proportional to the banks’

asset value: only a fraction β ∈ (0, 1] of the bank’s asset value is paid to the creditors and a fraction

(1− β) is lost.13 The market value of bank i’s interbank liabilities is thus equal to

pi =

 Li if ci + α`i + (πp)i ≥ Li + wi,(
β
(
ci + αei + (πp)i

)
− wi

)+
otherwise,

(3)

where (πp)i =
∑n

j=1 π
ijpj is the market value of bank i’s interbank claims. How much a bank is

able to repay depends on the solvency of the other banks in the system. In a clearing equilibrium,

every solvent bank repays its liabilities in full and every insolvent bank pays its entire value (after

bankruptcy costs) to its creditors.

The financial system in our model is parametrized by (L, π, e, c, w, γ, β), where L, e, c, and w

are vectors whose entries are the corresponding balance sheet quantities of each bank.

Definition 2.1. A set of prices and liquidation decisions (p, `, α) is a clearing equilibrium for a

financial system (L, π, e, c, w, γ, β) if it satisfies (1)–(3).

When prices are equal to (p, α), the value of bank i’s equity is given by

V i(p, α) :=
(
(πp)i + ci + αei − wi − Li

)+
. (4)

If the payment pi made by bank i is positive, it is divided pro-rata among bank i’s junior creditors

and the senior creditors are paid in full. If pi = 0, the junior creditors lose the full amount of their

claims and the senior creditors of bank i suffer a loss of

δi(p, α) :=
(
wi − β

(
ci + αei + (πp)i

))+
, (5)

We denote by D(p, `, α) :=
{
i
∣∣ Li + wi > ci + α`i + (πp)i

}
the set of defaulting banks. Welfare

losses in a clearing equilibrium are defined as the weighted sum of default costs, i.e.,

Wλ(p, `, α) := (1− α)

n∑
i=1

ei + (1− β)
∑

i∈D(p,`,α)

(
ci + αei + (πp)i

)
+ λ

∑
i∈D(p,`,α)

δi(p, α). (6)

The first term are losses due to fire sales, and the second term quantifies deadweight losses from

bankruptcy. Losses of senior creditors are weighted by a factor λ ≥ 0, which captures the importance

the regulator assigns to the senior creditor’s losses relative to deadweight losses. A regulator with

λ = 0 views losses of senior creditors simply as transfers of wealth and not as losses to the economy.

A higher value of λ indicates a higher priority to the economy outside of the banking sector.

12The model can be adjusted to account for liquidity requirements such as Basel-III (2013). This can be achieved by setting
ci equal to the amount of liquid assets that can be liquidated before hitting the liquidity coverage ratio requirement.

13According to Moody’s analysis, the average recovery rate for unsecured corporate bonds ranges from 30% to 43%; see
Exhibit 8 in https://www.moodys.com/sites/products/DefaultResearch/2006600000428092.pdf.
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Every financial system admits a clearing equilibrium as a consequence of Tarski’s fixed-point

theorem. Cifuentes, Ferrucci and Shin (2005) show that it is unique under mild regularity conditions

if β = 1. This is no longer the case in the presence of bankruptcy costs, i.e., when β < 1. Following

standard practices in the literature, liabilities are then cleared with the unique Pareto-dominant

clearing equilibrium.

Lemma 2.1. For any financial system, there exist a greatest and a lowest clearing equilibrium

(p̄, ¯̀, ᾱ) and (p, `, α), respectively, with p̄i ≥ pi ≥ pi, ¯̀i ≤ `i ≤ `i, and ᾱi ≥ αi ≥ αi for any clearing

equilibrium (p, `, α) and any bank i. Moreover, (p̄, ¯̀, ᾱ) is Pareto dominant for any λ ≥ 0, that is, for

any clearing equilibrium (p, `, α), we have V i(p̄, ᾱ) ≥ V i(p, α) for all i and Wλ(p̄, ¯̀, ᾱ) ≤Wλ(p, `, α).

2.1 Contagion and Default Cascade

We position ourselves at time t = 1, when short-term returns have been realized but banks have not

yet cleared their liabilities. Our objective is to characterize the endogenous intervention outcome

after any realization of market returns. We consider voluntary bail-ins, so that if the banks and/or

the regulator have implemented automatic bail-in triggers such as, for example, contingent convert-

ible bonds, then (L, π, e, c, w, α, β) represents the state of the financial system after accounting for

these risk-mitigating actions. Depending on the size of the shock, banks may still need to dispose

of their illiquid assets to remain solvent and defaults may still occur.

There are two channels of financial contagion in our model. The first channel is price-mediated

contagion. When a distressed bank needs to liquidate the asset, the price declines due to market

illiquidity, captured in reduced from through (1). As a consequence, other banks which hold the

asset experience a reduction of their equity value. If the price impact from asset sales is sufficiently

large, other banks may also need to liquidate some of their asset to stay solvent, thereby further

depressing the price. This leads to a downward spiral, which converges to the highest price, for

which the asset’s demand—given by the inverse of (1)—equals the amount liquidated.

Lemma 2.2. For any vector p of repayments, there exists a solution (αp, `p) to (1) and (2) such

that α ≤ αp for any other solution (α, `) to (1) and (2).

The second channel of contagion in our model is credit contagion. A defaulting bank i reduces

the payments to its creditors, thereby imposing losses Li − pi to the rest of the financial system.

Creditors with large interbank exposures may thus default as a consequences of these losses. This, in

turn, may affect the solvency of their creditors and so on, causing a cascade of defaults. The cascade

starts with the set F :=
{
i
∣∣ ci + αL`

i
L + (πL)i < Li + wi

}
of fundamentally defaulting banks, i.e.,

the set of banks that are unable to repay their liabilities even if every other bank repays its liabilities

in full. If there are no fundamentally defaulting banks, then (L, `L, αL) is the Pareto-efficient

clearing equilibrium and all interbank liabilities are honored.
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2.2 Coordination of Rescues

As argued in the preceding section, financial stability can be ensured by injecting sufficient liquidity

into the fundamentally defaulting banks so that they can meet their liabilities. In a bailout, this

additional liquidity is provided by the government through taxpayer contributions, whereas in a

bail-in, creditors of insolvent banks voluntarily take a haircut on their claims. As an intermediate

option between the two, we also consider assisted bail-ins, which include transfers by both the

banks and the government.

Definition 2.2. An assisted bail-in (b, s) specifies, for each bank i, the contribution bi to be made

by i and the size si of the subsidy i receives. The government’s contribution to the bail-in is∑n
i=1(si − bi), which is imposed to be non-negative.14

Observe that assisted bail-ins contain bailouts and privately backed bail-ins as special cases. A

bailout is the limiting case of an assisted bail-in, in which the banks’ contributions are equal to

zero. In a private bail-in, the government contributions are zero. In addition to contributing to a

bail-in financially, the regulator also serves to coordinate among different bail-ins. Specifically, the

regulator may propose a bail-in allocation, but cannot force banks to participate.

Organization of a rescue.

1. The regulator proposes an assisted bail-in (b, s).

2. Each bank i from the set A(b) :=
{
j 6∈ F

∣∣ bj > 0
}

chooses a binary action ai ∈ {0, 1},
indicating whether or not it agrees to contribute bi.15

3. The regulator chooses his response r from the following three options:

(i) “bail-in”: Proceed with the proposed subsidies s, using taxpayer money to cover the

contributions of banks which rejected the proposal. Cash holdings and financial com-

mitments of each bank i are then equal to ci(s) := ci + si and wi(b, a) := wi + bi1{ai=1}

and the resulting financial system is cleared as in Section 2. We denote by p̄(b, s, a) and

ᾱ(b, s, a) the prices in the Pareto-dominant clearing equilibrium. Bank i’s equity value

is equal to V i
(
p̄(b, s, a), ᾱ(b, s, a)

)
. Welfare losses are obtained from (6) by additionally

accounting for the social cost of government subsidies, that is,

Wλ(b, s, a) := Wλ

(
p̄(b, s, a), ¯̀(b, s, a), ᾱ(b, s, a)

)
+ λ

n∑
i=1

(
si − bi1{ai=1}

)
.16 (7)

14This formulation is equivalent to a formulation, in which creditors write down their claims on insolvent banks such that bi

is the net debt forgiven by bank i and si is the sum of government injections and net debt forgiven to bank i by i’s creditors.
15We assume that a bank i with bi = 0 is simply not part of the negotiation and hence has no power to reject the proposal.

For ease of notation, we write ai = 1 for such a bank.
16We assume that the regulator assigns the same weight to taxpayer contributions as to losses of senior creditors. This

assumption is made for notational convenience and our results would hold if the regulator used different weights.
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(ii) “bailout”: Resort to a public bailout (0, s̃) with subsidies s̃ decided by the regulator.

Then, cash holdings of bank i are equal to ci(s̃) = ci + s̃i and we denote by p̄(s̃) and

ᾱ(s̃) the prices in the Pareto-dominant clearing equilibrium. Each bank i’s equity value

is V i(p̄(s̃), ᾱ(s̃)
)

and welfare losses are denoted by Wλ(s̃) := Wλ(0, s̃, 0).

(iii) “no intervention”: Abandon the rescue, which results in the default cascade of Section 2.

We denote by (pN , `N , αN ) the Pareto-dominant clearing equilibrium and by WN the

welfare losses in the default cascade.

Remark 2.1. Some banks may be left with zero equity after they are bailed in or bailed out.

Such banks cease to exist as a separate entity after the intervention and their bail-ins or bailouts

should be understood as an orderly liquidation through takeovers by the bail-in contributors or the

government.17 Because these banks have zero equity value after the intervention, we do not model

how the assets are distributed among contributors.

A strategy of each bank i is a map ai(b, s) that specifies for each proposal whether or not i

agrees to participate. The regulator’s strategy consists of which bail-in (b, s) to propose, as well

as a reaction r(b, s, a) to any given response vector a by banks. Our solution concept is that of

subgame Pareto efficient equilibria, defined as follows.

Definition 2.3. A strategy profile (b, s, a, r) is subgame Pareto efficient if it is subgame perfect and

after any proposal (b, s), there is no other continuation equilibrium (ã, r̃) of the accepting/rejecting

subgame that Pareto dominates (a, r) for the banks in A(b) and the regulator.

This equilibrium solution concept is meant to capture the interactions between the regulator and

the banks in A(b), aiming at finding a suitable resolution outcome. For example, during the bail-

in of Long-Term Capital Management, Peter Fisher of the Federal Reserve Bank of New York sat

down with representatives of LTCM’s creditors to find an appropriate solution; and it is implausible

that they would have agreed on a bail-in plan that is Pareto dominated. Note that banks in the

complement of A(b) are potentially worse off than in an alternative continuation equilibrium of the

accepting/rejecting subgame because they are not part of the discussion.

Any proposal of the regulator admits an equilibrium response by the banks by the following

lemma. This result also implies existence of subgame Pareto efficient equilibria in our model.

Lemma 2.3. After any proposal (b, s), there exists a Pareto efficient continuation equilibrium (a, r)

of the accepting/rejecting subgame.

Because subgame Pareto efficiency is a refinement of subgame perfection, the regulator lacks

commitment power: it eliminates the non-credible threat of the regulator to abandon the rescue in

the third stage when, in fact, a public bailout leads to lower welfare losses than a default cascade.

This restricts the regulator’s ability to incentivize banks to contribute as we discuss in Section 3.2.

17Examples of such takeovers from the global 2007–2009 financial crisis are plentiful. Among the most prominent ones are the
takeovers of Bear Stearns and Merrill Lynch by JP Morgan Chase and Bank of America, respectively, or the federal takeovers
of Fannie Mae and Freddie Mac.

11



In our model, the regulator knows the financial position of each bank and, thus, he can anticipate

the banks’ responses to any bail-in proposal. Therefore, he need not make a proposal that is not

incentive compatible and the negotiation is collapsed into a single stage. In reality, the regulator

typically is not fully informed and the coordination of a bail-in might take the form of a strategic

bargaining game instead. Some banks might reject the regulator’s initial proposal, after which the

regulator revises his proposal to either exclude those banks or to accommodate them.18

We may assume without loss of generality that the regulator proposes only so-called feasible

bail-ins, in which every bank can afford the proposed contribution.

Definition 2.4. A bail-in proposal (b, s) is feasible if bi = 0 for any fundamentally defaulting bank

i ∈ F and Li +wi + bi ≤ ci + si + ᾱ(b, s, 1)`i(b, s, 1) +
∑n

j=1 π
ij p̄j(b, s, 1) for any bank i 6∈ F , where

1 = (1, . . . , 1) is the response of unanimous agreement.

Since prices are weakly decreasing with the banks’ contributions, feasibility of a bail-in (b, s)

implies that Li + wi + bi ≤ ci + si + ᾱ(b, s, a)`i(b, s, a) +
∑n

j=1 π
ij p̄j(b, s, a) also for any response

vector a 6= (1, . . . , 1). Therefore, whether a bank can afford to contribute to a feasible bail-in does

not depend on the responses of the other banks. Key is the fact that if some bank i refuses to

participate but the regulator decides to implement the bail-in nonetheless, then the regulator uses

additional taxpayer money to make up for i’s contribution. Feasibility of a proposed bail-in thus

provides banks with a guarantee that prices will be at least p̄(b, s, 1) and ᾱ(b, s, 1)—backed by

government contributions if necessary; see Lemma F.3 in the online appendix for details.19

3 Incentives and Credibility of Intervention Plans

To highlight the primary economic forces at play, we focus on the case of what we call complete

interventions in this section, where the regulator considers only bailouts and bail-ins that rescue

every bank in the system. Section 5 treats the more general case where the regulator can propose

interventions that rescue some banks but not others, and discusses the additional economic trade-

offs arising in the equilibrium outcome.

3.1 Public Bailout

In a complete bailout, the regulator provides subsidies to support the clearing payment vector L.

The smallest subsidies necessary are those required to make every bank solvent, which are equal to

sL :=
(
L+ w − c− αL`L − πL

)+
,

18The original proposal made by the Federal Reserve Bank of New York for the rescue of Long Term Capital Management
involved a total of 16 of LTCM’s creditors. However, Bear Stearns and Lehman Brothers later declined to participate. Upon
the rejection of these two banks, the Fed adjusted its proposal so that the contributions of Bear Stearns and Lehman Brothers
were covered by the remaining 14 banks. The fact that these two banks decided not to cooperate shows that participation in
the bail-in was at least partially voluntary.

19In reality, asset price guarantees are often given through collateral. This was the case in the purchase of Bear Stearns by
JP Morgan Chase, where the government provided a large collateral for Bear Stearns’ assets.
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where (αL, `L) is given by Lemma 2.2. If asset liquidation is more costly than tax- payer contribu-

tions, the regulator will want to provide additional subsidies up to

s0 :=
(
L+ w − c− πL

)+
(8)

so that no bank liquidates any of its assets. Note that subsidies sL and s0 support the clearing

equilibria (L, `L, αL) and (L, 0, 1), respectively. The welfare-maximizing subsidies s in a complete

bailout are such that the marginal losses from liquidation are as close to the marginal welfare cost λ

of taxpayer contributions as possible, given the constraints siL ≤ si ≤ si0, which guarantee solvency

of every bank in the system.

Lemma 3.1. Define the function g(α) = α
(
λ
γ ln(α) −

∑n
i=1 e

i
)
. In any complete bailout with

subsidies si ≤ si0 for every bank i, welfare losses are equal to

Wλ(s) =
n∑
i=1

(ei + λsi0) + g(ᾱ(s)). (9)

The regulator’s choice of subsidies affects welfare only through the induced asset price as the

argument of the function g, which captures the welfare trade-off between liquidation costs and

taxpayer contributions. Any bailout that induces asset price α requires banks to liquidate an

aggregate amount− ln(α)/γ as seen in (1). This corresponds to a reduction of the maximal subsidies

s0 by the market value of those liquidated assets. Choosing subsidies that induce asset price α (as

opposed to s0) thus lower welfare costs by −λα ln(α)/γ but increase liquidation losses by α
∑n

i=1 e
i.

The function g is convex and it is minimized at the indifference price

αind := exp

(
γ

λ

n∑
i=1

ei − 1

)
. (10)

If α < min(αind, 1), liquidation is more costly than taxpayer contributions, hence the regulator will

provide additional subsidies to drive the price up to min(αind, 1). If α > αind, asset liquidation

is considered cheaper than taxpayer contributions, hence the regulator will reduce the size of the

provided subsidies (to a minimum of sL) to drive the price down to min(αind, αL).

Lemma 3.2. Let αP = max(min(αind, 1), αL). A welfare-maximizing complete bailout awards

subsidies s with siL ≤ si ≤ si0 for every bank i such that

n∑
i=1

si =

n∑
i=1

si0 +
αP ln(αP )

γ
. (11)

These subsidies induce asset price αP . We denote by WP the corresponding welfare losses.

If αP = αL or αP = 1, subsidies in the bailout are unique and equal to sL and s0, respectively.

However, subsidies are not unique if αL < αP < 1: since the price impact depends only on the total
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amount of liquidation, welfare depends only on the total subsidies awarded, but not on how those

are distributed among banks. The regulator wishes to prevent any asset liquidation if αP = 1. It

follows from (10) that this is the case if and only if λ ≤ γ
∑n

i=1 e
i, i.e., if taxpayer contributions

are considered cheap, if the asset price is sufficiently elastic, or if the total holdings in the illiquid

asset exceed the threshold λ/γ. Depending on the distribution of the shortfall, the regulator may

not be able to attain the indifference price in a complete bailout. Because the minimal required

subsidies sL induce asset price αL, it is impossible to do so if αind < αL. Note that the optimal

complete bailout does not depend on the network structure because all defaults are prevented.

3.2 Credibility of the Regulator’s Threat

If welfare losses in the public bailout of Lemma 3.2 are lower than in a default cascade, banks

know that the regulator’s preferred outside option is a bailout. The regulator thus has no credible

threats to punish recalcitrant banks and, as a consequence, banks have no incentive to participate

in any bail-in the regulator proposes. The following proposition shows that in such a situation, the

regulator has no choice but to resort to a public bailout.

Proposition 3.3. If WP < WN , the unique subgame Pareto efficient equilibrium outcome is the

public bailout of Lemma 3.2.

We say that the regulator’s no-intervention threat is credible if and only if WN ≤ WP . We

will show in the the following three subsections that when the threat is credible, the regulator can

indeed incentivize banks to participate in a bail-in. In the remainder of this section, we study the

conditions under which the threat is credible.20

The main component of welfare losses in a bailout is the banks’ aggregate shortfall
∑n

i=1 s
i
0,

where s0 is defined in (8). The aggregate shortfall is a measure of the size of the initial shock hitting

the financial system, when the shock is large enough that banks can no longer pay their liabilities

out of current income. Welfare losses in a default cascade are a measure of the size of the shock after

it propagates through the financial system. Losses of junior creditors in a default cascaded are

SN :=
n∑
i=1

(
V i(L, 1)− V i(pN , αN )

)
The following result states that the regulator’s threat is credible if and only if the amplification of

losses through the financial system in absence of intervention is smaller than a certain threshold.

Because senior creditors may absorb a portion of the losses, the part of the initial shock that is

amplified through the network is

S0 :=
n∑
i=1

si0 −
∑

i∈D(pN ,`N ,αN )

δi(pN , αN ).

20Note that the credibility of the threat is a function of exogenous variables: the welfare losses WP in the optimal bailout is
the result of a minimization problem solved by the regulator alone and WN are the welfare losses in absence of any action.
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Lemma 3.4. The regulator’s threat is credible if and only if

SN − S0 ≤ λS0 +
n∑
i=1

(ei − si0)+ + g(αP ). (12)

The credibility threshold depends on the weight λ given to taxpayer contributions in the social

welfare function, the size of the initial shortfall, and the distribution of the initial shortfall via the

second and third term on the right-hand side of (12). The second term is a measure of the amount

of illiquid assets that can be used to absorb the initial shock: if a larger part can be absorbed by the

system, the threat is more credible. The last term in (12) captures the trade-off between liquidation

costs and taxpayer contributions in the optimal bailout for a given distribution of shocks s0. While

this trade-off is minimized at the indifference price αind, the regulator may not be able to attain αind

for any distribution of shocks s0 as seen in Lemma 3.2. The difference g(αP ) − g(αind) is thus a

measure for how close to attaining αind the regulator can tailor a bailout for a given distribution

of shocks; see also the discussion after Lemma 3.1.

Lemma 3.4 establishes a link between the credibility of the no-intervention threat and the

existing literature on financial networks without intervention, which often ranks the desirability of

network structures according to the welfare loss criterion SN−S0. Existing results in Allen and Gale

(2000) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) show that dense connections between

banks may serve as an amplifier for large initial shocks. Since the right-hand side of (12) does not

depend on the network structure, Lemma 3.4 indicates that dense connections are detrimental to

the credibility of the threat when the initial shock is large.

3.3 Regulator’s Response in the Last Stage

It follows as a consequence to Lemma 3.2 that, for a given bail-in proposal (b, s) and the banks’

response vector a, the regulator’s best response in stage 3 is

r(b, s, a) =


“no intervention” if WN ≤ min(Wλ(b, s, a),WP ),

“bailout” if WP < min(WN ,Wλ(b, s, a)),

“bail-in” otherwise.

(13)

The regulator chooses the action that minimizes welfare losses if such an action is unique. Ties

are broken according to “no intervention” � “bail-in” � “bailout” so that (a) taxpayer money is

used only if it is strictly welfare increasing and (b) unilateral deviations by banks in stage 2 can be

discouraged when WN = Wλ(b, s, a); see Lemma 3.5 and Footnote 21 below for details.

3.4 Banks’ Equilibrium Responses

In this section, we analyze how the banks respond to a given proposal when the regulator’s threat

is credible. A crucial separation among the banks’ responses is whether or not they trigger the

regulator’s decision to proceed with the bail-in.
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Definition 3.1. Given a bail-in proposal (b, s), an equilibrium response a is an accepting equilibrium

if r(b, s, a) =“bail-in” and it is a rejecting equilibrium otherwise.

Remark 3.1. The banks’ responses do not have to be unanimous in an accepting or rejecting

equilibrium. Some banks may reject the proposal in an accepting equilibrium and vice versa.

However, a sufficient proportion of banks accepts the proposal in an accepting equilibrium for the

regulator to proceed with the bail-in.

For a bank to participate in a bail-in, the bail-in has to be incentive-compatible. Proposition 3.3

shows that when the regulator’s threat fails to be credible, the regulator can do no better than

resorting to the public bailout of Lemma 3.2. If the threat is credible, the incentive-compatibility

conditions are stated in the following lemma.

Lemma 3.5. Suppose that WN ≤ WP . Let (b, s) be a feasible proposal of a complete bail-in. In

any accepting equilibrium a, bank i with bi > 0 accepts if and only if:

1. Wλ(b, s, (0, a−i)) ≥WN , and

2. bi − si ≤
∑n

j=1 π
ij(Lj − pjN ) +

(
α(b, s, (1, a−i))− αN

)
ei.

The first condition states that there is no possibility for free-riding: if bank i were to reject the

proposal, the regulator would not make up for i’s contribution and he would let a default cascade

occur instead.21 In other words, the set of banks which accept the proposal is minimal in any

accepting equilibrium. The second condition states how much bank i is willing to contribute to

prevent a default cascade. Bank i is willing to make a net contribution up to the sum of its exposure

to the default cascade through both channels of contagion.

Accepting equilibria need not be unique: for a given proposal, the regulator may be happy to

organize a bail-in with more than one accepting coalition of banks. This raises the questions of

how banks coordinate among different equilibrium responses. The following result shows that the

regulator can preempt any problems of coordination by altering the proposed bail-in so that it is

incentive compatible only for one consortium of banks to accept the proposal. If the regulator

requests 0 contributions from any bank outside the selected consortium, unanimous acceptance

becomes the unique accepting equilibrium of the revised proposal.

Lemma 3.6. Let (b, s) be a bail-in with accepting equilibria {a1, . . . , am}. For any k = 1, . . . ,m,

there exists a proposal (b̃, s̃) with Wλ(b, s, ak) = Wλ

(
b̃, s̃, 1), to which 1 = (1, . . . , 1) is the unique

accepting equilibrium response.

Our next result shows the banks will not reject a proposal if there is a subgame Pareto efficient

equilibrium outcome in which the bail-in is implemented.

Lemma 3.7. Suppose that a proposal (b, s) admits at least one accepting equilibrium. Then the

accepting equilibrium leading to the lowest welfare losses is subgame Pareto efficient. Moreover, a re-

jecting equilibrium is subgame Pareto efficient if and only if (b, s) is the bailout given by Lemma 3.2.

21The regulator prefers “no intervention” over “bail-in” in (13) when they lead to the same welfare losses so that a rejection
by bank i can be prevented when Wλ

(
b, s, (0, a−i)

)
= WN .
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If a proposal admits a unique accepting equilibrium, its acceptance is the unique subgame Pareto

efficient continuation by Lemma 3.7. For such a proposal, the regulator can anticipate the banks’

responses and what the resulting welfare losses will be. It is thus suboptimal for the regulator to

make a proposal that admits more than one accepting equilibrium: according to Lemma 3.6, the

regulator could have revised his proposal to select his preferred response unambiguously. Among

those proposals that admit only one accepting equilibrium, the regulator will thus propose the bail-

in that minimizes welfare losses, subject to the incentive-compatibility conditions of Lemma 3.5.

This is described in the following section.

3.5 Optimal Proposal of the Regulator

Contributions of banks to a bail-in affect welfare in two ways. First, they reduce the amount of

taxpayer contributions needed. Second, if the asset price in the optimal bailout is larger than the

indifference price, the regulator can use the contributions of banks to enhance welfare by exploiting

the trade-off between asset liquidation and taxpayer contributions.

Lemma 3.8. Let g and s0 be defined as in Lemma 3.1 and (8), respectively, and let b0 := (c +

πL−w−L)+. Let (b, s) be a complete feasible bail-in proposal with bisi = 0 for every bank i.22 For

any response vector a, welfare losses are equal to

Wλ(b, s, a) = WP +
(
g(ᾱ(b, s, a))− g(αP )

)
+ λ

n∑
i=1

(si − si0)+ − λ
n∑
i=1

min
(
bi, bi0

)
1{ai=1}. (14)

Equation (14) shows how welfare losses in a bail-in compare to welfare losses in the optimal

bailout of Lemma 3.2. A contribution of bank i up to the amount bi0 does not require asset

liquidation, hence it does not impact the asset price. Thus, each dollar contributed up to bi0
improves welfare by λ. Contributions in excess of bi0 require asset liquidation by the bank, thereby

impacting the asset price and the welfare trade-off g. Finally, subsidies beyond s0 do not bring

any benefit in terms of reduced fire-sale losses because banks can fulfill all obligations without

liquidating assets. Each dollar of subsidies awarded in excess of s0 thus effectively burns λ units

of welfare. While this generally constitutes a decrease in welfare, we illustrate below how welfare

burning can be used by the regulator to deter banks from free-riding.

Next, we analyze how the regulator best implements a rescue plan that satisfies the incentive-

compatibility conditions of Lemma 3.5. The no-free-riding constraint in Condition 1 requires that

after the rejection by any bank, welfare losses in the residual bail-in are larger than welfare losses

in a default cascade. Using (14), this is equivalent to requiring that for any participating bank i,

Wλ(b, s, a) ≥WN + g(ᾱ(b, s, a))− g(ᾱ(b, s, (0, a−i)))− λmin(bi, bi0). (15)

Equation (15) constitutes a lower bound on attainable welfare losses imposed by the no free-riding

22The restriction bisi = 0 imposes that bank i either receives subsidies or makes contributions to the bail-in, but not both.
We show in Lemma C.1 in the appendix that this comes without loss of generality.
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constraint. It states that welfare losses in an incentive-compatible bail-in cannot be lowered from

WN by more than the welfare impact stemming from the contribution of any participating bank.

The no-free-riding constraint thus drives the regulator to include in the bail-in banks which

have a potential for large contributions or banks whose contributions enhance the welfare trade-off

between subsidies and asset liquidation. It follows from Condition 2 in Lemma 3.5 that for a given

set of liquidation decisions ` that induces asset price α, the vector of largest incentive-compatible

contributions is

η(α, `) := min
(
π(L− pN ) + (α− αN )e, (c+ α`+ πL− w − L)+

)
. (16)

The right expression in the minimum appearing in (16) is the vector of budget constraints in a

bail-in, in which the banks’ contributions induce the amount ` of asset liquidation.23 Note that

by choosing an incentive-compatible proposal (b, s), the regulator implicitly chooses an associated

vector of liquidation decisions `(b, s, 1).24 In order to construct a bail-in with maximal contributions

by the banks, the regulator can thus choose ` first and propose a bail-in with contributions η(α(`), `).

For a chosen set of liquidation decisions ` that induce asset price α, the necessary subsidies to

guarantee solvency of every bank are

s(α, `) := (L+ w − c− α`− πL)+. (17)

We say that a bail-in is individually incentive compatible if Condition 2 of Lemma 3.5 is satisfied for

each bank when every bank accepts the regulator’s proposal. The following lemma states that bail-

ins of the above form are welfare-maximizing among individually incentive-compatible bail-ins.25

Lemma 3.9. Let (b, s) be a complete feasible bail-in that satisfies Condition 2 of Lemma 3.5 for ev-

ery bank in the response vector 1 = (1, . . . , 1). Let C :=
{
i
∣∣ bi > 0

}
and denote α = ᾱ(b, s, 1). Then

Wλ(b, s, 1) ≥WP − g(αP ) + g(α)− λ
∑
i∈C

ηi(α, 0). (18)

Equality holds in (18) if and only if bi − si ≥ ηi(α, 0) for every i ∈ C and si ≤ si0 for every i 6∈ C.

Equation (18) shows that when contributions are of size η(α, `), their welfare impact depends

on the liquidation decision only through the induced asset price. Thus, similarly to the bailout, the

regulator optimizes bail-ins to induce the asset price, at which he is indifferent between additional

taxpayer contributions and asset liquidation. Since banks are willing to make larger contributions

to a bail-in that guarantees a higher asset price by Lemma 3.5, the regulator’s indifference price in

a bail-in is higher than in a bailout.

23The model could easily be adapted to allow for capital requirements of solvent banks by subtracting the capital requirements
from the budget constraint in the right expression of (16).

24By Lemma 3.6, the regulator can aim to construct bail-ins that can be accepted by all banks without loss of generality.
25Feasibility and individual incentive compatibility imply that bi − si ≤ ηi(α, e) for any contributing bank i. Since every

bank is rescued in a complete bail-in, subsidies satisfy si ≥ si(α, e) for every i 6∈ C. The lower bound in (18) is thus attained if
and only if ηi(α, 0) ≤ bi − si ≤ ηi(α, e) for any i ∈ C and si(α, e) ≤ si ≤ si(α, 0) = si0 for any i 6∈ C.
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Suppose now that for a bail-in of the above form, some bank i ∈ C has an incentive to free-ride,

that is, the regulator proceeds with the residual bail-in even without i’s participation. By Condi-

tion 1 in Lemma 3.5, this occurs precisely if WN −Wλ(b, s, (0, a−i)) ≥ 0. If the regulator were able

to decrease welfare in the proposed bail-in by this amount for all response vectors, he could elimi-

nate i’s free-riding incentives. It follows from Lemmas 3.8 and 3.9 that welfare in an individually

incentive-compatible bail-in (b, s) with contributing banks in C exceeds the lower bound in (18) by

λ
∑
i 6∈C

(si − si0)+ + λ
∑
i∈C

(
ηi(α, 0)− bi

)+
. (19)

Thus, providing subsidies in excess of s0 and requesting contributions below η(α, 0) are means with

which the regulator can decrease or “burn” welfare. Since subsidies in excess of s0 and contributions

below η(α, 0) do not affect the asset price, burning welfare as in (19) does not distort incentives

and hence decreases welfare by the same amount in any response vector of the banks. We denote

by χC(α) the minimal amount of welfare-burning needed to eliminate free-riding incentives from

an individually incentive-compatible bail-in with contributing banks C that induces asset price α.

The mathematical definition of χC(α) is somewhat convoluted and deferred to Lemma A.1. In

Theorem E.3 of the online appendix, we show that welfare burning is used sparingly in equilibrium.

The analysis above brings us to the characterization of the equilibrium intervention plan. The

result states that when the threat is credible, the regulator proposes a bail-in which implements

the minimum value burning χC(α) for the optimal choice of C and α. For the sake of reference, we

isolate the set of all incentive compatible bail-ins that implement the minimum value burning.

Definition 3.2. Let z(α) := α ln(α) and let z−1 be its inverse on the interval
[

1
e , 1
]
. Define the

function gα(x) := g
(
z−1(z(α)+γx)

)
−g(α). Let Ξ(C, α) denote the set of all bail-ins (b, s) satisfying:

(i) bi − si ≤ ηi(α, e) for every i ∈ C,

(ii) bi = 0 and si(α, e) ≤ si for every i 6∈ C,

(iii)
∑n

i=1(si0 − si)+ +
∑

i∈C(b
i − bi0)+ = −α ln(α)

γ ,

(iv) λ
∑n

i=1(si − si0)+ + λ
∑

i∈C
(
ηi(α, 0)− bi

)+
= χC(α),

(v) λmin
(
bi, bi0

)
+ gα

(
(bi− bi0)+

)
≥WN −WP + g(αP )− g(α) +λ

∑
j∈C η

j(α, 0)−χC(α) for i ∈ C.

The contribution of a bank i ∈ C to a bail-in affects welfare in two ways. Contributions up to

ηi(α, 0) do not require asset liquidation and increase welfare by an amount ληi(α, 0). Contributions

that exceed ηi(α, 0) by an amount xi require asset liquidation and impact the welfare trade-off

between taxpayer contributions and asset liquidation by an amount gα(xi). A contribution of size

ηi(α, 0) + xi by bank i thus has a total impact on welfare of ληi(α, 0) + gα(xi). The first two

Conditions in Definition 3.2 state that (b, s) is a feasible, complete bail-in with contributing banks

in C. Conditions (iii) and (iv) state that the bail-in induces asset price α and the total amount

of welfare burnt is χC(α). Finally, Condition (v) states that there is no free-riding because the
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welfare impact of any bank i (left hand side) is larger than the difference between the welfare losses

in a default cascade and in the bail-in. Thus, Conditions (i) and (v) together imply that it is

incentive-compatible for any bank i ∈ C to accept the proposal.

Theorem 3.10. For any bail-in (b, s), let `(b, s) denote the vector of liquidated assets if the proposal

is accepted by all banks. For any `, let i1(`), i2(`), . . . denote a decreasing order of banks according

to ηi(α(`), `). Let C(`) :=
{
i1(`), . . . , im(`)(`)

}
, where m(`) denotes the smallest integer k such that

WP +
(
g(α(`))− g(αP )

)
− λ

k∑
j=1

ηij(`)(α(`), `) < WN .

If WP < WN , then any subgame Pareto efficient equilibrium outcome is a public bailout with welfare

losses WP as specified by Lemma 3.2. If WP ≥ WN , then there exist generically unique C∗ and α∗

such that in any subgame Pareto efficient equilibrium, a bail-in from the set Ξ(C∗, α∗) is proposed

by the regulator and accepted by all banks.26 Welfare losses are equal to

WE = WP +
(
g(α∗)− g(αP )

)
− λ

∑
i∈C∗

ηi(α∗, 0) + χC∗(α∗).

Finally, if C∗ is unique, then C∗ = C(`(b, s)) for all (b, s) ∈ Ξ(C∗, α∗).

As we have highlighted before, a bail-in can be organized in equilibrium if and only if the

regulator’s no-intervention threat is credible. The set of contributing banks C∗ is the set of banks

that are most exposed to contagion at the equilibrium asset price α∗: after choosing a set of

liquidation decisions ` that induces α∗, the regulator adds banks into the bail-in consortium in

decreasing order of their incentive compatible contributions η(α(`), `) until welfare losses in the

bail-in are lower than in the default cascade. This occurs after adding the m(`) most exposed

banks. Because of the no-free-riding constraint of Lemma 3.5, no more contributors can be added

after that: any additional bank would know that even without its contribution, the regulator will

proceed with the residual consortium and, hence, that bank has no incentive to participate.

The asset price and the welfare losses are generically unique in equilibrium. The set of liqui-

dation decisions and the bail-in proposal, however, are not unique in general. Similarly as in the

public bailout, welfare depends on the liquidation by banks only through the total amount that is

being liquidated. This gives the regulator some leeway on how to induce asset price α∗. The only

restriction on liquidation by an individual bank is the fifth condition in Definition 3.2, specifying

the minimal liquidation amount by bank i for the no-free-riding condition to hold.

In Appendix E we highlight the relationship between the equilibrium asset price and the amount

of welfare burnt in equilibrium: in many situations, the regulator will avoid burning welfare in

equilibrium and instead choose to induce an asset price, at which the contributions by individual

banks are sufficiently large to deter free-riding without burning welfare.

26Generically unique means that it is unique for an open and dense set of model parameters.
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Remark 3.2.

1. Banks are willing to make larger contributions to a bail-in that guarantees a higher asset

price, hence the regulator’s indifference price increases as more banks are included into the

bail-in consortium. In particular, α∗ ≥ min(αind, 1).

2. If the regulator had the power to commit to not intervening in the third stage, the equilibrium

outcome would improve to WE even if WP < WN . Commitment power would thus improve

social welfare by (WP −WE)1{WP<WN}.

4 Shocks, Asset Illiquidity, and Total Throughput

In this section, we analyze the dependence of equilibrium quantities including asset prices, awarded

subsidies, credibility, and welfare losses on the banks’ balance sheet parameters, the network struc-

ture, and the recovery rates from asset liquidation and bankruptcy procedures.27

4.1 Optimal Bailout

Since every bank is rescued in a complete bailout, there are no bankruptcy costs and no losses

that depend on the network structure. Asset prices, subsidies, and welfare losses in the complete

bailout are thus independent of β and π. The dependence of the welfare-maximizing bailout on the

price elasticity γ, the welfare cost λ of a taxpayer dollar, and the size s0 of the banks’ shortfall is

described in the following result and illustrated graphically in Figure 2.

Lemma 4.1. There exist constants 0 < γ1 < γ2 and 0 < λ1 < λ2 such that:

(i) The asset price αP is decreasing for γ ≤ γ1, increasing for γ ∈ [γ1, γ2], and equal to 1 for

γ ≥ γ2. Subsidies and welfare losses are increasing for γ ≤ γ2 and constant for γ ≥ γ2.

(ii) The asset price αP and subsidies are constant for λ ≤ λ1, decreasing for λ ∈ [λ1, λ2], and

constant again for λ ≥ λ2. Welfare losses are increasing in λ.

(iii) The asset price αP is non-increasing in si0 for any bank i. Subsidies and welfare losses are

increasing in si0 for any bank i.

When the price elasticity γ is low, liquidation has a small impact on the asset price and it is

welfare maximizing for the regulator to provide only the minimal amount of subsidies necessary

to ensure solvency of all banks in the system. Under this minimal-intervention policy, the price of

the asset falls as its elasticity increases. The resulting decrease of the banks’ equity value requires

larger subsidies to restore the system to a going concern. When the price elasticity rises above the

threshold γ1, the regulator switches from the minimal-intervention policy to a policy that trades off

27The results in this section are presented under the assumption that γ > 0, ei > 0 for every bank i, and that there is at
least one fundamentally defaulting bank. Without this assumption, the results in this section hold when strict monotonicity is
replaced by weak monotonicity.
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Figure 2: The three charts show the dependence of the optimal bailout on γ, λ, and e for a calibrated model of a
dense financial network using the 2018 data of the EBA stress test.28 The asset price αP = min(max(αL, αind), 1) is
shown in solid blue lines; the minimal-intervention asset price αL and the indifference price αind are shown in dashed
blue lines. The total subsidies SP awarded and welfare losses WP are shown in yellow and red, respectively, normalized
to fit the same scale. By Lemma 4.1, the dependence patterns are the same for arbitrary financial networks.

asset liquidation and taxpayer contributions to maintain the indifference price αind. As liquidation

becomes more costly, the regulator has to provide additional subsidies to maintain the indifference

price, which has a positive net effect on the asset price. In the interval [γ1, γ2], non-defaulting

banks thus benefit from additional market illiquidity—at the cost of taxpayer contributions—since

their equity value increases with the asset price. Above the threshold γ2, liquidation is so costly

that the regulator covers the banks’ entire shortfall s0 to avoid any liquidation.

Covering the entire shortfall with taxpayer contributions is optimal if the welfare cost of taxpayer

contributions is below the threshold λ1. Above the threshold, the regulator decreases the size of sub-

sidies as λ increases to attain the indifference price. A decrease in subsidies will lead to a decrease in

the asset price until, at level λ2, the regulator provides only the minimal subsidies necessary.

Finally, subsidies and welfare losses are increasing in the shortfall s0 of the banks, which can be

understood as a measure of the size of the initial shock. The asset price is strictly decreasing in the

size of the shock where it exceeds the indifference price and it is constant otherwise. Since the indif-

ference price does not depend on the size of the shock, a threshold where the transition takes place

may not exist: the asset price may be strictly decreasing or it may be constant for any shock size.

Lemma 4.1 divides the space of parameters into regions where the regulator provides the minimal

amount of subsidies (αP = αL), where the regulator trades off taxpayer contributions with asset

liquidation (αP = αind), and where liquidation is so costly that the regulator covers the entire

shortfall with subsidies (αP = 1). To describe the same phenomenon in terms of the size of illiquid

assets held by the banks, we need the notion of separating manifolds, which generalizes thresholds

to higher dimensions. Separating manifolds, like separating hyperplanes, divide Rn+ monotonically

into two regions, but they can accommodate a non-linear boundary.

Definition 4.1. A separating manifold X is a subset of Rn that admits a global parametrization

f i along every coordinate i = 1, . . . , n such that for every x 6∈ X , either f i(x−i) > xi for each i =

1, . . . , n or f i(x−i) < xi for each i = 1, . . . , n. We write x < X if xi < f i(x−i) for each i and we

write x ≤ X if x < X or x ∈ X . We define > and ≥ analogously.

28Unlike the data calibration procedure for Section 6 described in Appendix D, we do not shut down the price-mediated
contagion channel for Figures 2 and 4. Instead, we set 90% of outside assets reported by banks as illiquid and 10% as cash.
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Lemma 4.2. There exist separating manifolds 0 < E0 ≤ E1 < E2 such that:

(i) For a fundamentally defaulting bank i ∈ F , the asset price αP and subsidies are decreasing

in ei for e ≤ E1, increasing in ei for E1 ≤ e ≤ E2, and constant for e ≥ E2. Welfare losses are

decreasing in ei for e ≤ E0, increasing in ei for E0 ≤ e ≤ E1, and constant for ei ≥ E2.

(ii) For a non-fundamentally defaulting bank i 6∈ F , the asset price αP and subsidies are constant

in ei for e ≤ E1 or e ≥ E2 and they are increasing in ei for E1 ≤ e ≤ E2. Welfare losses are

increasing in ei for e ≤ E2 and constant for ei ≥ E2.

Similarly to Lemma 4.1, Lemma 4.2 divides the vector of illiquid asset holdings e into three

regions, where it is optimal for the regulator to provide minimal assistance (e ≤ E1), where the

regulator trades off taxpayer contributions with asset liquidation (E1 ≤ e ≤ E2), and where the

regulator prevents all liquidation (e ≥ E2). Generally speaking, an increase in the sum of illiquid

assets held by the entire system has a similar impact on the optimal bailout as an increase in the

price elasticity because the same amount of liquidation leads to larger fire-sale losses. However, there

is a subtle difference below E1, where minimal subsidies are optimal: A fundamentally defaulting

bank i cannot cover its shortfall by liquidating its assets. The regulator is thus forced to cover a

large portion of the shortfall even if the marginal welfare cost of taxpayer contributions is higher

than the marginal welfare impact of asset liquidation. As ei increases, bank i is able to cover

a larger portion of its shortfall by liquidating its assets, which reduces the size of the minimal

subsidies required. Below the threshold E0, the benefits of the reduced size of subsidies outweighs

additional losses from fire sales, leading to an overall decrease in welfare losses. Note that E0 may

be strictly lower than E1 if the aggregate amount of the illiquid asset held by the other banks in

the system is large. See the right panel in Figure 2 for a graphical illustration.

4.2 Credibility

For a given set of parameters, the threat is either credible or not. To analyze how the credibility

depends on underlying variables, we study the difference WP −WN between the welfare losses in

the optimal bailout and the default cascade. This measures how close to being credible the threat

is. We say that the credibility of the threat is increasing or decreasing in a parameter if WP −WN

is, respectively, increasing and decreasing in that parameter.

A critical measure for the sensitivity analysis is the total throughput of a defaulting bank to

the solvent members of the economy. We define it as follows. Abbreviate DN = D(pN , `N , αN ),

let CN ⊆ DN denote the set of defaulting banks which repay their senior creditors in full, and let

IN denote the set of illiquid but solvent banks. For two sets of banks S and C, let πS,C denote

the submatrix of π with rows and columns corresponding to banks in S and C, respectively. The

throughput of a bank i ∈ CN to a set of banks S is

θiS(β, π) :=
∑

j∈S\DN

π{j}CN
(
I − βπCN ,CN

)−1
ρCNi + β

∑
j∈S∩DN\CN

π{j}CN
(
I − βπCN ,CN

)−1
ρCNi . (20)
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Figure 3: Let πc and πr denote the complete and the ring network, respectively. The two charts show the total
throughput θ1(β, πµ) of bank 1 in the network πµ = µπc + (1− µ)πr for various levels of β, when CN = DN = {1, 2}
and CN = DN = {1, 2, 3, 4, 5} in the left and right panel, respectively.

where ρCNi denotes the unit vector in RCN in the direction of i. The total throughput of bank i ∈ CN
is then defined as θi(β, π) := θi{1,...,N}(β, π). For a bank i ∈ DN \ CN , we set θi(β, π) := 1.

The total throughput of bank i is a measure of the exposure of solvent junior creditors (first term)

and senior creditors (second term) to a shock hitting bank i. It thus quantifies the potential for spill-

over losses triggered by defaults. For a bank i ∈ CN , it captures the amplification of losses due to

negative feedback loops between defaulting banks through the Leontief matrix
(
I − βπCN ,CN

)−1
=∑∞

k=0

(
βπCN ,CN

)k
: term k in the sum corresponds to the propagation of losses through liability

chains in CN of length k. After accounting for feedback effects and bankruptcy losses, the exposure

of a solvent creditor to a shock on bank i’s assets is πji for a solvent bank j and βπji for the senior

creditors of a bank j ∈ DN \ CN .29 The total throughput is a normalized measure for the rate of

spill-over losses that condenses all the network information needed to determine the credibility of

the regulator’s threat, as specified by the following lemma.

Lemma 4.3. The total throughput of any bank is non-decreasing in β and it takes values in [0, 1].

Conditional on the banks’ levels of solvency (the sets DN , CN , and IN ) and the total value of their

claims on solvent banks, WP −WN depends on π only through
∑

i∈CN θ
i
IN (β, π) and

∑
i∈CN θ

i(β, π).

Observe from (20) that the throughput depends only on the network structure, the location of

the shocked bank(s) within the network, the connections of the shocked banks to other defaulting

banks, as well as the recovery rate β. Conditional on the banks’ levels of solvency, it does not,

however, depend on the asset price or the banks’ balance sheet quantities L, c, w, and e. The

throughput is increasing in the connectivity between defaulting banks as illustrated in Figure 3.30

We are now ready to determine the dependency of the credibility on the model parameters.

Lemma 4.4.

(i) The credibility of the threat is increasing in λ.

29The total throughput of bank i ∈ CN is related to the bank’s Bonacich centrality Bi = 1>CN

(
I − βπCN ,CN

)−1
ρ
CN
i , which

captures the total amplification of losses through feedback loops in CN . The total throughput additionally takes into account
how the losses are distributed among the creditors. It is important to note that the Bonacich centrality may diverge to ∞ if
β → 1, whereas our notion of total throughput is bounded on the interval [0, 1].

30The symmetric complete network πc with πijc = 1{i 6=j}/(n−1) is the least concentrated network structure. The ring network

πr with πijr = 1{j=i+1 mod n} is the sparsest network structure as measured by the Gini index; see Hurley and Rickard (2009).
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Figure 4: The three charts show the dependence of the optimal bailout on γ, β, and e for a calibrated model of a
dense financial network using the 2018 data of the EBA stress test. In the right chart, we scale the size of illiquid
assets held by all banks simultaneously, leading to a cluster of thresholds ei∗, where each bank i becomes solvent and
the credibility of the threat increases.

(ii) The credibility of the threat is non-decreasing in β and it is strictly increasing on the set{
β
∣∣ there exists i ∈ DN (β) with θi(β, θ) > 0

}
.

(iii) The credibility of the threat is decreasing in γ for γ ≥ γ2. For γ ≤ γ2, an increase in γ

leads to downward discontinuities in WP −WN when additional banks default. The marginal

change of WP −WN at continuity points in [0, γ2] is decreasing in β and θi(β, π) for every

defaulting bank i; see Lemma H.14 in the online appendix for the precise expression.

(iv) If (1 + λ)β ≤ 1 or DN = CN , then for each i and fixed e−i, there exists ei∗ such that the

credibility of the threat is decreasing in ei everywhere except at ei∗ where WP −WN has an

upward discontinuity.31

As the welfare cost λ of taxpayer contribution increases, a bailout becomes more costly and the

threat becomes more credible. Similarly, as the recovery rate β increases, bankruptcies become less

costly and it becomes more credible that the regulator will not intervene. If the throughput of all

defaulting banks is 0, then losses generated by defaulting banks do not spill over to the rest of the

system, hence welfare losses are locally constant in β.32 However, if the set of defaulting banks is

connected to the rest of the system, then the credibility is strictly increasing in β.

As the price elasticity γ increases, liquidation has a larger knock-down effect on the asset’s price.

Illiquid banks are able to raise a smaller amount of cash from their sales and, when γ crosses a certain

threshold, are unable to meet their liabilities. In the absence of intervention, the set of defaulting

banks increases at such a threshold of asset illiquidity, causing a downward discontinuity in the

credibility of the threat due to bankruptcy losses. Between these discontinuities, two counteracting

forces determine the change in credibility: a larger impact on the asset price causes larger liquidation

losses in the absence of intervention but also mandates larger subsidies in a bailout. Which effect

dominates depends on the recovery rate β and the network structure via the total throughput of

defaulting banks. As illustrated in Figure 3, the marginal change in credibility is higher in more

sparsely connected networks. As seen in the left panel of Figure 4, the discontinuities typically

31If (1 + λ)β > 1 and DN 6= CN , then one can give a similar condition on the marginal change of WP −WN as in (iii).
32Indeed, if all senior creditors are repaid in full and the defaulting banks are only liable to each other but not to the solvent

banks in the system, then repayments are just a redistribution of net zero wealth among defaulting banks.

25



dominate the continuous changes in the credibility. When γ ≥ γ2, subsidies in the bailout are

constant and the credibility decreases.

An increase in the amount of illiquid asset held by any bank increases the system’s exposure to

fire-sale losses both in the optimal bailout and in the default cascade. Because fire-sale losses are

partially mitigated when a bailout is implemented, the sensitivity of welfare losses to higher asset

holdings is stronger in absence of intervention than in a bailout. Therefore, the credibility of the

threat is decreasing in ei for each bank i except at the threshold ei∗, where bank i changes from

being insolvent for ei < ei∗ to being solvent for ei ≥ ei∗; see the right panel in Figure 4.

The following result shows how the credibility of the threat changes with the size of the initial

shock. For the credibility analysis, we write c = c0 − ε as the sum of cash kept in period t = 0 and

the realization of short-term returns on the illiquid assets in period t = 1, where ε is interpreted as

the size of the shock to those returns. In contrast, the public bailout depends on the size ε of the

initial shock only through the shortfall s0, hence Lemma 4.1 simply states the dependency on s0.

Lemma 4.5. For each bank i, there exist 0 < εi1 < εi2 ≤ εi3 such that the credibility of the threat is

constant for εi ≤ εi1, decreasing for εi ∈ [εi1, ε
i
2], and increasing for εi ≥ εi3. On the interval [εi2, ε

i
3],

the credibility has only downward discontinuities. The marginal change of WP −WN at continuity

points in [εi2, ε
i
3] is decreasing in β and θi(β, π).

For very small shock sizes, bank i is able to honor its liabilities without liquidating its assets.

Welfare losses and the credibility of the threat thus remain unaffected. For small shock sizes in

the interval [εi1, ε
i
2], bank i has to start liquidating its assets in absence of intervention, but not

in the public bailout where all interbank claims are honored. The credibility of the threat is thus

decreasing in that interval. For intermediate shock sizes in the region [εi2, ε
i
3], banks have insufficient

liquidity to repay their liabilities both in the bailout and in the no-intervention outcome. Whether

this leads to a larger increase of welfare losses without intervention than in a bailout—and hence

to a decrease in credibility—depends on the recovery rate β, and the total throughput of bank i in

the default cascade. Finally, for large shock sizes εi ≥ εi3, bank i does not make any payment to its

junior creditors in the default cascade, hence any marginal increase in the shock is not amplified

through the network anymore. Consequently, the credibility is increasing in the shock size.

We conclude this section with the following result, which highlights that the credibility of the

threat is the most important determinant when comparing welfare losses between two networks.

Lemma 4.6. For fixed L, e, c, w, γ, β, equilibrium welfare losses after intervention are smaller in

network π1 than in network π2 if the regulator’s threat is credible in π1 but not in π2.

Indeed, if the regulator’s threat is credible in network π1 but not in network π2, Theorem 3.10

implies that WE(π1) < WN (π1) ≤ WP = WE(π2). If the threat fails to be credible in both

networks, the only available option for the regulator in either network is a public bailout. Therefore,

equilibrium welfare losses are identical in both networks. In Section 6, we compare welfare losses

when the threat is credible in both networks. We do that numerically, using a data set from the

European Banking Authority’s 2018 stress test.
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5 Optimal Intervention with Partial Rescues

In this section, we extend the baseline model of Section 3 by enlarging the strategy space of the

government from complete rescues to bail-ins and bailouts that may rescue only a subset of the

banks. We also refer to these interventions as partial interventions or partial rescues. This analysis

reveals the additional forces that contribute to the formation of bail-ins when the regulator does

not necessarily rescue every bank in the system. To simplify the analysis and the exposition of

our results, we assume a perfectly elastic asset price, that is, we set γ = 0. This is equivalent to

assuming that banks do not hold any illiquid asset and all non-interbank claims are cash assets.

5.1 Public Bailout

Without the participation of the banks, the regulator minimizes welfare losses over all possible sets

of banks he could bail out. The first lemma describes this minimization procedure.

Lemma 5.1. For any set of banks B, let p(B) be the greatest fixed-point of

pi =


Li if i ∈ B or ci +

∑n
j=1 π

ijpj ≥ Li + wi,(
β
(
ci + (πp)i

)
− wi

)+
otherwise.

Define the vector of subsidies s(B) by setting si(B) :=
(
Li+wi−ci−

∑n
j=1 π

ijpj(B)
)+

for i ∈ B and

si(B) = 0 otherwise. Let BP := arg minBWλ(s(B)). A welfare-maximizing partial bailout awards

subsidies from the set SP := {s(B∗) | B∗ ∈ BP } and attains welfare losses W ∗P := minBWλ(s(B)).

The bailout s(B) is the welfare-maximizing bailout among all bailouts that rescue banks in

B by giving subsidies only to banks in B. The regulator thus maximizes welfare by optimally

selecting which banks to subsidize. Generically, BP is a singleton, that is, welfare is maximized for

a unique set of banks to be bailed out. Note that in Lemma 5.1, we do not preclude the possibility

that the optimal partial bailout rescues no banks at all. In that case, the optimal “bailout” is the

default cascade. The following result describes the structure of the partial bailout by characterizing

conditions under which it is optimal not to rescue a certain set of banks. Those conditions depend

on the shortfall S(B) and the capital buffer C(B) in the bailout s(B), defined as follows:

S(B) :=
(
L+ w − c− πp(B)

)+
, C(B) :=

(
c+ πp(B)− w − L

)+
. (21)

For the sake of brevity, we set δ(B) = δ(p(B)) and D(B) = D(p(B)), and denote by S(B) = D(B)c

the set of solvent banks in the bailout s(B), where Ac denotes the complement of the set A.

Lemma 5.2. For any two sets of banks B,B′ such that B′ ⊆ B, let ζ := π
(
p(B) − p(B′)

)
and

R := D(B′) \ D(B). Then Wλ(B′) < Wλ(B) if and only if

∑
i∈R

Si(B′) +
λ

1 + λ

∑
i∈S(B)

min
(
ζi, Ci(B)

)
>
∑
i∈R

δi(B′) +
∑

i∈D(B)

min
(
βζi, δi(B′)

)
+
∑
i∈S(B)

ζi. (22)
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The left-hand side of (22) captures the benefits for not rescuing banks in R. The first term is

proportional to the shortfall of banks in R if those banks are not rescued. Rescuing them is costly

and requires government expenditures in the form of awarded subsidies. The second term captures

the potential of solvent banks to absorb losses ζ caused by the default of banks in R. If solvent

banks have sufficiently large capital buffers, these losses can be absorbed by the system and there

is less benefit in rescuing the defaulting banks using public money. The right-hand side of (22)

captures the benefits of rescuing banks in R. These include the direct benefits to senior creditors

(first two terms) and solvent junior creditors (third term) if banks in R are rescued. Benefits to

insolvent banks do not explicitly appear in the expression above because those benefits are passed

on to creditors of rescued banks through the repayment of liabilities.

Lemma 5.2 implies that a bank is not rescued in the optimal bailout if it is hit by a very large

shock or if such as shock can be well-absorbed by the capital buffer of its creditors. By contrast,

a bank is rescued in the optimal bailout if, relative to the size of the exogenous shock, the bank’s

default causes large losses to its creditors that cannot be absorbed by their capital buffers. Losses

are particularly large if the bank’s bankruptcy causes a default cascade. If a bank is hit by a

large shock and its bankruptcy causes a default cascade, it may be welfare enhancing to rescue

the contagiously defaulting banks as opposed to the fundamentally defaulting bank: To rescue the

fundamentally defaulting bank, the regulator has to cover the bank’s large shortfall entirely using

taxpayer money. If he rescues only the contagiously defaulting banks, he can leverage the balance

sheet capacity of those banks and cover the residual shortfall only after the capital buffers of the

contagiously defaulting banks have been depleted.

From an ex-ante perspective, our result implies that a risky bank i has incentives to borrow from

other risky banks in the system so that in case of i’s default, its creditors are likely to be distressed

as well. Then, their potential for absorbing the losses induced by bank i is small, increasing the

chances that bank i is bailed out. (As we noted in the introduction, in this paper we do not,

however, pursue the ex-ante implications of our bail-out strategies.)

5.2 Banks’ Equilibrium Responses

When the regulator commits to complete bailouts as in Section 3, the threat towards the banks is

binary: a bank’s assets are either fully protected or they are exposed to the full extent of the default

cascade. This is no longer the case when the government allows for partial bailouts. A bank’s assets

may be protected to varying degrees in a welfare-maximizing bailout: while some debtors may be

rescued and hence the claims towards those banks are protected, other debtors may still default,

thereby inducing losses to the remaining banks in the system. Thus, banks may have an incentive

to participate in a bail-in even if the regulator cannot credibly threaten a default cascade.

If there is more than one set of banks, whose bailout is welfare-maximizing, the regulator can

choose which one to implement. If the regulator announces that he will implement the bailout s(B)

when banks fail to cooperate, he threatens to not rescue banks in Bc. Because he can credibly

implement any optimal bailout after any response vector by the banks, he can “threaten” different
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bailouts to different banks. Consider a financial system with two identical defaulting banks i and j,

where the welfare-maximizing bailout prescribes the rescue of only one of them. Since rescuing

either is a credible action by the regulator, he can threaten the creditors of bank i that, without

their participation, he will bail out bank j and vice versa. This is formalized in the following lemma.

Lemma 5.3. Let (b, s) be a feasible bail-in proposal. In an accepting equilibrium a, bank i with

bi > 0 accepts if and only if for some Bi ∈ BP , the following conditions hold:

1. Wλ(b, s, (0, a−i)) ≥WP ,

2. bi − si ≤
∑n

j=1 π
ij
(
p̄j(b, s, (1, a−i))− pj(Bi)

)
− si(Bi).

Moreover, if there exists B∗ ∈ BP such that Condition 2 holds simultaneously for every bank i with

Bi = B∗, then rejecting equilibria are subgame Pareto efficient only if s ∈ SP . If there exists no

such B∗ for any accepting equilibrium, then rejecting equilibria are not subgame Pareto dominated

by accepting equilibria.

Condition 1 is analogous to that in the case of complete bailouts and states that a partici-

pating bank must not have an incentive to free-ride. Specifically, Condition 1 imposes that with-

out i’s participation, the regulator chooses his preferred outside option over the residual bail-

in.33 Condition 2 states that bank i’s net contribution to the bail-in (b, s) has to be smaller

than or equal to i’s benefits in the bail-in over the threatened bailout s(Bi). If bank i or i’s

debtors are rescued in the bailout s(Bi), the benefits are lower and i has a lower incentive to

contribute. If the optimal bailout of Lemma 5.1 is not unique, the regulator has some room

to adjust the threats towards the banks by selecting Bi accordingly. However, if the regulator

threatens different bailouts after the rejection by individual banks, the threats can no longer be

carried out against all banks simultaneously. Thus, at least one bank is not punished as harshly

as it was threatened, hence that bank is strictly better off rejecting the proposal. As a conse-

quence, rejecting equilibria are no longer Pareto dominated by accepting equilibria. The regu-

lator can ensure that his proposal is accepted in equilibrium if he threatens the same bailout

after any response from the banks.34 This corresponds to a risk-averse regulator who minimizes

welfare losses in the worst-case outcome over all subgame Pareto-efficient continuation equilibria.

5.3 Optimal Proposal of the Regulator

In a partial bail-in, the regulator selects both rescued banks and contributors. Because a bank is

more willing to contribute to a bail-in that protects its debtors, the two decisions are interconnected.

33Note that in the case of partial rescues, the preferred outside option is the threatened partial bailout s(Bi) leading to welfare
losses WP . By contrast, Lemma 3.5 for complete rescues is formulated under the assumption that the threat is credible, where
the regulator’s preferred outside option is the default cascade with welfare losses WN .

34The regulator can choose which welfare-maximizing bailout to implement after any response vector. If it is possible to
assign bailouts to response vectors such that at least one bank has an incentive to deviate for any a 6= (1, . . . , 1), the regulator
can prevent the existence of rejecting equilibria. In that case, it does not matter that threats towards different banks cannot be
carried out simultaneously. Whether or not rejecting equilibria can be prevented is a combinatorial argument that depends on
the number of participating banks, the number of credible bailout threats, and the rank-order of the threats for the individual
banks. Since the optimal bailout is generically unique in this framework, this analysis is beyond the scope of the paper.
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When the regulator proposes to rescue a set of banks B and threatens the bailout s(B∗), the maximal

incentive-compatible contribution by bank i, or the threat level towards bank i, is equal to

ηB∗(B) := min
((
π(p(B)− p(B∗))− s(B∗)

)+
, C(B)

)
, (23)

where C(B) is the vector of the banks’ capital buffer defined in (21). The notion of threat levels

generalizes the credibility of the threat in Section 3.35 If the optimal bailout happens to be the

complete bailout, then threat levels towards all banks are zero and, as in Section 3, the regulator

cannot incentivize any banks to participate. If the optimal bailout is not the complete bailout, the

regulator minimizes welfare losses over which banks to subsidize, taking into account that it affects

the contributions he can extract from the private sector. We state the result under the generically

satisfied assumption that the optimal bailout is unique. If the welfare-maximizing bailout fails to

be unique, the regulator will additionally optimize over which bailouts to threaten.

Theorem 5.4. Suppose that BP = {B∗}. For any set of banks B, denote by i1(B), i2(B), . . . a

non-increasing ordering of banks according to ηiB∗(B). For any integer k, define

W k(B) := Wλ(s(B))− λ
k∑
j=1

η
ij(B)
B∗ (B).

Let m(B) denote the smallest k for which W k
B∗(B) < WP and set

W (B) = min

(
Wm(B)(B), WP − λη

im(B)+1(B)

B∗ (B)

)
. (24)

In the game with partial interventions, the welfare losses in any subgame Pareto-efficient equilibrium

are equal to W ∗E := minBW (B).

As in Theorem 3.10, the no-free-riding constraint drives the regulator to ask for contributions

from banks, towards which the threat level is the highest. He includes banks into the bail-in

consortium according to the decreasing order i1(B), i2(B), . . . until welfare losses are lower than in

the default cascade (left expression in the minimum of (24)). After that, he can only include addi-

tional banks into the consortium by burning welfare (right expression in the minimum of (24)).36

In addition to the above forces that also govern the formation of a complete bail-in, the selection

of rescued banks affects the size of the contributions the regulator can demand from the private

35Because rescues are required to be complete in Section 3, it follows that B = {1, . . . , n} and hence p(B) = L. With complete
rescues, the threat level towards the banks is thus either 0 (if the no-intervention threat fails to be credible and hence p(B∗) = L)
or it is given by η(α(`), `) in (16) for any bail-in that induces asset liquidation ` (if the no-intervention threat is credible and
hence p(B∗) = p(∅) = pN and s(B∗) = 0). Here, we highlight the dependence on the set B of subsidized banks because ` = 0
and α = 1 in this section.

36In absence of price-mediated contagion, the order i1(B), i2(B), . . . of banks most exposed to contagion does not depend on
the number of banks included in the consortium. The order is fixed for given B and B∗, and this simplifies the characterization
of welfare burning in equilibrium: To include an additional bank i into the consortium, the regulator burns WP −Wm(B)(B)
units of welfare so that without i’s participation, welfare in the residual bail-in and the optimal bailout are identical. Then,
bank i does not have an incentive to free-ride. Because banks are decreasingly ordered according to their threat levels, the
regulator will consider burning welfare only to include bank im(B)+1(B).
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sector. In equilibrium, the regulator will include few banks into the bail-in consortium, each

willing to make a large contribution, rather than many banks with small contributions each. It is,

therefore, beneficial to rescue banks which have few large creditors rather than banks with many

small creditors. This is formalized in the following lemma. It characterizes the structure of partial

equilibrium bail-ins by giving conditions, under which it is optimal not to rescue a certain set of

banks. We use the same notation as in Lemma 5.2 and Theorem 5.4, and additionally denote by

C(B) :=
{
i1(B), . . . , im(B)(B)

}
the set of contributing banks towards a rescue of banks in B.

Lemma 5.5. Suppose that BP = {B∗}. For any two sets of banks B′ ⊆ B, let R := D(B′) \ D(B)

as in Lemma 5.2. Then Wλ(s(B′))−
∑

i∈C(B′) λη
i(B′) < Wλ(s(B))−

∑
i∈C(B) λη

i(B) if and only if

∑
i∈R

Si(B′) +
λ

1 + λ

∑
i∈S(B)

min
(
ζi, Ci(B)

)
+

λ

1 + λ

( ∑
i∈C(B′)

ηiB∗(B
′)−

∑
i∈C(B)

ηiB∗(B
′)

)

>
∑
i∈R

δi(B′) +
∑

i∈D(B)

min
(
βζi, δi(B′)

)
+
∑
i∈S(B)

ζi +
λ

1 + λ

∑
i∈C(B)

min
(
ζi, ηiB∗(B)

)
. (25)

Similarly to the characterization of the optimal bailout in Lemma 5.2, the left-hand side of (25)

represents the benefits of not rescuing banks in R, whereas the right-hand side represents the

benefits of rescuing banks in R. The majority of terms are identical to (22), but there are two

key differences. The first is related to the system’s ability to absorb losses transmitted from banks

in R when they are not rescued (second term on the left-hand side of (25)). Losses are absorbed

either partially or completely by the capital buffers of R’s creditors. In order to benefit from those

capital buffers in a partial bailout, the regulator has an incentive to let banks in R default. In

the bail-in, the regulator benefits from those capital buffers even when he rescues the banks in R
because he can extract larger contributions—up to the amount η(B) ≤ C(B)—from contributors

in C(B) (third term on the right-hand side of (25)). The choice of which banks to rescue is thus

network-dependent : If banks in R have many creditors, only some of them will be included in the

consortium C(B) due to free-riding incentives. Thus, if capital buffers are large and the defaults of

banks in R can be well absorbed, the second term on the left-hand side of (25) is larger than the

third term on the right-hand side, constituting a reason not to rescue banks in R. If, however, R
has only a few large creditors, those are likely included in C(B) and hence the two terms balance

out.37 While, in the partial bailout, only the size of the absorbed losses matter, in the partial

bail-in the distribution of those losses matters as well because it determines the contributions that

can be elicited from the private sector.

The second difference from the case of complete bailouts is the third term on the left-hand side

of (25). It captures the structure of rescue consortia in the two alternative bail-ins, stating that it

is beneficial to not rescue banks in R if, by doing so, the regulator does not lose any contributors.

Indeed, if the number of banks contributing towards a bail-in rescuing banks in B′ is larger than

37One can show that min
(
ζi, ηi(B)

)
= min

(
ζi, Ci(B)

)
for any bank i with a positive threat level ηi(B′) when banks in R are

not rescued. The terms in the sums for each such bank are thus identical.
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when rescuing banks in B, i.e., m(B′) ≥ m(B), then this term is positive because C(B′) is the set

of banks of size m(B′) that maximizes contributions of size η(B′).
Both Lemmas 5.2 and 5.5 imply that it is beneficial for banks to have only a small number of

creditors. To be rescued in a bailout, the bank must cause large contagion effects. To be rescued

in a bail-in, the bank’s creditors need to be among the largest potential contributors to the rescue

consortium. Both are more likely to happen when the losses caused by the bank’s default are spread

only across a few creditors. Because the regulator prefers sparsely connected networks, it follows

that ex-ante incentives of banks are better aligned with the regulator’s objective when he allows

for partial intervention, rather than when restricting himself to complete rescues only.

Our final result relates the structure of the equilibrium partial bail-in with the structure of the

optimal partial bailout.

Lemma 5.6. Let B ⊆ B′ with Wλ(s(B′)) ≤Wλ(s(B)). Then W (B′) ≤W (B).

For B′ ∈ BP , Lemma 5.6 shows that it cannot be optimal to rescue a subset of the banks that

are bailed out in the threatened bailout: by Lemma 5.3, no bank would have any incentive to

contribute to such a bail-in. Lemma 5.6, however, does not imply that all banks from the optimal

bailout are rescued in the optimal bail-in, nor is that statement true in general. Condition 2 in

Lemma 5.3 shows that, in order to incentive banks to participate, the regulator needs to propose

bail-ins that rescue banks that are not bailed out. In the online appendix, we provide a numerical

example, in which banks rescued in the optimal bailout are not rescued in the optimal bail-in.

6 Equilibrium Welfare Losses and Network Structure

In this section, we analyze the dependency of equilibrium welfare losses on the structure of the

interbank network using data from the 2018 stress test of the European Banking Authority (EBA).

We elaborate in Appendix D how we calibrate our model to the data set. To highlight more promi-

nently the impact of the network structure on welfare, we shut down the price-mediated contagion

channel for this calibration exercise. This corresponds to setting γ = 0 or, equivalently, assuming

that all outside assets are held as cash. Detailed information on bilateral exposures is not publicly

available. To compare the relative performance of different network structures, we fit a sparse and a

dense network structure πs and πd, respectively, to the data from the EBA stress test. We then an-

alyze the credibility of the regulator’s threat and the equilibrium welfare losses as a function of the

network structure πµ := µπs+(1−µ)πd for µ ∈ [0, 1].38 We generate the dense network πd following

the maximum entropy method developed by Upper and Worms (2004). This method distributes in-

terbank liabilities as evenly as possible among the counterparties, yielding a complete network. We

generate the sparse network πs using an iterated greedy algorithm, for which details are provided in

38Craig and Von Peter (2014) show that the German interbank network has a core-periphery structure: while the 45 large
core banks act as intermediaries and have many counterparties, the periphery banks trade only with core banks, but not with
each other. The participating banks in the EBA stress test are 36 of the largest banks in Europe, which are all considered core
banks. Therefore, we do not aim to estimate a core-periphery network to this data set but rather analyze the impact of a range
of network structures of different sparsity on credibility and equilibrium welfare losses for the subnetwork of core banks.
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Figure 5: The two plots show how welfare losses under different resolution plans and banks’ contributions to the
equilibrium bail-in change as a function of the network πµ = µπs+(1−µ)πd as µ increases from 0 to 1. Thus, at the left
edge of each plot, the network is equal to a dense network πd and it gets progressively sparser as we move to the right
until it is equal to a sparse network πs at the right edge. Welfare losses and welfare impacts of banks’ contributions
are shown relative to the welfare losses WP in the complete bailout. Contributions of banks are shown cumu-
latively so that the contributed amount of a single bank corresponds to the distance between two consecutive lines.

Appendix D.39 We then apply a shock to the assets of HSBC, Barclays, and Deutsche Bank with a

shock size equal to their cash holdings, thereby wiping out the value of their non-interbank assets.

The left plot of Figure 5 shows the impact of the network structure on welfare losses un-

der different resolution plans. As the network becomes sparser, liabilities among banks are more

concentrated. This makes contagious defaults in absence of intervention more likely and the cor-

responding welfare losses WN change discontinuously where this happens. For the chosen size of

shocks, the threat is credible in all networks since WN is smaller than welfare losses WP in the

complete bailout. This allows the coordination of a complete equilibrium bail-in as described in

Theorem 3.10 with welfare losses equal to WE . Contributions to the equilibrium bail-in are illus-

trated in the right plot of Figure 5, where it is evident that they increase as the network becomes

sparser because free-riding incentives are reduced. The three main creditors of the shocked banks

would suffer large losses without intervention and can, therefore, be incentivized to make large

contributions. This leads to a continuous decrease in equilibrium welfare losses as the network gets

sparser until we observe contagious defaults in the default cascade: because of the no-free-riding

constraints, welfare losses in a bail-in can differ from WN by at most the contribution of any partic-

ipating bank. Therefore, discontinuous changes in WN are reflected also in the equilibrium welfare

losses. Nevertheless, equilibrium welfare losses in the sparsest network are 5.2% lower than in the

most dense network despite the fact that without intervention, they would be 31.2% larger.

For the chosen shock sizes, there are no contagiously defaulting banks in the most dense network.

This illustrates that even if the regulator’s threat is more credible in a dense network, equilibrium

welfare losses are typically still decreasing in the sparsity of the network because of the reduced free-

riding incentives. For larger shock sizes or a more lowly capitalized financial system, we would ob-

39The resulting network πd has 1260 edges, i.e., each of the 36 banks is connected to every other bank, and a normalized Gini in-
dex of 0.4556. The network πs has 71 edges with a normalized Gini index of 0.9981. See Hurley and Rickard (2009) for a definition
of the Gini index. The Gini index is a measure of sparsity, which we normalize to account for the fact that diagonal entries in any
relative liability matrix are 0. The normalized Gini index is 0 for the symmetric complete network and 1 for a ring network.
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serve that the credibility improves as the network becomes sparser: consistent with Lemma 3.4 and

findings of earlier literature on systemic risk in absence of intervention (e.g., Allen and Gale (2000)

and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015)), dense connections amplify a large shock.

Finally, the left panel of Figure 5 illustrates the findings of Section 5, in which we consider

interventions that may target only a subset of banks. For the chosen shock sizes, it turns out

that in the optimal bailout, the regulator only rescues the contagiously defaulting banks and lets

the fundamentally defaulting banks fail. This leads to welfare losses W ∗P , which coincides with WN

when there are no contagiously defaulting banks. In the partial equilibrium bail-in W ∗E , it is optimal

to rescue every bank since contributions from the private sector can be solicited for the rescue of

fundamentally defaulting banks. This is consistent with the predictions of Lemmas 5.2 and 5.5

below. Welfare losses W ∗E in the partial equilibrium bail-in with partial rescues are 38.5% lower

than in the complete network structure. In this calibrated model, there are 7140 ways of applying

idiosyncratic shocks to three banks in the network. Taking the average over all combinations of

shocks, equilibrium welfare losses in the sparsest network are lower than in the most dense network

by 13.96% for complete rescues and by 28.92% for partial rescues. These results suggest that

structural policies aiming at sparsifying the financial network may significantly raise welfare.

7 Concluding Remarks

Various initiatives have been undertaken by central governments and monetary authorities, espe-

cially after the global financial crisis, to expand resolution plans and tools. Our paper makes a

first step towards a systematic analysis of the incentives that govern alternative resolution plans.

At the heart of our analysis is the credibility of the regulator’s no-intervention (or partial rescue)

threat, given the desire of each bank to free-ride on the contributions of the government and of

other banks. In a framework with complete rescues, the credibility determines whether a bail-in

can be organized in equilibrium or whether the regulator is forced to a bailout. If the regulator is

free to propose rescues that save only some banks but not others, threat levels vary across banks

and determine the size of incentive-compatible contributions towards a bail-in.

We highlight the main forces impacting the credibility of the no-rescue threat. The threat fails to

be credible for a given shock size if and only if the shock is heavily amplified through inefficient asset

liquidation, bankruptcy costs, and negative feedback effects between densely connected banks in

distress. The impact of the interbank network structure on the credibility is captured by a measure

that we call the total throughput of defaulting banks, which reflects the rate at which losses spill

over to solvent members of the economy, taking into account feedback effects between defaulting

banks. Conditional on the banks’ levels of solvency, the total throughput depends entirely on the

network structure, giving us a metric to rank the desirability of different network structures.

Our analysis has focused on the design of government interventions, given a particular financial

structure. We have shown that when there is a credible bail-in proposal, it is preferable to a bailout

because the size of the required public expenditures is lower. While our findings thus explain why

public officials have called for substituting bail-ins for bailouts, they also explain why there have
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been so few successful bail-ins: it may not be possible to construct a credible bail-in proposal.

Moreover, our analysis shows that selective bail-ins and bailouts, where not all banks are rescued,

may be preferable to inclusive policies. In our model, we can precisely define which banks should be

rescued, thereby providing the regulator with a rational argument for this selectivity. The partial

bailouts of the 2008 financial crisis were widely criticized for being determined more by influence

and political connections than by such objective factors.

Our analysis reverses the presumptions concerning the relative desirability of sparse versus dense

networks for intermediate shock sizes. This has obvious implications for the design of regulations

that affect the network structure. These implications, as well as the broader implications of the

interventions that we have described for ex-ante behavior, take us beyond the scope of this limited

paper. For now, we simply note two such implications. First, because banks prefer a bailout over

a bail-in, they benefit from additional market illiquidity. This implies that ex ante, banks have

an incentive to invest into thinly-traded securities. Second, for a bank to be rescued in a partial

bail-in, it is beneficial to borrow funds only from a few other banks so that contagion effects in

case of the bank’s default are highly concentrated. Then, free-riding incentives among creditors are

smaller, making the rescue more appealing to the regulator.

This paves the way for future research on endogenous network formation. In such a model, banks

anticipate which bail-in consortia are credible for which network structures, and hence choose their

counterparties by taking into account their ex-ante expected contributions to an equilibrium bail-in

plan. Such an endogenous network formation model adds an additional dimension to the moral haz-

ard literature: through their interbank linkages, banks can control the likelihood of a public bailout

as well as the likelihood to be included in the prevailing bail-in. Additionally, it would be desirable

to account for the ex-ante risk taking decisions by banks as they maximize the value of their bailout

option (as in Acharya and Yorulmazer (2007), Acharya, Shin and Yorulmazer (2011), and Farhi

and Tirole (2012)).40 By choosing the riskiness and the liquidity of their investments, banks can

further influence the set of available resolution policies. Accounting for ex-ante risk taking behavior

will lead to a comprehensive framework for the analysis of welfare maximizing rescue policies.
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A Welfare Burning

In this appendix, we define the minimal amount χC(α) of welfare burning needed to eliminate free-

riding incentives from an individually incentive-compatible bail-in with contributing banks in C.

Lemma A.1. Let z(α) := α ln(α) and let z−1 be its inverse on the interval
[

1
e , 1
]
. Define the

function gα(x) := g
(
z−1(z(α) + γx)

)
− g(α), which is invertible for α ≥ αind. For a set of banks C,

let χiC(α) :=
(
WN −WP + g(αP ) − g(α) + λ

∑
j∈C\{i} η

j(α, 0) − gα(ηi(α, e) − ηi(α, 0))
)+

for any

bank i ∈ C. Moreover, let χ̂C(α) denote the unique non-negative solution χ to

−α ln(α)

γ
=
∑
i∈C

g−1
α

((
WN −WP + g(αP )− λ

∑
j∈C\{i}

ηi(α, 0)− χ
)+
)

(26)

if it exists and let χ̂C(α) = 0 otherwise. Define χC(α) := χ̂C(α) ∨maxi∈C χ
i
C(α). Consider a bail-in

(b, s) with accepting equilibrium 1 = (1, . . . , 1). Let C =
{
i
∣∣ bi > 0

}
and α = ᾱ(b, s, 1). Then

λ
∑
i 6∈C

(si − si0)+ + λ
∑
i∈C

(
ηi(α, 0)− bi

)+ ≥ χC(α). (27)
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Figure 7: The construction of χ̂C(α) is illustrated for C = {i1, i2, i3}. It is the minimal amount of welfare burnt such
that the welfare impact ληi(α, 0)+gα(xi) caused by the rejection of any bank i ∈ C exceeds WN−Wλ(b, s, 1)− χ̂C(α),
subject to the constraint

∑
i∈C x

i ≤ −α ln(α)/γ, which guarantees that the total amount liquidated does not depress

the asset price below α. Note that xi3 = 0 because the welfare impact of i3’s rejection is large enough to deter free-
riding without asset liquidation. If χ̂C(α) > 0, then the constraint binds, that is, xi2 + xi3 = −α ln(α)/γ. Otherwise,
it would be possible to increase the welfare impact by banks i1 and i2 and decrease the amount of welfare burnt.

For the no-free-riding incentives to hold, the rejection by any bank must have an impact on

welfare in excess of WN − Wλ(b, s, 1). It follows from (14) that the impact on welfare has two

components: contributions up to η(α, 0) affect welfare directly by an amount λη(α, 0), whereas

contributions that exceed η(α, 0) by an amount x require asset liquidation and affect welfare through

the trade-off gα(x). A contribution of size ηi(α, 0) + xi by bank i thus has a total impact on welfare

of ληi(α, 0) + gα(xi). Among individually incentive-compatible contributions, the welfare impact

by bank i is maximized when i contributes ηi(α, e). If the maximal welfare impact is smaller than

WN −Wλ(b, s, 1), the remaining value χiC(α) = WN −Wλ(b, s, 1)−ληi(α, 0)−gα(ηi(α, e)−ηi(α, 0))

has to be burnt; see Figure 6 for an illustration. Burning an amount equal to maxi∈C χ
i
C(α)

thus deters free-riding by all banks when each bank liquidates the maximal incentive-compatible

amount. However, asking each bank to contribute ηi(α, e) may require asset liquidation in excess

of − ln(α)/γ, which would depress the asset price below α by (1). In that case, the regulator

has to ask for lower contributions from banks that require aggregate liquidation of only − ln(α)/γ

and burn additional welfare to balance the reduced welfare impact of the contributing banks. The

lowest amount of welfare burnt in that case is χ̂C(α); see Figure 7 for an illustration.

B Proofs of Results in Sections 2 and 3

B.1 Existence and Monotonicity of Clearing Equilibria

This appendix provides the proofs of Section 2, asserting existence and monotonicity of clearing

equilibria, together with Pareto dominance of the greatest clearing equilibrium. We begin with the

following auxiliary result, which provides us with an alternative expression for welfare losses.

Lemma B.1. For any clearing equilibrium (p, `, α), the following identity holds

Wλ(p, α) =

n∑
i=1

(
ci + ei − wi − V i(p, α)

)
+
∑

i∈D(p,`,α)

(1 + λ)δi(p, α). (28)

Proof. Observe first that π is column-stochastic by construction, i.e., the columns sum up to 1.

Thus,
∑

i(πx)i =
∑

i x
i for any vector x. Summing (4) for prices (p, α), we obtain

n∑
i=1

V i(p, α) =

n∑
i=1

(ci + αei − wi)−
∑

i∈D(p,`,α)

(
ci − wi + αei + (πp)i − pi

)
.
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It follows that

n∑
i=1

(
ci + ei − wi − V i(p, α)

)
=

n∑
i=1

(1− α)ei +
∑

i∈D(p,`,α)

(
ci − wi + αei + (πp)i − pi

)
. (29)

The definition of a clearing payment vector in (3) implies that pi + wi − δi = β
(
ci + αei + (πp)i

)
for any i ∈ D(p, `, α). Therefore, we obtain

ci + αei + (πp)i − (pi + wi − δi) = (1− β)
(
ci + αei + (πp)i

)
(30)

for any i ∈ D(p, `, α). Equation (28) now follows from (29) and (30).

Since the equity value of any bank is monotonically increasing in prices, a direct consequence

of Lemma B.1 is the fact that welfare losses are monotonically decreasing in prices. For the sake

of reference, we state this property as a lemma.

Lemma B.2. Any bank i’s value of equity V i(p, α) is non-decreasing and welfare losses Wλ(p, α)

are non-increasing in α and pj for any j.

Proof. Bank i’s value in (4) is equal to V i(p, α) = (πp + c + αe − w − L)i1{pi=Li}, which is non-

decreasing in (p, α). This also implies that the first term of welfare losses in (28) is non-increasing

in (p, α). The second term in (28) is non-increasing in (p, α) by definition of δ(p, α) in (5).

Proof of Lemma 2.2. Let L := [0, e1]× · · · × [0, en] denote the set of possible liquidation decisions

by the banks. Fix a vector p of interbank repayments and define the operator Φp : L → L by

setting Φi
p(x) := `i

(
α(x), p

)
for i = 1, . . . , n, where α(x) and `(α, p) are defined in (1) and (2). By

construction, a pair (α, `) is a solution to (1) and (2) if and only if it is of the form (α(x), x) for

a fixed point x of Φp. Since both α and `i are non-increasing, Φi
p is non-decreasing. Therefore,

Tarski’s fixed-point theorem implies that the set of Φp’s fixed points forms a complete lattice. In

particular, there exists a fixed point x such that xi ≤ xi for each i and any other fixed point x

of Φp. Let `p = x and αp = α(`p). By construction, (αp, `p) satisfies (1) and (2) and for any other

solution (α̃, ˜̀), we have α̃ = exp
(
−γ
∑n

i=1
˜̀i
)
≤ exp

(
−γ
∑n

i=1 `
i
p

)
= αp.

Before proving existence of clearing equilibria, we show the following comparison result for fixed

points that will be used many times throughout our analysis.

Lemma B.3. Let f and g be two non-decreasing functions mapping a compact set X into itself.

Let x̄f (xf ) and x̄g (xg) denote the largest (smallest) fixed points of f and g, respectively, that exist

by Tarski’s fixed point theorem. If f(x̄g) ≥ g(x̄g), then x̄f ≥ x̄g. If f(xg) ≤ g(xg), then xf ≥ xg.

Proof. Let x̄n := f (n)(x̄g) define the n-fold application of f to x̄g. Since f(x̄g) ≥ g(x̄g) = x̄g

and f is non-decreasing, it follows that (x̄n)n≥1 is non-decreasing in each component. Because of

compactness, (x̄n)n≥1 converges to some fixed point x̄∞ of f . Therefore, x̄g ≤ x̄∞ ≤ x̄f because x̄f

is the largest fixed point of f . The analogous argument shows xg ≥ limn→∞ f
(n)(xg) ≥ xf .
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We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let P := [0, L1] × · · · × [0, Ln] denote the set of possible clearing payment

vectors. For fixed p, let (αp, `p) be the solutions to (1) and (2) of Lemma 2.2. Define the operator

Φ : P → P by setting

Φi(p) :=


Li if ci + αpe

i + (πp)i ≥ Li + wi,(
β
(
c+ αpe+ πp

)i − wi)+
otherwise.

(31)

The definition of `p in (2) implies that ci +αpe
i + (πp)i ≥ Li +wi if and only if ci +αp`

i
p + (πp)i ≥

Li+wi. Therefore, the definition of a clearing equilibrium implies that a clearing payment vector p

is a fixed point of Φ. We proceed to show that Φ is monotone. It follows directly from Eq. (2) that,

for any i, `i(α, p) is non-increasing in pj for any j. Using the definition of Φp given in the proof of

Lemma 2.2, we deduce that Φi
(p̃j ,p−j)(`p) ≤ Φi

p(`p) for any p̃j > pj . Therefore, Lemma B.3 shows

that `i
(p̃j ,p−j) ≤ `

i
p and hence α(p̃j ,p−j) ≥ αp. This shows that p 7→ αp is non-decreasing, hence so is

Φi. Tarski’s fixed point thus implies the existence of fixed points p ≤ p̄ with p ≤ p ≤ p̄ for any fixed

point p. The first statement now follows from the monotonicity of the maps p 7→ αp and p 7→ `p by

setting α = αp, ᾱ = αp̄, ` = `p, and ¯̀ = `p̄. Monotonicity of the banks’ equity value and welfare

losses now follows from Lemma B.2

B.2 Bailouts

This appendix shows that welfare-maximizing bailouts are of the form given in Lemma 3.2. We

begin this appendix with the following auxiliary lemma.

Lemma B.4. The function g(α) = α
(
λ
γ ln(α) −

∑n
i=1 e

i
)

is strictly convex, attaining its global

minimum at αind defined in (10).

Proof. Since g is differentiable on (0,∞), the product rule yields

g′(α) =
λ

γ
(1 + ln(α))−

n∑
i=1

ei, g′′(α) =
λ

γα
> 0,

proving that g is strictly convex. Since g′(αind) = 0, αind is the global minimizer of g.

Proof of Lemma 3.1. Let s denote a vector of subsidies of a complete bailout with si ≤ si0 for every

bank i. Since every bank is rescued when subsidies s are awarded, the definition of s0 implies that

`i = 1
ᾱ(s)(si0 − si) for any bank i. It follows from (1) that

ᾱ(s) = exp

(
− γ

ᾱ(s)

n∑
i=1

(si0 − si)

)
. (32)

Solving (32) for
∑n

i=1 s
i and substituting into (7) shows (9).
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Proof of Lemma 3.2. Let s denote a vector of subsidies that maximize welfare in a complete bailout.

Because a minimal subsidy of sL is needed to support the clearing payment vector L, it follows

that si ≥ siL for every bank i. Since any subsidies beyond s0 have infinitesimal welfare impact −λ,

it follows that si ≤ si0 for every bank i. Therefore, `i = 1
αP

(si0 − si) for any bank i, which implies

αP = exp

(
− γ

αP

n∑
i=1

(si0 − si)

)
. (33)

Lemma 3.1 establishes that welfare in the complete bailout depends on the awarded subsidies only

through g(αP ). Since g is differentiable, it follows from B.4 that αP is either a boundary point or

it is equal to αind. Since (33) is monotonic in the awarded subsidies, boundary points are attained

at αL and 1 when the subsidies are equal to sL and s0, respectively. It follows from monotonicity

in (33) that αP = max(min(αind, 1), αL). Inverting (33) for
∑n

i=1 s
i yields (11).

B.3 Incentives and Bail-In Selection

In this appendix we provide the proofs of the results in Section 3.4, characterizing accepting equi-

libria and how the regulator can select among multiple accepting equilibria. We begin with the

following auxiliary result, formalizing that a bank is better off rejecting a bail-in proposal if its

participation is not needed for the regulator to proceed with the bail-in. It will be convenient

to denote by V i(b, s, a) = V i
(
p̄(b, s, a), ᾱ(b, s, a)

)
bank i’s value of equity in the bail-in (b, s, a).

Similarly, let V i(s) = V i
(
p̄(s), ᾱ(s)

)
denote bank i’s value of equity in the bailout with subsidies s.

Lemma B.5. Fix a feasible bail-in proposal (b, s) with bi > 0 for some bank i. For any response

a−i by i’s competitors, we have V j
(
b, s, (0, a−i)

)
≥ V j

(
b, s, (1, a−i)

)
for any bank j. Moreover, the

inequality is strict if j = i.

Proof. The two financial systems resulting from
(
b, s, (0, a−i)

)
and

(
b, s, (1, a−i)

)
are identical up

to the financial commitments by bank i, which are larger by bi in the latter system. The result thus

follows from Statement 3 in Lemma F.3 of the online appendix and monotonicity in Lemma B.2.

Proof of Lemma 3.5. Fix a feasible proposal (b, s) with accepting equilibrium response a. We first

show necessity of the stated conditions. To this end, fix a bank i with bi > 0 and suppose towards

a contradiction that ai = 1 but at least one of the two conditions is violated. Consider first the

case where Condition 1 is violated. Then the regulator proceeds with a bail-in even if bank i rejects

the proposal. Therefore, the resulting subsidies are the same under a and (0, a−i). It follows from

Lemma B.5 that bank i is strictly better off under (0, a−i), contradicting the assumption that a

is an equilibrium. Consider now the case where Condition 2 is violated. Because (b, s) is feasible,

bank i can afford to pay its liabilities Li + wi and the bail-in contribution bi. Together with the

negation of Condition 2, we obtain

Li+wi ≤ ci+si− bi+α
(
b, s, (1, a−i)

)
ei+

n∑
j=1

πijLj < ci+αNe
i+

n∑
j=1

πijpjN (34)
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This shows that bank i is solvent in the default cascade. Therefore, subtracting Li + wi in (34)

implies that V i
N > V i

(
b, s, (1, a−i)

)
, which is again a contradiction.

For sufficiency, Condition 1 implies that the regulator will react to a rejection by any bank by

letting a default cascade occur. By Condition 2, such an outcome makes bank i worse off. It is

thus optimal for bank i to accept the proposal.

Proof of Lemma 3.6. Fix a bail-in (b, s) with an accepting equilibrium ak. Let B =
{
i
∣∣ bi1{aik=1}

}
denote the set of banks making a positive contribution in (b, s, ak). Define a bail-in

(
b̃, s̃
)

by

setting b̃i = bi1{i∈B} and s̃i = si for i = 1, . . . , n. We proceed to show that 1 = (1, . . . , 1) is an

accepting equilibrium response to
(
b̃, s̃
)
. Note that, by convention, the only available response for

any bank i ∈ Bc is to accept the proposal; see Footnote 15. For i ∈ B, note that Lemma 3.5

shows that the stated Conditions 1 and 2 are satisfied in (b, s, ak) for any i ∈ B since ak is an

accepting equilibrium. Because each bank makes the same contribution in
(
b̃, s̃, 1

)
as in (b, s, ak),

it follows that ᾱ
(
b̃, s̃, 1

)
= α(b, s, ak), Wλ(b, s, 1) = Wλ(b, s, ak), as well as Wλ(b, s, (0, 1−i)) =

Wλ(b, s, (0, a−ik )) for every i ∈ B. Therefore, Conditions 1 and 2 of Lemma 3.5 are satisfied also in(
b̃, s̃
)

for any i ∈ B. Lemma 3.5 thus implies that 1 is an accepting equilibrium response to
(
b̃, s̃
)
.

To show uniqueness, observe that the regulator will not proceed with the bail-in if only a proper

subset of B accepts the proposal due to Condition 1 of Lemma 3.5.

Proof of Lemma 3.7. Fix a complete bail-in proposal (b, s) with accepting equilibrium a. It follows

from Lemma 3.5 that the value of any bank in A(b) =
{
i
∣∣ bi > 0

}
is at least as high in (b, s, a) as

in a rejecting equilibrium as otherwise bank i would have not accepted the proposal. By definition

of an accepting equilibrium, welfare losses are at most as high as in a rejecting equilibrium, because

otherwise the regulator would not have proceeded with the bail-in. This shows that (a) no rejecting

equilibrium can subgame Pareto dominate a and (b) a rejecting equilibrium is subgame Pareto

efficient only if it is equivalent to (b, s, a). Since there are only two possible outcomes in a rejecting

equilibrium (public bailout and no rescue), the complete bail-in proposal (b, s) has to coincide with

the complete bailout as, by definition, it rescues every bank in the system.

Let Ã denote the set of accepting equilibria that minimize welfare losses. It remains to show

that at least one of them is subgame Pareto efficient. Let a ∈ A denote the accepting equilibrium

leading to the highest asset price among accepting equilibria in A. Suppose towards a contra-

diction that there exists a continuation equilibrium ã that Pareto dominates a. This necessitates

Wλ(b, s, ã) ≤Wλ(b, s, a), which implies that ã is an accepting equilibrium in A. Let C and C̃ denote

the set of banks which accept the proposal in a and ã, respectively. By Condition 1 of Lemma 3.5,

the regulator rejects the bail-in if only a strict subset of C accepts the proposal. Since ã is an

accepting equilibrium, C̃ is not a subset of C and hence C̃ \ C 6= ∅. By maximality of a in A, we

have α(b, s, α̃) ≤ α(b, s, a). Thus, because each bank in C̃ \ C makes a positive contribution in ã

but not in a, each such bank is is strictly worse off in ã than in a. This contradicts the assumption

that ã Pareto dominates a, which concludes the proof.
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B.4 Credibility and Existence of Subgame Pareto Efficient Equilibria

In this appendix we prove Lemma 2.3, which establishes existence of subgame Pareto-efficient

continuation equilibria after the proposal of any bail-in. In order to present the proofs as succinctly

as possible, we invoke Proposition 3.3 to deal with the case when the threat fails to be credible.

The proof of Proposition 3.3 does not rely on Lemma 2.3: existence of equilibria when the threat

fails to be credible follows directly from the existence of strictly dominant strategies.

Proof of Proposition 3.3. Fix a feasible proposal (b, s) and any response vector a. Because the

threat fails to be credible, the regulator will never respond with “no intervention”. Since any bank i

with bi − si > 0 is strictly worse off in (b, s) than in a complete rescue without its participation

(e.g., bailout or bail-in by residual consortium) by Lemma B.5, rejection is the strictly dominant

action for any such bank. This shows that the regulator cannot get any contributions from banks,

hence the optimal bailout of Lemma 3.2 is the only possible equilibrium outcome.

Together with the characterization of accepting equilibria in Lemma 3.5, Proposition 3.3 allows

us to prove Lemma 2.3.

Proof of Lemma 2.3. If the threat fails to be credible, Proposition 3.3 establishes that a rejecting

equilibrium exists after any proposal (b, s). Suppose, therefore, that the threat is credible. Fix

a feasible proposal (b, s) and let 0 denote the vector of unanimous rejections by the banks. The

credibility of the threat imposes that WN ≤ WP ≤ Wλ(b, s, 0), where we have used the fact that

without participation of the banks, the optimal rescue is the public bailout of Lemma 3.2. The

regulator thus chooses r(b, s, 0) = “no intervention”. If no bank in A(b) has a profitable unilateral

deviation to the vector of unanimous rejections, then that response is a rejecting equilibrium.

Suppose, therefore, that there exists a bank i ∈ A(b) with a profitable unilateral deviation and let

ai denote the corresponding action profile. We will show that ai is an equilibrium response.

For ai to be a profitable deviation for bank i, two conditions must hold. First, it is necessary

that r(b, s, ai) = “bail-in” as otherwise, bank i’s value of equity would be equal to V i
N both when i

accepts and when i rejects the proposal. Second, we must have that V i(b, s, ai) > V i
N . This

condition is equivalent to bi − si <
∑n

j=1 π
ij(Lj − pjN ) + (α(b, s, ai) − αN )ei, i.e., Condition 2

of Lemma 3.5 is satisfied for bank i. Since, by construction, (0, a−ii ) is the vector of unanimous

rejections, it follows that Wλ

(
b, s, (0, a−ii )

)
= Wλ(b, s, 0) ≥ WN , i.e., Condition 1 of Lemma 3.5 is

satisfied for bank i as well.

It remains to show that for any bank j 6= i, either the conditions of Lemma 3.5 is violated. For

the regulator to choose “bail-in” in reaction to ai, it is necessary that Wλ(b, s, ai) < WN . Since

(0, a−ji ) = ai for any bank j 6= i, it follows that Wλ(b, s, (0, a−ji )) = Wλ(b, s, ai) < WN for any such

bank. Therefore, Condition 1 of Lemma 3.5 is violated for any bank in A(b) \ {i}. An application

of Lemma 3.5 thus shows that ai is an accepting equilibrium.

We conclude this appendix by proving that the regulator’s threat is credible if and only if the

amplification of the shock through the network is below the threshold given in Lemma 3.4.
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Proof of Lemma 3.4. Observe first that (Li+wi−ci−ei−(πL)i)− = (si0−ei)+ = si0−ei−(ei−si0)+.

It follows from (28) and the definitions of S0 and SN that welfare in the default cascade can be

written as

WN = SN − S0 +
n∑
i=1

(
ei + (ei − si0)+

)
+ (1 + λ)

∑
i∈D(pN ,`N ,αN )

δi(pN , αN ).

Lemma 3.2 shows that WP =
∑n

i=1 e
i + λS0 + g(αP ) + λ

∑
i∈D(pN ,`N ,αN ) δ

i(pN , αN ). Solving the

inequalityWN−WP ≤ 0 for SN−S0 using the above expressions forWN andWP , we obtain (12).

C Proof of Theorem 3.10

We begin this section by showing that without loss of generality, we can restrict our attention to

bail-ins, where each bank either makes a contribution or receives a subsidy. Moreover, because the

regulator can anticipate the banks’ responses, we may also restrict our attention to bail-ins that

allow response vector 1 in equilibrium.

Lemma C.1. For any proposed bail-in (b, s) with accepting equilibrium response a, there exists a

proposal (b̃, s̃) with accepting continuation equilibrium ã such that b̃is̃i = 0 and ãi = 1 for every

bank i, and Wλ

(
b̃, s̃, ã

)
= Wλ(b, s, a).

Proof. Fix a bail-in proposal (b, s) with accepting equilibrium response a. The existence of an

accepting equilibrium a implies via Lemma 3.7 that either (b, s) is the public bailout of Lemma 3.2

or that the threat is credible. In the former case, the statement holds trivially, hence suppose that

the threat is credible. Denote by C =
{
bi − si > 0, ai = 1

}
the set of banks which make a positive net

contribution. Define the proposal
(
b̃, s̃
)

by setting b̃i = (bi1{ai=1}− si)+ and s̃i = (si− bi1{ai=1})
+,

and let ã = (1, . . . , 1) be the response vector of unanimous acceptance. It follows straight from the

construction of
(
b̃, s̃
)

that b̃i1{ãi=1} − s̃i = bi1{ai=1} − si for any bank i and hence each bank’s net

contribution remains unchanged. This implies that clearing equilibria coincide both in
(
b̃, s̃, ã

)
and

(b, s, a) and also in
(
b̃, s̃, (0, ã−i)

)
and

(
b, s, (0, a−i)

)
for any i ∈ C. It follows that

Wλ

(
b̃, s̃, ã

)
= W

(
p̄(b̃, s̃, ã), ᾱ(b̃, s̃, ã)

)
+ λ

n∑
i=1

(
s̃i − b̃i1{ãi=1}

)
= W

(
p̄(b, s, a), ᾱ(b, s, a)

)
+ λ

n∑
i=1

(
si − bi1{ai=1}

)
= Wλ(b, s, a)

and, in a similar fashion, that Wλ

(
b̃, s̃, (0, ã−i)

)
= Wλ

(
b, s, (0, a−i)

)
for any i ∈ C. To conclude

that ã is an accepting equilibrium, it remains to verify Condition 2 of Lemma 3.5. Since a is an

accepting equilibrium for (b, s), Lemma 3.5 implies that

b̃i − s̃i = bi − si ≤
n∑
j=1

πij
(
p̄j(b, s, a)− pjN

)
+ (ᾱ(b, s, a)− αN )ei
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for every i ∈ C. Because the clearing equilibria under (b̃, s̃, ã) and (b, s, a) coincide, this shows that

Condition 2 of Lemma 3.5 is satisfied in
(
b̃, s̃, ã

)
. An application of Lemma 3.5 thus shows that ã

is an accepting equilibrium response to
(
b̃, s̃
)
.

Because every bank is rescued in a complete feasible bail-in, the shortfall of each bank i before

liquidation is at most ei. The liquidated amount by any bank i is thus inversely proportional to

the asset price. This imposes a lower bound on the asset price of 1
e = exp(−1).

Lemma C.2. Let (b, s) be a complete feasible bail-in proposal. In any response a, each bank i

liquidates `i(b, s, a) = 1
α

(
Li + wi + bi1{ai=1} − ci − si − (πL)i

)+
and α(b, s, a) ≥ 1

e .

Proof. Since (b, s) is a complete rescue, Lemma 2.2 implies that
(
α(b, s, a), `(b, s, a)

)
is the solution

to (1) and (2) for p = L with the largest asset price. By feasibility,

Li + wi + bi1{ai=1} − ci − si − (πL)i ≤ α(b, s, 1)ei ≤ α(b, s, a)ei.

This shows that `i(b, s, a) is indeed of the desired form. Therefore, α(b, s, a) is a fixed point of the

function fx,y in Lemma F.2 for y = 0 and x = γ
∑n

i=1

(
Li +wi + bi1{ai=1}− ci− si− (πL)i

)+
. Since

α(b, s, a) is the largest fixed point of f on (0, 1], Lemma F.2 implies that α(b, s, a) ≥ 1
e .

Due to Lemma C.1, we may restrict attention to bail-in proposals (b, s), in which bisi = 0 for

every bank i. Then, liquidation and welfare losses take a simple form as stated in Lemma 3.8.

Proof of Lemma 3.8. Fix a bail-in (b, s) with an accepting equilibrium a such that bisi = 0 for every

bank i. Let α = α(b, s, a) for the sake of brevity. Lemma C.2 shows that each bank i liquidates an

amount `i(b, s, a) = 1
α

(
si0 − bi0 + bi1{ai=1} − si

)+
. We begin by showing that this coincides with

`i(b, s, a) =
1

α

(
si0 −min

(
si, si0

)
+ (bi −min(bi, bi0))1{ai=1}

)
. (35)

Consider first a bank i with si0 > 0. This implies that bi0 = 0 by definition. If si > 0, then bi = 0 by

assumption and hence `i(b, s, a) = 1
α

(
si0 − si

)+
= 1

α

(
si −min

(
si, si0

))
. This coincides with (35). If

si = 0 instead, then `i(b, s, a) = 1
α

(
si0 + bi1{ai=1}

)
also coincides with (35). Next, consider a bank i

with bi0 > 0. For such a bank, si0 = 0 by definition. If si > 0, then bi = 0 by assumption and hence

`i(b, s, a) = 0, which coincides with (35). If si = 0, then

`i(b, s, a) =
(
bi1{ai=1} − bi0

)+
=
(
bi − bi0

)+
1{ai=1} =

(
bi −min

(
bi, bi0

))
1{ai=1},

showing that (35) also holds in this case. It follows from (1), (35), and the elementary identity

min
(
si, si0

)
= si − (si − si0)+ that

n∑
i=1

(si − bi1{ai=1}) =

n∑
i=1

(
si0 + (si − si0)+ −min

(
bi, bi0

)
1{ai=1}

)
+
α ln(α)

γ
.

The result now follows from (7), Lemma 3.2, and the specific form of g.
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Lemma 3.9 states that among all individually incentive-compatible bail-ins with contributing

banks in C that induce asset price α, welfare is maximized for bail-ins with contributions ηi(α, `)

by banks i ∈ C for any vector ` of asset liquidation that induces asset price α.

Proof of Lemma 3.9. Fix a complete feasible bail-in proposal (b, s) with accepting equilibrium a.

By Lemma C.1 we may assume without loss of generality that bisi = 0 and ai = 1 for each bank i.

For the sake of brevity, denote α = α(b, s, 1). Since (b, s) is a complete rescue, it follows that

s ≥ s(α, e). Condition 2 of Lemma 3.5 and feasibility imply that bi ≤ ηi(α, e) for each i ∈ C.
Define the bail-in proposal (b̃, s̃) by setting b̃i = max

(
bi, ηi(α, 0)

)
for each bank i ∈ C and

s̃i = min
(
si, si0

)
for each bank i 6∈ C. Because subsidies beyond s0 and contributions below ηi(α, 0)

do not prevent or require any liquidation, it follows that α(b̃, s̃, 1) = α. Therefore, Lemma 3.8

implies that subsidies beyond s0 and contributions below ηi(α, 0) are welfare decreasing, i.e.,

Wλ(b, s, 1) ≥Wλ(b̃, s̃, 1). Applying Lemma 3.8 for the proposal
(
b̃, s̃
)

thus yields

Wλ(b, s, 1) ≥Wλ(b̃, s̃, 1) = WP − g(αP ) + g(α)− λ
∑
i∈C

ηi(α, 0), (36)

where we have used that min
(
b̃i, bi0

)
= ηi(α, 0). This shows the first statement. The final statement

follows by observing that the inequality in (36) holds with equality precisely if ηi(α, 0) ≤ bi for each

bank i ∈ C and si ≤ si0 for each bank i 6∈ C.

Next, we show that χC(α) in Lemma A.1 is well-defined. Moreover, any incentive-compatible

bail-in with contributing banks in C that induces asset price α burns at least χC(α) units of welfare.

Proof of Lemma A.1. Fix α ≥ αind. We start by showing that (26) has a unique non-negative

solution if one exists. Lemma B.4 shows that g is increasing and hence invertible on the interval

[αind, 1]. Let g−1 denote the inverse on [αind, 1] and define the function α̂(x) := g−1(x + g(α)) for

x ≥ 0. It is easy to check that α̂(x) ≥ α and g−1
α (x) = 1

γ

(
z(α̂(x)− z(α)

)
for any x ≥ 0. It follows

from the formula for the inverse of the derivative that

α̂′(x) =
1

g′
(
g−1(x+ g(α))

) =
1

g′(α̂x(α))
> 0,

where we have used that α̂(x) ≥ α ≥ αind. Since α̂(x) ≥ αind ≥ 1
e and z is increasing on

[
1
e , 1
]
, it

follows form the chain rule that
(
g−1
α

)′
(x) = 1

γ z
′(α̂(x)

)
α̂′(x) > 0. Since g−1

α is strictly increasing,

the right-hand side of (26) is strictly decreasing in χ. Thus, if the right-hand side is lower than the

left-hand side for χ = 0, there exists no non-negative solution. If the right-hand side is greater than

or equal to the left-hand side for χ = 0, there exists precisely one non-negative solution. The fact

that χC(α) is a lower bound for welfare burning in an accepting equilibrium (b, s) with contributing

banks C and α = ᾱ(b, s, 1) now follows from Lemma C.3.

Lemmas 3.8 and 3.9 together imply that any bail-in satisfying Conditions (i)–(iv) in Defini-
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tion 3.2, if accepted, induces welfare losses

WC(α) := WP − g(αP ) + g(α)− λ
∑
i∈C

ηi(α, 0) + χC(α).

The following lemma establishes that this is a lower bound for welfare losses that can be attained

by a bail-in with contributing banks C that induces asset price α.

Lemma C.3. Let (b, s) be a complete feasible bail-in proposal with accepting equilibrium a. Let

C :=
{
i
∣∣ bi1{ai=1} > 0

}
and denote α = ᾱ(b, s, a) for the sake of brevity. Then Wλ(b, s, a) ≥WC(α)

and the inequality binds if and only if (b, s) ∈ Ξ(C, α).

Proof. Let (b, s) be a complete feasible bail-in proposal with accepting equilibrium a. By Lemma C.1,

we may assume without loss of generality that bisi = 0 and ai = 1 for every bank i. It follows in

the same way as in the proof of Lemma 3.9 that bi ≤ ηi(α, e) for each i ∈ C and si ≥ si(α, e) for

each i 6∈ C. Therefore, Conditions 1 and 2 of Definition 3.2 are satisfied.

Define the bail-in proposal (b̃, s̃) by setting b̃i = max
(
bi, ηi(α, 0)

)
for each bank i ∈ C and

s̃i = min
(
si, si0

)
for each bank i 6∈ C. It follows as in the proof of Lemma 3.9 that α(b̃, s̃, 1) = α and

Wλ(b, s, 1) = Wλ(b̃, s̃, 1) + χ = WP − g(αP ) + g(α)− λ
∑
i∈C

ηi(α, 0) + χ,

where we denote χ = λ
∑n

i=1(si − si0)+ + λ
∑

i∈C
(
ηi(α, 0)− bi

)+
, and we have used Lemma 3.9 in

the second equation. To show the first statement, it thus remains to show that χ ≥ χC(α).

For any bank i ∈ C, let a−i denote the response vector where every bank but bank i accepts

the proposal. Set α−i = ᾱ(b, s, a−i). Welfare losses in this response are equal to

Wλ(b, s, a−i) = Wλ(b, s, 1)− g(α) + g(α−i) + λmin
(
bi, bi0

)
= WP − g(αP )− g(α) + g(α−i)− hC\{i}(α) + χ.

Solving for χ and using Condition 1 of Lemma 3.5, we obtain

χ ≥WN −WP + g(αP ) + g(α)− g(α−i) + hC\{i}(α). (37)

It follows from (35) that α`i = (bi − bi0)+, and hence

−α−i ln(α−i)

γ
= −α ln(α)

γ
− (bi − bi0)+ ≥ −α ln(α)

γ
− b̄i. (38)

Multiplying (38) by −γ and applying g ◦ z−1, we obtain g(α−i) − g(α) ≤ gα(b̄i). In conjunction

with (37), this yields

χ ≥WN −WP + g(αP ) + hC\{i}(α)− gα(b̄i). (39)
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Next, solving (37) for g(α−i)− g(α) and applying g−1
α , we obtain

(bi − bi0)+ =
α−i ln(α−i)− α ln(α)

γ
≥ g−1

α

(
WN −WP + g(αP ) + hC\{i}(α)− χ

)
.

Summing over all i ∈ C yields

−α ln(α)

γ
=

n∑
i=1

(
(si0 − si)+ + (bi − bi0)+

)
≥
∑
i∈C

(bi − bi0)+

≥
∑
i∈C

g−1
α

(
WN −WP + g(αP ) + hC\{i}(α)− χ

)
. (40)

Since χC(α) is the smallest value χ′ ≥ 0 that satisfies (39) for all i ∈ C and (40), it follows that

χC(α) ≤ χ. This concludes the proof that Wλ(b, s, a) ≥WC(α).

Note that this lower bound holds with equality if and only if χ = χC(α), i.e., Condition (iv)

in Definition 3.2 is satisfied. It remains to show that (b, s) satisfies the other four conditions. We

have already argued that Conditions (i) and (ii) are satisfied. Equation (35) implies that

`i(b, s, a) =
1

α

(
(si0 − si)+ + (bi − bi0)+

)
. (41)

It follows from (1) and (41) that Condition (iii) is satisfied. Finally, Condition 1 of Lemma 3.5 for

i ∈ C implies that Condition (v) holds. This concludes the proof.

Lemma C.3 shows that welfare losses WC(α) are attained only by bail-ins in Ξ(C, α). The

following lemma shows that the converse is true as well if α ≥ 1
e .

Lemma C.4. For any C and any α ≥ 1
e , any (b, s) ∈ Ξ(C, α) is a complete feasible bail-in proposal

with Wλ(b, s, 1) = WC(α) that admits response vector 1 = (1, . . . , 1) in equilibrium. Moreover, if

WC(α) < WN , then 1 = (1, . . . , 1) is an accepting equilibrium.

Proof. Fix (b, s) ∈ Ξ(C, α). It follows along the same lines as in the proof of Lemma G.1 that

(b, s) is a complete feasible bail-in with ᾱ(b, s, 1) = α. Condition (i) in Definition 3.2 implies

that Condition 2 in Lemma 3.5 is satisfied for every bank i ∈ C in the response vector 1. It

follows from Lemma 3.8 and Condition (iv) Definition 3.2 that Wλ(b, s, 1) = WC(α). Condition (v)

in Definition 3.2 thus implies that Condition 1 of Lemma 3.5 is satisfied for every bank i ∈ C.
Therefore, an application of Lemma 3.5 shows that 1 is an equilibrium response. It is immediate

that 1 is an accepting equilibrium if WC(α) < WN .

Lemma C.5 shows that the equilibrium bail-in contributors are the banks with the largest

exposure to contagion effects.

Lemma C.5. For any bail-in proposal (b, s), let `(b, s) denote the induced vector of liquidations

when every bank accepts the proposal. For any vector `, let C(`) be defined as in Theorem 3.10.
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Suppose that there exists C such that in any subgame Pareto-efficient equilibrium, a bail-in from

Ξ(C, α) is implemented. Then C = C(`(b, s)) for any (b, s) ∈ Ξ(C, α).

Proof. Let C be such that in any subgame Pareto-efficient equilibrium, a bail-in from Ξ(C, α) is

implemented. Fix (b, s) ∈ Ξ(C, α) and abbreviate ` = `(b, s). Suppose towards a contradiction that

there exists a pair of banks (i0, j0) ∈ Cc × C such that ηi0(α, `) > ηj0(α, `). Let C̃ := C \ {j0} ∪ {i0}
and define a bail-in

(
b̃, s̃
)

by setting b̃i0 = ηi0(α, `), s̃i0 = 0, b̃j0 = 0, s̃j0 = 0, as well as b̃i = bi and

s̃i = si for any other bank i 6∈ {j0} ∪ {i0}.
We will first show that

(
b̃, s̃
)

is a complete, feasible bail-in proposal. By definition of `, the

shortfall of any bank i in the bail-in (b, s) is α`i. Let σ̃i :=
(
Li + wi + b̃i − ci − s̃i − (πL)i

)+
denote the shortfall of bank i in bail-in

(
b̃, s̃
)
. Since b̃i = bi and s̃i = si for every i 6∈ {i0, j0}, it

follows that σ̃i = α`i for every such bank i. Since j0 makes a positive net contribution bj0 − sj0

to the bail-in (b, s) by Condition 1 of Lemma 3.5, it follows that σ̃j0 ≤
(
Lj0 + wj0 + bj0 − cj0 −

sj0 − (πL)j0
)+

= α`j0 with strict inequality if `j0 > 0. The definition of η(α, `) in (16) implies that

b̃i0 ≤
(
ci0 + α`i0 + (πL)i0 − wi0 − Li0

)+
, and hence σ̃i0 ≤ α`i0 also for bank i0. We conclude that

σ̃i ≤ α`i ≤ ei for every bank i, hence
(
b̃, s̃) is a complete feasible bail-in proposal.

Since the total shortfall is smaller in
(
b̃, s̃
)

than in (b, s), it follows that α̃ := α
(
b̃, s̃, 1) ≥ α.

Observe further that ηi0(α, `) > ηj0(α, `) ≥ bj0 > 0 implies si0(α, `) = 0 and hence si0 = 0 = s̃j0 .

It also implies that b̃i0 > bj0 , which yields

Wλ

(
b̃, s̃, 1

)
= Wλ(b, s, 1)− (α− α̃)

n∑
i=1

ei − λ
(
b̃i0 − bj0

)
< Wλ(b, s, 1).

Because 1 is an accepting equilibrium for (b, s), this shows that Wλ

(
b̃, s̃, 1

)
< WN .

For any i ∈ C̃, let a−i denote the response vector by the banks where every bank but i accepts

the proposal. Observe that Wλ

(
b̃, s̃, a−i0

)
= Wλ(b, s, a−j0) ≥ WN by Condition 1 of Lemma 3.5.

For any i ∈ C̃ \ {i0}, let α̃−i = ᾱ
(
b̃, s̃, a−i

)
and α−i = ᾱ(b, s, a−i) and observe that

− α̃−i ln(α̃−i)

γ
+
α−i ln(α−i)

γ
=
∑
j 6=i

σ̃j −
∑
j 6=i

α`j = σ̃i0 + σ̃j0 − α(`i0 + `j0) ≤ 0. (42)

Equation (42) implies that α̃−i ≥ α−i. Moreover, since the difference in shortfall is the same as the

difference of shortfalls between (b̃, s̃, 1
)

and (b, s, 1), it follows from concavity of x 7→ −x ln(x) that

α̃−i − α−i ≤ α̃− α. This implies that

Wλ(b, s, a−i)−Wλ

(
b̃, s̃, a−i

)
≤Wλ(b, s, 1)−Wλ

(
b̃, s̃, 1

)
. (43)

Define now a vector of subsidies ŝ ≥ s̃ that burns additional welfare precisely equal to

χ := max
i∈C

(
Wλ(b, s, a−i)−Wλ

(
b̃, s̃, a−i

))
.

This can be attained either by awarding additional subsidies χ/λ to a bank i 6∈ C with `i = 0 or
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by awarding additional subsidies 1
λ

(
χ +

(
z−1
(
ln(α̃)α̃ + αγ`i

)
− α̃

)∑n
i=1 e

i
)

to a bank i ∈ C. By

Condition 1 of Lemma 3.5 for bail-in (b, s), we have Wλ(b̃, ŝ, a−i) ≥ Wλ(b, s, a−i) ≥ WN , showing

that Condition 1 of Lemma 3.5 is also satisfied in
(
b̃, ŝ
)
. Since α

(
b̃, ŝ, 1

)
≥ α̃ ≥ α, it follows that

also Condition 2 of Lemma 3.5 is satisfied in
(
b̃, ŝ
)

for every bank i. Finally, it follows from (43)

that

Wλ

(
b̃, ŝ, 1

)
= Wλ

(
b̃, s̃, 1

)
+ χ ≤Wλ(b, s, 1) < WN .

This shows that a = (1, . . . , 1) is an accepting equilibrium for
(
b̃, ŝ
)
. Since no subset of accepting

banks is an accepting equilibrium by Condition 2 of Lemma 3.5, it is the unique accepting equilib-

rium and hence also the unique subgame Pareto efficient continuation equilibrium by Lemma 3.7.

Since (b, s) is a subgame Pareto efficient equilibrium outcome, the regulator has no profitable devi-

ations from
(
b̃, ŝ
)
. This shows that

(
b̃, ŝ
)

is a subgame Pareto-efficient equilibrium outcome as well,

contradicting the fact that contributions have to come from C. We conclude that C = C(`).

Finally, we need one last technical result before we are able to prove Theorem 3.10.

Lemma C.6. For any set of banks C, the function χC defined in Lemma A.1 is continuous on the

interval
[

1
e , 1
]
. Hence, WC is continuous as well.

Proof. Fix an arbitrary set of banks C. Since g, η( · , `), and gα(x) are continuous in α, it follows

straight from the definition of χiC in Lemma A.1 that χiC is continuous in α for each i. For continuity

of χ̂C(α), let fC(α, χ) denote the function on the right-hand side of (26). As we have shown in the

proof of Lemma A.1, fC(α, χ) is strictly decreasing in χ. By definition, χ̂C(α) is the smallest value

χ ≥ 0 such that fC(α, χ) ≤ −z(α)/γ. On the set O :=
{
α ∈

[
1
e , 1
] ∣∣ fC(α, 0) ≤ −z(α)/γ

}
, it follows

that χ̂C(α) = 0. On the complement of O, we have fC(α, χ̂C(α)) = −z(α)/γ by continuity of fC(α, χ)

in χ. For any α ∈ Oc, let f−1
C
(
− z(α)

γ

)
denote the pre-image of − z(α)

γ under fC(α, · ). Since χ̂C(α) is

the unique solution to (26), the pre-image is unique, meaning that fC(α, · ) is invertible. It follows

that χ̂C(α) = f−1
C
(
− z(α)

γ

)
is continuous on Oc being the composition of continuous functions. Conti-

nuity of fC and z implies that lim χ̂C(α) = 0 as α ∈ Oc approaches the border of O and hence χ̂C(α)

is continuous everywhere. Finally, χC is continuous being the maximum of continuous functions.

Continuity of WC now follows from the continuity of g and ηi( · , 0) for any i ∈ C.

Proof of Theorem 3.10. If the threat fails to be credible, then it follows from Proposition 3.3 that

the regulator will implement an optimal public bailout as given in Lemma 5.1, either by proposing

it in the first stage or by choosing it in the third stage after an arbitrary proposal in the first stage.

Suppose, therefore, that the threat is credible. Since WC is continuous by Lemma C.6, WC

attains a minimum on the interval
[

1
e , 1
]
. Let A(C) denote the set of prices α that minimize

WC(α). Let C∗ denote the set of banks C that minimizes minαWC(α). For a generic choice of model

parameters, the functions (WC)C⊆{1,...,N} are all distinct, and hence C∗ is generically unique.

Let α∗ := max{α ∈ A(C∗)}. By Lemma C.4, any bail-in proposal (b, s) ∈ Ξ(C∗, α) for any

α ∈ A(C∗) admits equilibrium response 1 = (1, . . . , 1), and it attains welfare losses WC∗(α∗). It

follows as a consequence of Lemma G.5 in the online appendix that WC∗(α∗) < WN , and hence the
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response vector of unanimous acceptance is an accepting equilibrium for any (b, s) ∈ Ξ(C∗, α) and

any α ∈ A(C∗) by Lemma C.4. By Condition 1 in Lemma 3.5, it is the unique accepting equilibrium.

Since rejecting equilibria are subgame Pareto dominated by Lemma 3.7, the regulator is aware that

any bail-in (b, s) ∈ Ξ(C∗, α), for α ∈ A(C∗), which he proposes in the first stage will be accepted in

equilibrium. Because no incentive-compatible bail-in can attain lower welfare losses by Lemmas C.2

and C.3, the regulator’s only rational choice in stage 1 is to propose such a bail-in. Subgame Pareto

efficiency then imposes that the regulator proposes a bail-in from Ξ(C∗, α∗). Finally, Lemma C.5

shows that C∗ = C(`(b, s)) for any (b, s) ∈ Ξ(C∗, α∗) if C∗ is unique.

D Data Calibration Procedure

A total of 48 banks participated in the stress test of the EBA. Values of various banks’ balance

sheet quantities are reported as of end 2017. For each bank, the EBA reports the exposures to other

institutions, computed using an internal rating based (IRB) criterion as of end 2017. We take those

exposures as a measure of the bank’s total claims A on all other banks in the network. Some of the

smallest banks reported zero interbanking claims. We omit those from the analysis, leaving us with

a total of 36 banks. To estimate interbank liabilities, we first compute the banks’ total liabilities

as the difference between their total asset holdings and their equity value E, both of which are

reported in the EBA data. We then assume that each bank has the same ratio of interbank to total

liabilities. We compute this ratio by imposing that the sum of interbank liabilities across all banks

equals the sum of interbank claims. Since most quantities in our model depend on c and w only

through their difference c−w, we set c = E + max(E + L−A, 0) and w = E + max(A− E − L, 0)

so that the equity value of each bank corresponds to that implied from the EBA data, and we

can apply a shock of size ci ≥ Ei to any bank to induce a fundamental default. All raw data and

estimated model quantities are summarized in Table 1. We set λ = 3 and the recovery rate β to

60%. This value is in line with empirical estimates reported by Moody’s; see Footnote 13.

Finally, we discuss how we construct the sparse network πs. We use an iterated greedy algorithm.

In each step of the algorithm, we construct a ring network j1 → j2 → · · · → jn → j1 as follows:

Given j1 → · · · → jk, the creditor of jk is selected to be the bank with the smallest interbank

claims among all banks in {jk+1, . . . , jn} whose interbank claims exceed jk’s interbank liabilities.

If such a bank exists, all of jk’s liabilities are assigned to that bank. If there exists no such bank,

jk+1 is the bank with the largest interbank claims and we assign
∑

i L
jk+1i of jk’s liabilities to

bank jk+1, leaving the remainder of jk+1’s interbank liabilities to be assigned in the next iteration.

Each ring starts with the bank whose unassigned interbank liabilities are the largest. This method

is greedy because, for each considered bank, it assigns all its interbank liabilities to a single bank,

if possible. An iterated construction using rings guarantees that the resulting network consists of

only one connected component.
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Bank Name Total Claims Equity Interbank Claims Ai Interbank Liabilities Li Senior Liabilities wi Cash holdings ci

Erste Group Bank AG 147,449 15,368 10,756 12,394 15,368 32,374

Raiffeisen Bank International AG 61,499 9,839 5,416 4,846 9,839 19,108

Belfius Banque SA 127,440 8,141 35,597 11,192 24,404 8,141

KBC Group NV 226,455 16,552 17,128 19,692 16,552 35,668

Danske Bank 273,199 20,302 14,926 23,725 20,302 49,403

OP Financial Group 91,467 9,973 7,299 7,645 9,973 20,292

BNP Paribas 1,012,707 84,417 63,604 87,088 84,417 192,318

Group Credit Mutuel 430,308 45,578 44,606 36,093 45,578 82,643

Groupe BPCE 668,255 59,490 32,956 57,112 59,490 143,135

Groupe Credit Agricole 1,047,925 84,292 97,114 90,404 84,292 161,874

Societe Generale S.A. 642,940 49,514 53,400 55,672 49,514 101,300

Bayerische Landesbank 193,192 9,393 22,731 17,243 9,393 13,298

Commerzbank AG 314,214 25,985 42,564 27,040 25,985 36,446

Deutsche Bank AG 758,140 57,631 58,015 65,719 57,631 122,966

DZ Bank AG 202,301 19,923 35,800 17,110 19,923 21,156

Landsesbank Baden-Wurttemberg 206,824 12,795 57,434 18,203 39,230 12,795

Landsesbank Hessen-Thuringen Girozentrale 122,115 8,180 15,767 10,688 8,180 11,281

Norddeutsche Landesbank - Girozentrale 71,764 6,229 16,037 6,148 9,888 6,229

Allied Irish Banks Group plc 48,157 11.028 10.064 3,484 11,028 15,475

Bank of Ireland Group plc 68,264 7,617 4,537 5,689 7,617 16,386

Intesa Sanpolo S.p.A. 309,144 43,466 36,125 24,924 43,466 75,731

UniCredit S.p.A. 309,144 43,466 36,125 24,924 54,703 101,448

ABN AMRO Group N.V. 367,487 19,618 14,942 32,635 19,618 56,929

Cooperatieve Rabobank U.A. 547,353 37,204 14,461 47,860 37,204 107,807

ING Groep N.V. 780,776 50,325 76,469 68,528 50,325 92,709

Banco Bilbao Vizcaya Argentaria S.A. 276,960 46,980 75,226 21,575 53,650 46,980

Banco de Sabadell S.A. 108,282 11,111 1,559 9,116 11,111 29,779

Banco Santander S.A. 565,109 77,283 36,878 45,765 77,283 163,453

Nordea Bank - group 437,347 28,008 40.127 38,402 28,008 54,291

Skandinaviska Enskilda Banken - group 209,082 13,452 14,944 18,353 13,452 30,313

Svenska Handelsbanken - group 253,639 12,954 7,339 22,580 12,954 41,149

Swedbank - group 202,830 11,356 6,522 17,963 11,356 34,153

Barclays Plc 562,002 60,765 49,797 47,024 60,765 118,757

HSBC Holdings Plc 1,322,909 125,976 117,004 112,291 125,976 247,239

Lloyds Banking Group Plc 590,827 40,948 8,817 51,587 40,948 124,666

The Royal Bank of Scotland Group Plc 490,122 44,577 23,685 41,799 44,577 107,268

Table 1: Results based on data from the 2018 EBA stress test. All numbers are reported in million dollars.
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