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Sentiment, Risk Aversion, and Time Preference

Abstract

This paper provides estimates of aggregate preferences, beliefs, and sentiment from op-

tion prices and historical returns. Our market-based estimates correlate well with independent

survey-based estimates, and yet deliver several novel insights. Our analysis points out two signif-

icant issues related to overconfidence. First, the Baker–Wurgler index strongly reflects excessive

optimism but not overconfidence. Second, optimism and overconfidence comove over time and

generate a perceived negative risk-return relationship, while objectively the relationship is pos-

itive.
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1. Introduction

This paper proposes a behavioral approach for recovering aggregate preferences, beliefs, and sen-

timent from index option prices and historical returns. As it turns out, options data provide the

richest source to identify variations in investors’ sentiment. The recovery method is parsimonious

and provides estimates of stochastic risk aversion, time preference, and return distributions. Our

market-based estimates correlate well with independent survey-based estimates, and yet deliver

several novel insights on aggregate investors’ beliefs and sentiment.

Our empirical approach is based on Shefrin’s theoretical framework (Shefrin, 2005, 2008) which

focuses on the manner in which the pricing kernel reflects the market’s aggregation of heteroge-

neous beliefs about returns, preferences about risk taking, and rates of impatience. Jouini and

Napp (2006, 2007) and Dumas, Kurshev, and Uppal (2009) provide related general equilibrium

approaches involving heterogeneity and sentiment. With this framework as a base, we use the

approach developed in Barone-Adesi, Engle, and Mancini (2008) to estimate empirical pricing ker-

nels and draw the relevant inferences about biases, stochastic risk aversion, and stochastic time

preference.

Our main finding is that empirical pricing kernels strongly reflect behavioral elements. Our

estimates of excessive optimism, overconfidence, risk aversion, and time preference, extracted from

empirical pricing kernels, line up with independent estimates reported in the empirical behavioral

literature. Specifically, our estimates of excessive optimism are highly correlated with the Baker

and Wurgler (2006) sentiment series. Our estimates of overconfidence are related to a variety

of survey-based volatility measures such as the Yale/Shiller crash confidence index, the financial

executives data analyzed in Ben-David, Graham, and Harvey (2013),1 as well as the bond default

premium developed by Gilchrist and Zakraǰsek (2012). Our estimates of risk aversion conform to

the general pattern predicted by prospect theory, which suggests that risk aversion will be lower

after market losses, than after market gains. Our estimates of time preference are consistent with

the survey results reported by Barsky, Juster, Kimball, and Shapiro (1997) which feature negative

time preference.

Several new insights arise from our analysis. The most important of these involves the Baker–

Wurgler series for sentiment (Baker and Wurgler, 2006), which is the most widely used general

measure of sentiment in the academic literature. As conjectured by Baker and Wurgler (2007), we

1Although financial executives’ overconfidence from survey data is much larger than our estimates of the representative
investor’s overconfidence, the general patterns are similar.
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find that the Baker–Wurgler series primarily captures excessive optimism about stock returns. How-

ever, we also show that the Baker–Wurgler series fails to capture the component of overconfidence

associated with volatility which is uncorrelated with optimism, as well as sentiment associated with

left tail events. We confirm this finding using independent series associated with overconfidence and

tail events, namely the Yale/Shiller crash confidence series and the bond default series developed

by Gilchrist and Zakraǰsek (2012).

Our findings about the Baker–Wurgler series have implications for empirical asset pricing studies

of investors’ sentiment. For example, Yu and Yuan (2011) report that the relationship between risk

and return, while positive when the Baker–Wurgler index is low, weakens when the Baker–Wurgler

index is high to the point where it becomes insignificant. Although their informal argument is

framed using overconfidence, our findings indicate that their empirical analysis, which relies on

Baker–Wurgler as the sole measure of sentiment, fails to capture the component of overconfidence

that is uncorrelated with excessive optimism.

Our results indicate that the relationship between risk and return is effectively driven by the

comovements of excessive optimism and overconfidence over time, not just the level of excessive

optimism. Specifically, we find that investors’ excessive optimism and overconfidence comove over

time, i.e., investors tend to overestimate (underestimate) future returns and underestimate (over-

estimate) future return volatility at the same time. This induces a perceived negative risk-return

relationship, while objectively the relationship is positive.

Recovery and aggregation provide the backdrop for this paper, with both themes being promi-

nent in the recent literature. Ross (2015) presents a new technique for recovering the constituent

components of the pricing kernel, such as subjective beliefs, from a limited set of information.

Borovička, Hansen, and Scheinkman (2015) point out that the probability distribution recovered

by the Ross procedure typically does not correspond to the representative investor’s subjective

beliefs. The literature on recovery tends to assume the existence of a representative investor with

a specific utility function such as constant relative risk aversion or mean-variance. We do not make

this assumption.

The literature on aggregation goes back many decades. Recent studies describe how the pref-

erences and beliefs of a representative investor reflect the underlying preferences and beliefs of

heterogeneous investors. Shefrin (2005, 2008) provides an aggregation result (Theorem 14.1) for

the case when all investors have time invariant CRRA preferences, with heterogeneity across coef-

ficients of risk aversion, constant time preference parameters, and subjective stochastic processes.
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His aggregation result establishes that the representative investor’s conditional probability density

functions are a generalized Hölder mixture of the individual investors’ conditional probability den-

sity functions, a feature which can lead to non-monotonic time varying pricing kernels. Bhamra

and Uppal (2014) effectively extend Shefrin’s result to allow for habit formation, and Bhamra and

Uppal (2015) discuss aggregation when individual investors have Epstein–Zin recursive utility.

Finally, in respect to sentiment there is a general understanding that the representative in-

vestor’s subjective beliefs might differ from the underlying objective process governing the market

dynamics, or at least historical probabilities. Ross uses the term “dark matter of finance” when

discussing this point, especially when it comes to catastrophic events.2 Nevertheless, his frame-

work assumes homogenous beliefs, with no disagreement about investors’ views about dark matter.

Estimating how these dark matter issues are reflected in empirical pricing kernel is of critical

importance, and is an important contribution of this paper.

The remainder of the paper is organized as follows. Section 2 presents the intuition underlying

our approach. Section 3 describes our methodology for estimating the empirical pricing kernel.

Section 4 reviews the theoretical framework for analyzing investors’ sentiment. Section 5 presents

our estimates of sentiment. Section 6 relates our findings to external measures of sentiment, risk

aversion, and time preference. Section 7 concludes.

2. Intuition Underlying Our Approach

We define investors’ sentiment in terms of a change of measure that links subjective and objective

beliefs. To develop the intuition underlying our approach, we provide a brief nontechnical introduc-

tion. Our starting point is the standard neoclassical framework in which equilibrium prices are set

as if by a representative investor holding correct beliefs. The objective probability density function

(pdf) associated with correct beliefs, is depicted in the top panel of Figure 1, and is labeled Pobj.

In a behavioral framework, equilibrium prices are also set as if by a representative investor, but

one whose beliefs possibly reflect biases in the investor population. Because of limits to arbitrage,

investor biases are not necessarily eliminated in equilibrium. In the top panel of Figure 1, the func-

tion Prep denotes the pdf of the representative investor exhibiting two biases, excessive optimism

and overconfidence. Relative to the objective pdf Pobj, excessive optimism means that the rep-

2Ross (2015, Page 616) states: The dark matter of finance is the very low probability of a catastrophic event and the
impact that changes in that perceived probability can have on asset prices [. . . ] Apparently, however, such events are
not all that remote and “five sigma events” seem to occur with a frequency that belies their supposed low probability.
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resentative investor overestimates expected return. Overconfidence means that the representative

investor underestimates return standard deviation. In Figure 1, notice that the mode of Prep is to

the right of the mode of Pobj, and Prep attaches much less weight to tail events than Pobj.

Formally, excessive optimism is defined as expected return under Prep minus expected return

under Pobj. Overconfidence is defined as return standard deviation under Pobj minus return

standard deviation under Prep. Operationally, we estimate Pobj and Prep and then compute

excessive optimism and overconfidence from their first and second moments. To estimate Pobj, we

use a dynamic model for S&P 500 returns. To estimate Prep, we use S&P 500 index option prices

(SPX) and the risk free rate to infer the risk neutral pdf, and then apply a pricing kernel-based

change of measure.

The pricing kernel lies at the heart of our process for inferring Prep. The pricing kernel is a

function whose values are ratios of state prices to probabilities, which in this case we take to be

objective probabilities Pobj. The bottom panel of Figure 1 displays three functions. The function

CRRAKernel is the pricing kernel from a neoclassical representative investor model with CRRA

preferences. As usual, the function is monotonically decreasing, reflects intertemporal marginal rate

of substitution (through function slope), and measures time preference (through function height).

In contrast to CRRAKernel, the function BehavKernel in Figure 1 depicts a pricing kernel asso-

ciated with a representative investor whose beliefs exhibit excessive optimism and overconfidence.

Notice how overconfidence manifests itself in tail events where the BehavKernel function lies be-

low CRRAKernel, as the behavioral representative investor underestimates tail event probabilities.

Notably, in this example, the degree of overconfidence leads BehavKernel to feature an upward

sloping portion in the left region of the figure. For the middle range, the combination of biases

leads BehavKernel to lie above CRRAKernel, so that BehavKernel has the shape of an inverted-U.

We use estimates of BehavKernel, CRRAKernel and their difference to infer values for excessive

optimism, overconfidence and other biases, and to disentangle their manifestation within prices.

To estimate BehavKernel we use the ratio of the risk neutral pdf to the objective pdf. To estimate

CRRAKernel we use a method described later in the paper. To capture the differences between the

two pricing kernels, we use the log of BehavKernel minus the log of CRRAKernel, which is displayed

as the function LogDiff in the bottom panel of Figure 1. We provide an exact interpretation of

LogDiff later in the paper.

Our empirical measures of excessive optimism, overconfidence and other biases are computed

relative to a process estimated from historical returns. We do not contend that historical returns are
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completely free of investor bias. Instead we investigate the extent to which market prices inform an

econometrician’s best estimate of future returns. Our approach is in the same vein as, e.g., Xiong

and Yan (2010) who theoretically analyze the econometrician’s prediction of bond premia when

investors have heterogenous beliefs.

The representative investor always holds the market portfolio, and therefore does not “lose

money” because of biases. To the extent that the representative investor corresponds to a real

investor, the biases cause the representative investor to be disappointed and surprised. Optimism

leads to disappointment in the realized risk premium, and overconfidence leads to surprise about

the amount of volatility.

3. Method to Estimate the Empirical Pricing Kernel

By a pricing kernel we mean a stochastic discount factor (SDF) defined as state price per unit

objective probability. Let Mt,T denote the empirical SDF associated with returns between date t

and date T , conditional on the information available at date t ≤ T . Throughout the paper, (T − t)

is fixed and equal to one year. The empirical SDF is given by

Mt,T = e−rf (T−t) q(ST /St)

p(ST /St)
(1)

where q is the risk neutral density, p the objective or historical density, rf the instantaneous risk

free rate, and St the S&P 500 index at date t, which is a proxy for the market portfolio.3 The

densities q and p are conditional on the information available at date t, but for ease of notation

we omit such a dependence. The risk free rate rf depends on t and T , and such a dependence is

omitted as well. Once the conditional densities q and p are estimated, we can recover the SDF by

simply taking their discounted ratio, (1). The advantage of this procedure is that no constraint is

imposed on the functional form of the SDF.

To estimate the empirical SDF we use the empirical approach in Barone-Adesi, Engle, and

Mancini (2008) that we briefly review here. For each date t, we fit an asymmetric Glosten, Ja-

gannathan, and Runkle (1993) GARCH model to historical daily log-returns of the S&P 500 to

3Multiple state variables can potentially enter the SDF and there is considerable debate among researchers over the
relevant state variables. As in Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and Engle (2002), and others,
we consider the projection of the SDF into S&P 500 returns. As discussed in Cochrane (2005), this projected SDF
has the same pricing implications as the original SDF for assets whose payoffs depend on S&P 500 returns, which is
the relevant case in our setting, as we only consider call and put options on the S&P 500 index.
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estimate the index dynamic under the objective pdf p. The model has the form

log(Su/Su−1) = µu + ϵu (2)

σ2
u = ω + βσ2

u−1 + αϵ2u−1 + γIu−1ϵ
2
u−1 (3)

where ϵu = σu zu, zu is the standardized historical innovation at day u, Iu−1 = 1 when ϵu−1 < 0

and Iu−1 = 0 otherwise, and u = t0, . . . , t, with (t − t0) being the time span of the daily sample

starting at day t0 and ending at day t. When γ > 0, the model features the so-called leverage effect,

namely bad news (ϵu−1 < 0) raises future volatility more than good news (ϵu−1 ≥ 0) of the same

absolute magnitude. The scaled return innovation, zu, is from its empirical density function, which

is obtained by dividing each estimated return innovations, ϵ̂u, by its estimated conditional volatility

σ̂u. This set of estimated scaled innovations gives an empirical density function that incorporates

excess skewness, kurtosis, and other extreme return behaviors that are not captured in a normal

density. This approach is called filtered historical simulation (FHS). The drift term is specified as

µu = 0.012+0.76 (E/P)u, where E/P is the inverse of the price-earnings ratio, adjusted for inflation,

developed by Campbell and Shiller (1998).4 The online appendix shows that our subsequent results

remain virtually unchanged when the excess risk premium (in excess of the risk free rate) is set to a

constant value of 4%, rather than based on E/P. The GARCH parameter estimates are obtained by

maximizing the Pseudo Maximum Likelihood, under the nominal, not necessarily true, assumption

of normal innovations. This technique provides consistent parameter estimates even when the true

innovation density is not normal, e.g., White (1982). Rosenberg and Engle (2002) use the same

approach to estimate the objective distribution of S&P 500 returns in their analysis.

For each date t, a GARCH model (2)–(3) is calibrated to the cross section of out-of-the-money

call and put options on the S&P 500 to estimate the index dynamic under the risk neutral pdf q.

Given a set of risk neutral GARCH parameters {ω∗, β∗, α∗, γ∗}, a return path is simulated by

drawing an estimated past innovation, say, z[1], updating the conditional variance σ2
t+1, drawing

a second innovation z[2], updating the conditional variance σ2
t+2, and so on up to day T . Let

τ = T − t. The τ -period simulated gross return is St+τ/St = exp(τµ∗ +
∑τ

i=1 σt+i z[i]), where the

drift µ∗ is such that the average gross return equals the risk free gross rate erf , and is determined

4The coefficients in µu are obtained by regressing subsequent annualized ten-year returns for the Campbell–Shiller
series on a constant and E/P. Campbell and Shiller (1998) show that subsequent ten-year returns to stocks are
negatively and statistically related to the price-earnings ratio. Thus, the specification µu = 0.012 + 0.76 (E/P)u
is forward looking. Updated data series of the price-earnings ratio are available from Robert Shiller’s website,
http://www.econ.yale.edu/∼shiller/.
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using the Empirical Martingale Simulation method of Duan and Simonato (1998). We simulate L

= 20,000 return paths from t to t + τ . The GARCH call option price at time t with strike price

K and time to maturity τ is given by e−rf τ
∑L

l=1max(S
(l)
t+τ −K, 0)/L, where S

(l)
t+τ is the simulated

index price at time t + τ in the l-th sample path. Put prices are computed similarly. The risk

neutral GARCH parameters {ω∗, β∗, α∗, γ∗} are varied, which changes the simulated return paths,

so as to best fit the cross-section of option prices at date t, minimizing the mean square pricing

error
∑Nt

j=1 et(Kj , τj)
2, where et(Kj , τj) is the difference between the GARCH option price and the

market price of the option with strike Kj and time to maturity τj , and Nt is the number of options

available at day t. The calibration is achieved when, varying the risk neutral GARCH parameters,

the reduction in the mean square pricing error is negligible or below a given threshold.5

Having estimated objective and risk neutral GARCH parameters on a given date t, the next step

to recover the SDF is the estimation of the conditional densities p(ST /St) and q(ST /St). For each

date t, these conditional densities are estimated by Monte Carlo Simulation. Given the objective

GARCH parameters, we simulate 50,000 return paths of the index at a daily frequency from t to

T using the simulation method above. We also simulate 50,000 return paths using the risk neutral

GARCH parameters. The conditional densities p and q are obtained by nonparametric kernel

density estimation, i.e., smoothing the corresponding simulated distribution of ST /St. Finally, the

empirical SDF, Mt,T , is estimated by computing the discounted ratio of the two densities, as in

(1). The whole procedure is repeated for each day t in our sample, producing a time series of

functions Mt,T .

We consider two GARCH models under the risk neutral density q that lead to two estimates

of the empirical SDF. One we call Gauss and the other we call FHS. The Gaussian model uses

randomly drawn Gaussian innovations for the simulation of the return paths, whereas the FHS

model uses the historical, nonparametric innovations zu, as described above. We use both models

in order to contrast the difference that FHS makes.

Risk neutral densities are often estimated by differentiating twice the call pricing function, which

can be estimated by interpolating the implied volatility smile. This method could work well for

fixed maturities and when many option prices are available, namely for relatively short maturities

and when ST /St is approximately one. This is not case in our setting. We are interested in a long

and fixed time horizon of one year, and there are essentially no options with time to maturity of

5To ensure the convergence of the calibration algorithm, all the FHS innovations, z[i], used to simulate the L return
paths are kept fix across all the iterations of the algorithm. Starting values for the risk neutral parameters are the
GARCH parameters estimated under the objective measure.
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one year for each day t. This motivates our approach of calibrating risk neutral GARCH models

to the cross-section of options.

4. Framework for Sentiment

In this section, we define sentiment and discuss its estimation.

4.1. Definition of Sentiment

Sentiment impacts the SDF by distorting state prices relative to a neoclassical counterpart. There-

fore, a behavioral SDF effectively decomposes into a neoclassical component and a sentiment dis-

tortion. As for the neoclassical component, we start with a constant relative risk aversion (CRRA)

SDF, which is the standard benchmark in neoclassical theory. Importantly, all our subsequent

results about investors’ sentiment are virtually unchanged when the CRRA SDF is replaced by

simply a monotonic non-increasing marginal utility function.

The CRRA SDF has the following form:

Mt,T (θ) = θ0 (ST /St)
−θ1 (4)

where θ0 is a discount factor measuring the degree of impatience, θ1 is the coefficient of relative

risk aversion, and θ = (θ0, θ1). The logarithmic version of (4) is

log(Mt,T (θ)) = log(θ0)− θ1 log(ST /St). (5)

In Shefrin (2008), (5) generalizes to include an additional term Λt,T to reflect the impact of

sentiment. The equation for the log-SDF becomes

log(Mt,T ) = Λt,T + log(θ0,t)− θ1,t log(ST /St) (6)

where the parameter θ is now time varying.6 Appendix A provides a derivation of (6). We define

sentiment as the function Λt,T . This function is a scaled log-change of measure, where the change

of measure transforms the objective pdf p into the representative investor’s pdf pR. In other words,

6Λt,T is a function of ST /St, θ1,t is a function of T and ST /St, and θ0,t is a function of T . For simplicity, we omit
such dependencies. Shefrin (2008, Theorem 14.1) implies that θ is not just time varying, but stochastic as well.
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the function eΛt,T is proportional to the change of measure pR/p so that

pR = p eΛt,T θ0,t,p/θ0,t (7)

where θ0,t,p is a rescaling of θ0,t whose purpose is to ensure that pR integrates to one.

The log-change of measure log(pR/p) specifies the percentage error in probability density which

the representative investor assigns to the occurrence of a specific return. For example, suppose

that the representative investor underestimates by 2% the probability that the market return will

be 1%. In this case, the log-change of measure at 1% will be −2%.

In a Gaussian setting, a log-linear change of measure generates a variance preserving shift in

mean. If the mean shifts to the right, the log-change of measure is a positively sloped linear function

which, when applied to p, shifts probability mass from low values to high values. If the mean shifts

to the left, the log-change of measure is a negatively sloped linear function. To put it another way,

a positively sloped log-linear change of measure gives rise to excessive optimism, while a negatively

sloped log-linear change of measure gives rise to excessive pessimism.

If the log-change of measure is non-linear, then applying the change of measure impacts the

second moment. A log-change of measure with a U-shape shifts probability mass from the center to

the tails, thereby increasing the variance return. A log-change of measure with an inverted U-shape

shifts probability mass from the tails into the center, thereby lowering the variance return. To put

it another way, a U-shape gives rise to underconfidence, whereas an inverted U-shape gives rise

to overconfidence. With respect to (6), if Λt,T is large enough, then the shape of the sentiment

function will dominate the shape of the fundamental component. For example, if the log-change

of measure has an inverted U-shape which is sufficiently large, then Λt,T will overpower the other

terms in (6), and the log-SDF will also have an inverted U-shape.

If the market reflects a mix of optimists and pessimists with optimism and overconfidence

being positively correlated, then log-sentiment can feature an oscillating pattern which is sharply

downward sloping in the left tail, upward sloping in the middle region, and downward sloping in

the right tail. It is this shape which characterizes the empirical findings for the shape of the pricing

kernel in Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002).

In neoclassical pricing theory, the risk neutral pdf q can be obtained from the objective pdf p by

applying a change of measure using the normalized pricing kernel; e.g., Cochrane (2005, Page 51).

Of course, this relationship can be inverted to express p as a function of q. In the behavioral
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framework, an analogous relationship holds between the representative investor’s pdf pR and q,

rather than between p and q. The expression for pR as a function of q is

pR(ST /St) = q(ST /St) (ST /St)
θ1,t EpR

t [(ST /St)
−θ1,t ] (8)

where EpR
t is the time-t conditional expectation with respect to pR.

4.2. Estimation of Sentiment

We decompose the log-SDF in (6) into its constituent components, the sentiment function Λt,T and

a neoclassical fundamental component. For each day t, using the procedure described in Section 3,

we obtain a grid of 100 values of gross returns, S
(i)
T /St, i = 1, . . . , 100, spanning the support of the

empirical SDF. Then we regress the empirical log-SDF, log(M
(i)
t,T ), on a constant and the log gross

return, log(S
(i)
T /St).

7 Intercept and slope provide estimates of log(θ0,t) and −θ1,t, respectively,

allowing us to estimate log(M
(i)
t,T (θ)). For each gross return S

(i)
T /St, we compute the pointwise

difference

d
(i)
t,T = log(M

(i)
t,T )− log(M

(i)
t,T (θ)). (9)

The differences, d
(i)
t,T , i = 1, . . . , 100, provide an estimate of the sentiment function Λt,T over the

support of gross returns, S
(i)
T /St, i = 1, . . . , 100. We repeat this procedure for each day t, and

obtain a time series of θ0,t, θ1,t and the sentiment functions Λt,T .

As a major robustness check of our results, we replace the CRRA SDF by a monotonic non-

increasing function of log(ST /St), simply ensuring non-increasing marginal utility of the represen-

tative investor. Then we re-estimate sentiment (and all other related variables) for each date t in

our sample. For each date t we fit the empirical log-SDF using monotonic regressions and then

take the residuals as the estimate of sentiment. The online appendix describes the procedure in

detail and shows that all our results below remain largely intact when sentiment is derived from a

neoclassical component only featuring non-increasing marginal utility.

In a neoclassical setting, a monotonic pricing kernel only presumes a non-increasing marginal

utility and does not impose any further restriction on the representative investor’s utility function.

Thus, non-increasing marginal utility is a minimal requirement that the representative investor’s

utility function must satisfy. Indeed, Dybvig (1988) show that if the SDF projected on the market

7This method is different than Rosenberg and Engle (2002). They calibrated the constrained CRRA SDF directly
to option prices, whereas we fit the constrained CRRA SDF to the unconstrained empirical SDF. The two methods
give the same result when the empirical SDF conforms to the CRRA pricing kernel.
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return (as it is the case in our setting) is not non-increasing, then it is possible to construct a

contingent claim with payoff function ft(ST ), necessarily decreasing over some region, such that

ft(ST ) and ST have the same objective distribution conditional on information available at day t,

and yet Ep
t [Mt,T ft(ST )] < Ep

t [Mt,T ST ], i.e., such a contingent claim is less expensive than the

market index, which is indeed puzzling, and calls for explanations of non-monotonic pricing ker-

nels. Because our results about investors’ sentiment remain are largely unchanged when imposing

only non-increasing marginal utility of the representative investor, this strongly indicates that our

findings are not driven by important misspecifications of the neoclassical pricing kernel.

5. Empirical Results: Pricing Kernels, Sentiment, and Beliefs

Output from the estimation procedure in Sections 3–4 consists of a series of estimates for the

objective and risk neutral GARCH parameters, the SDF (Mt,T ), CRRA (θ1,t), time preference

(θ0,t), the objective return pdf (p(ST /St)), the risk neutral pdf (q(ST /St)), the representative

investor’s pdf (pR(ST /St)), and sentiment (Λt,T ). We first describe our dataset and then discuss

the main features of the estimation results.

5.1. Dataset

We use European options on the S&P 500 index (symbol: SPX) to calibrate the risk neutral

GARCH models. SPX options are among the most actively traded index options in the world, have

no wild card features, and can be hedged using S&P 500 futures.

We use closing prices of out-of-the-money (OTM) put and call options on Wednesdays from

January 2, 2002 to October 28, 2009. It is known that OTM options are more actively traded

than in-the-money options. Option data and all the other necessary data are downloaded from

OptionMetrics. The average of bid and ask prices are taken as option prices. Options with time to

maturity less than 10 days or more than 360 days, or prices less than $0.05 are discarded. From

January 2, 2002 to December 29, 2004, a relatively low volatility period, we also discard options

with implied volatility larger than 70%, as in Barone-Adesi, Engle, and Mancini (2008). From

January 5, 2005 to October 28, 2009, a relatively high volatility period, we only discard options

with implied volatility larger than 150%. This procedure yields a sample of 121,243 options, which

are roughly split in calls (45.5%) and puts (54.5%).

Using the term structure of zero coupon rates, the risk free rate for each option maturity
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is obtained by linearly interpolating the two interest rates whose maturities straddle the given

maturity. This procedure is repeated for each contract and each day in the sample.

We divide the option data into several categories according to time to maturity and moneyness,

m, which is defined as the ratio of the strike price over the S&P 500 index. A put option is said

to be deep OTM if its moneyness m < 0.85, or OTM if 0.85 ≤ m < 1. A call option is said to be

OTM if 1 ≤ m < 1.15, or deep OTM if m ≥ 1.15. We also classify option contracts according to the

time to maturity: short maturity (< 60 days), medium maturity (60–160 days), or long maturity

(> 160 days).

Table 1 describes the 121,243 option prices, and their implied volatilities. The average put

(call) prices range from $1.31 ($0.67) for short maturity, deep OTM options to $43.95 ($44.83) for

long maturity, OTM options. OTM put and call options account for 28% and 25%, respectively,

of the total sample. Short and long maturity options account for 40% and 29%, respectively, of

the total sample. The table also shows the familiar volatility smile and the corresponding term

structure. The smile across moneyness is evident for each set of maturities. When the time to

maturity increases, the smile tends to become flatter. The number of options on each Wednesday

is on average 296.4, with a standard deviation of 127.8, a minimum of 142, and a maximum of 726

option contracts. The average moneyness of OTM put is 0.81, with standard deviation of 0.16,

and minimum value of 0.18. The average moneyness of OTM call is 1.21, with standard deviation

of 0.24, and maximum value of 3.51. Importantly, our estimates of the empirical pricing kernel

pertain to the range of gross returns of about 0.69 to 1.35 and time horizon of one year. The

range of gross returns and time horizon are well within the span of option moneyness and time to

maturities, respectively. Thus there is no extrapolation bias in our estimates.

During our sample period, the S&P 500 ranges from a minimum of $676.5 to a maximum of

$1,565.2, with an average level of $1,157.7. The average daily log-return is close to zero (−5.2 ×

10−5), the standard deviation is 22.4% on an annual base, and skewness and kurtosis are −0.13

and 12, respectively. In particular, the high kurtosis of S&P 500 returns appears to be due to the

large market swings in the fall 2008.

5.2. GARCH Estimation and Calibration

Table 2 shows estimates of the objective and risk neutral GARCH models (2)–(3). Objective

GARCH parameters are estimated rather precisely and exhibit little variation over time. For each

day t in our sample, the online appendix reports Ljung–Box and Lagrange Multiplier ARCH tests
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for squared daily returns and squared standardized historical innovations. These tests show that

the GARCH model is highly effective in removing volatility clustering in S&P 500 returns, which

is well-known from the GARCH literature.

Risk neutral GARCH parameters exhibit more time variation, but the persistency and long-

run mean of the GARCH volatility are estimated quite precisely. FHS GARCH parameters are

generally less volatile than Gauss GARCH parameters, especially for the long-run mean volatility.

Risk neutral GARCH volatilities appear to be larger and less persistent on average than objective

GARCH volatilities.8 These findings are in line with a recent literature investigating variance risk

premiums, e.g., Carr and Wu (2009), Bollerslev and Todorov (2011), and Aı̈t-Sahalia, Karaman,

and Mancini (2014).

Table 3 shows mean and root mean square error of option price errors of the risk neutral GARCH

model based on the FHS method. The price error is defined as model-based option price minus

market option price. Average price errors tend to be positive, but root mean square errors across all

moneyness/maturity categories are small and in line with those reported in Barone-Adesi, Engle,

and Mancini (2008). The online appendix shows the fitting of the GARCH model to SPX options

and visually confirms the good fit of the model.

5.3. Pricing Kernel Over Time

Figure 2 displays the empirical SDF estimated on each Wednesday from January 2002 to October

2009 using the FHS method. At the beginning of our sample period, the pricing kernel featured

a declining pattern. By December of 2003, the pricing kernel featured a U-shape. During 2005,

the shape of the pricing kernel had changed to an inverted-U. In 2009, the pricing kernel became

steeper, similar to what it had been at the beginning of the sample period. The empirical SDF

based on the Gauss method features a similar evolution over time, and is reported in the online

appendix. However, it is significantly steeper to the left, which is in line with the findings in

Barone-Adesi, Engle, and Mancini (2008).

5.4. Representative Investor’s Beliefs, Optimism and Overconfidence

Equations (7) and (8) provide the basis for estimating the beliefs pR of the representative investor.

Equation (7) shows that dt,T is a scaled estimate for the sentiment function Λt,T . Therefore edt,T

8We compared our risk neutral pdf estimates with Birru and Figlewski (2012), who use a shorter time to expiration
than we do. Notably, the general patterns we find appear to be similar to those in Birru and Figlewski (2012).
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can be interpreted as being proportional to a change of measure which transforms the objective

density p into the representative investor’s density pR.
9

Figure 3 displays our estimates of optimism and overconfidence. Optimism is defined as the dif-

ference between the expected market return under the representative investor’s and objective pdfs,

i.e., EpR
t [ST /St]−Ep

t [ST /St], where E
p
t is the conditional expectation under the objective pdf, com-

puted by numerically integrating the gross return against p, and similarly for EpR
t . Overconfidence

is defined as the difference between the expected volatility of the market return under objective

and representative investor’s pdfs, i.e.,
√
Varpt [ST /St]−

√
VarpRt [ST /St]. With the exception of the

period following the Lehman bankruptcy in September 2008, both optimism and overconfidence

generally rose and fell with the market, exhibiting procyclical behavior. The correlation coefficient

for the two variables is 0.5. In the middle of the sample, which is a relatively low volatility period

of stable market growth, the representative investor is excessively optimistic and overconfident,

judging the expected return as too high and the future volatility as too low. Notably, this pattern

is reversed at the beginning and end of the sample period, which are more turbulent periods, when

the representative investor is pessimistic and at times underconfident, especially after fall 2008.

The online appendix shows that estimates of optimism and overconfidence are nearly the same

as those in Figure 3, when the CRRA SDF is replaced by a monotonic non-increasing SDF. The

online appendix also reports estimates of optimism and overconfidence (and other quantities) when

the expected return, in excess of the risk free rate, is set to a constant value of 4%. Optimism is

more stable over time, but is still economically important. Overconfidence is virtually unaffected

by the alternative specification of the expected return. The correlation between optimism and

overconfidence is positive and high, 0.6.

5.5. Impact of Sentiment on Equity and Variance Risk Premiums

We now discuss the impact of excessive optimism and overconfidence on equity and variance risk

premiums. The equity risk premium is the difference between the expected return and the risk

free rate. There are two equity risk premiums, one associated with the objective pdf and the other

associated with the representative investor’s pdf. The objective equity risk premium is negatively

correlated with both excessive optimism (−0.9) and overconfidence (−0.5). The signs are consistent

9As an example, Figure 1 shows the typical shape of the dt,T function during the middle portion of our sample period,
for December 21, 2005. For this day, the dt,T function is positive between 0.99 and 1.16, and negative outside this
interval. This means that a change of measure based on dt,T , when applied to p, will shift probability mass to the
region [0.99, 1.16] from the tails. The modes of p and pR are about the same, but the probability mass of p is more
spread out than the mass of pR.
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with the intuition that increases in excessive optimism and overconfidence drive up prices, thereby

reducing the risk premium. Table 4 shows the regression results of the objective risk premium

on its most recent lagged value, excessive optimism, and overconfidence. The most recent lag is

included as a regressor to control for the autocorrelation of the risk premium. The coefficient on

excessive optimism is negative (t-statistic = −2.48), and the coefficient on overconfidence is not

statistically significant (t-statistic = 1.46). Thus, the equity risk premium appears to be more

affected by optimism than overconfidence.

In a similar regression for the representative investor’s equity risk premium, optimism and over-

confidence have the opposite signs than the regression above and are both statistically significant,

see Table 4. When optimism increases and overconfidence decreases, the representative investor

perceives (incorrectly) that the equity risk premium increases. From the representative investor’s

viewpoint, this is an obvious consequence, given the perceived risk-return trade-off.

The variance risk premium is the difference between the return variance under the objective and

risk neutral distributions, and arises as soon as investors require compensation for volatility risk.10

Based on our estimates with the FHS method, the average variance risk premium is negative and

around −1.4% (= 0.198− 0.212, see Table 2) in volatility units, which is in line with the literature.

Similarly to the equity risk premium, there are two variance risk premiums, one objective and one

perceived by the representative investor. Table 4 shows the regression results of the variance risk

premium on its most recent lagged value, excessive optimism, and overconfidence. The objective

variance risk premium is significantly affected by overconfidence, but not by excessive optimism. An

increase in overconfidence induces a less negative variance risk premium, reducing the risk premium

in absolute value. This finding suggests that when investors underestimate return volatility, they

also require a lower risk premium for volatility risk. The variance risk premium perceived by the

representative investor appears to follow a very persistent dynamic and is unaffected by biases,

once we control for its own autocorrelation.

Turning to the dynamic of excessive optimism and overconfidence, we regress these variables on

its own lagged values, past one year S&P 500 return and past one year S&P 500 volatility computed

using the standard deviation of daily log-returns during that year. Table 5 shows the regression

results. Excessive optimism is positively related to past one year returns (t-statistic = 2.17). Both

10A fast growing literature studies variance risk premiums, e.g., Jiang and Tian (2005), Carr and Wu (2009), Boller-
slev, Tauchen, and Zhou (2009), Todorov (2010), Bollerslev and Todorov (2011), Drechsler and Yaron (2011), Mueller,
Vedolin, and Yen (2011), Aı̈t-Sahalia, Karaman, and Mancini (2014), Buraschi, Trojani, and Vedolin (2014), and Fil-
ipović, Gourier, and Mancini (2015).
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excessive optimism and overconfidence are negatively related to past volatility (t-statistics are −4.22

and −2.95, respectively).11

Chaining these relationships together, we have the following: High past returns and low volatil-

ity lead to high excessive optimism and high overconfidence. In turn, high optimism, which is

likely to grow when the S&P 500 increases smoothly, leads to a low equity risk premium. High

overconfidence, which is likely to grow during low volatility periods, leads to a low variance risk

premium.

6. Treatment of Sentiment, Risk Aversion, and Time Preference

In this section we demonstrate that our measure of sentiment is parsimonious, strongly reflects a

disparate collection of other sentiment measures and yet contains additional information, and yields

estimates for risk aversion and time preference that are consistent with findings in the behavioral

literature.

To demonstrate parsimony we compare our estimates of sentiment with four independent mea-

sures, namely the Baker–Wurgler series, the Duke/CFO survey responses, the Yale/Shiller crash

confidence index, and the excess bond premium of Gilchrist and Zakraǰsek (2012). We also com-

pare our results to the analysis of Yu and Yuan (2011) who use the Baker–Wurgler series to study

how risk and return are related over time. In addition, we examine other aspects of sentiment,

besides optimism and overconfidence, such as biases associated with skewness, kurtosis, and left

tail events (crashes). In respect to risk aversion and time preference, we relate our estimates of the

time series for θ in (6) to the survey evidence presented by Meyer and Meyer (2005) and Barsky,

Juster, Kimball, and Shapiro (1997).

6.1. Relationship of Biases to the Baker–Wurgler Series

We analyze the relationship between the Baker and Wurgler (2006) series (BW) and variables based

on our estimates of sentiment.12 Baker and Wurgler do not provide a precise interpretation of what

11As robustness checks we re-run these regressions using end-of-month rather than weekly observations, using six
months rather than one year returns, as well as other measures of past volatility, such as six months squared re-
turns, standard deviations of monthly returns and high minus low values of returns during the prior twelve months.
Regression results remain largely unchanged.
12Baker and Wurgler develop two series, one which reflects economic fundamentals and a second which removes the
effect of economic fundamentals. We analyze both series and the results are quite similar for both. For this reason we
only report findings for the first series. The Baker–Wurgler monthly series for sentiment is available at Jeff Wurgler’s
website, http://people.stern.nyu.edu/jwurgler/.
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their series exactly measures, although they do suggest thinking about the series as if it measures

excessive optimism for stocks.

We find that BW strongly reflects excessive optimism. Table 6 shows a regression of BW on its

two most recent lagged values, excessive optimism and overconfidence. The t-statistic for excessive

optimism is 5.32. Including the S&P 500 monthly returns and the VIX volatility index as regressors,

the t-statistic remains high at 3.75. The online appendix shows that optimism has a significant and

strong impact on BW when estimating sentiment using a monotonic non-increasing SDF (rather

than a CRRA SDF), and when setting the excess expected return of the S&P 500 to 4% (rather

than specifying the expected return as the inverse of the price-earnings ratio). Also, allowing for an

AR(2) error term in the regression, the t-statistic of optimism remains high at 3.54. Figure 4 (top

panel) visually confirms that BW and optimism comove significantly during our sample period.

Although the coefficient of overconfidence is significant in Table 6, this finding is not robust.

Controlling for S&P 500 returns and VIX index, the t-statistic of overconfidence drops to −1.78

when sentiment is measured using a monotonic non-increasing SDF, and to −1.07 when the excess

expected return of the S&P 500 is set to 4%; see the online appendix. Also, allowing for an AR(2)

error term, the t-statistic of overconfidence is only −1.48. Thus, the statistical significance for

overconfidence is not robust to alternative specifications.

Table 6 also shows that the VIX index has a significant negative impact on the BW series, when

not controlling for optimism and overconfidence. Including our sentiment variables as regressors

makes the impact of the VIX index on the BW series disappear. This indicates that our sentiment

variables subsume the information in the VIX index which is related to the BW series dynamics.

The online appendix shows that this finding holds true also when sentiment is estimated using a

monotonic non-increasing SDF, and the excess expected return of the S&P 500 is set to 4%.

Although the BW series weakly and negatively reflects overconfidence, our estimated sentiment

functions indicate significant overconfidence in much of our sample period. Recall that overcon-

fidence is associated with a sentiment function, or log-change of measure, that has the shape of

an inverted U. Figure 5 illustrates several sentiment functions for the first nine months of 2002.

Notice the pronounced inverted U-shapes. We conclude that the BW series fails to capture an im-

portant aspect of sentiment, namely the overconfidence component that is independent of excessive

optimism.
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6.2. Risk, Return, and Sentiment

The existence of a positive relationship between risk and return is a cornerstone concept of academic

finance.13 Yu and Yuan (2011) report that the relationship between risk and return, while positive

when the Baker–Wurgler index is low, weakens when the Baker–Wurgler index is high to the point

where it becomes insignificant. Yu and Yuan suggest that overconfidence plays a role in the risk-

return dynamics, but do not include a measure of overconfidence in their formal analysis. Because

our approach to sentiment is quite general, we are able to extend the analysis of the risk-return

trade-off to incorporate overconfidence.

We regress (ex-ante) expected return on (ex-ante) return standard deviation, and a constant,

under the conditional objective pdf p. Table 7 shows the regression results. The slope coefficient is

0.12 and the intercept is 0.02, and both estimates are statistically significant. Using end-of-month

observations, regression estimates are nearly the same as in Table 7, and statistically significant.

These parameter values are generally consistent with neoclassical theory, i.e., a positive risk-return

trade-off.

In the behavioral approach, prices reflect not the objective pdf p but the representative investor’s

pdf pR. A regression of (ex-ante) expected return on (ex-ante) return standard deviation under

the representative investor’s pdf pR has a slope coefficient of −0.13 and an intercept of 0.07, and

both estimates are statistically significant. Using end-of-month observations, the slope coefficient

is −0.11 and the intercept is 0.06, again both statistically significant. The online appendix provides

additional robustness checks, e.g., when sentiment is derived from a monotonic non-increasing SDF.

The negative slope coefficient reflects the perspective that risk and return are negatively related.

Shefrin (2008) discusses several studies about the perception that risk and return are negatively

related.14 One key behavioral feature involves excessive optimism and overconfidence being posi-

tively correlated. In our data, the correlation between the two series is 0.5. A positive correlation

13A large empirical literature studies the risk-return trade-off. After two decades of empirical research, there is little
consensus on the basic properties of the relation between the expected market return and volatility. Studies such as
Goyal and Santa-Clara (2003), Ghysels, Santa-Clara, and Valkanov (2005), Guo and Whitelaw (2006), and Ludvigson
and Ng (2007) find a positive trade-off, while conversely Nelson (1991), Glosten, Jagannathan, and Runkle (1993),
Brandt and Kang (2004), and Conrad, Dittmar, and Ghysels (2013) find a negative trade-off. Harvey (1989, 2001)
shows that the risk-return relation changes over time. Rossi and Timmermann (2015) provide empirical evidence
that the relation may be not linear.
14These studies focus on behavior at the level of the individual, and suggest that excessive optimism and overconfi-
dence are positively correlated across the population. From a dynamic perspective, wealth transfers resulting from
trading will induce a time series correlation as well. This occurs as wealth shifts from, say, less optimistic, less confi-
dent investors to more optimistic, more confident investors, inducing an increase over time in both the representative
investor’s degree of excessive optimism and overconfidence. Recently, Marfè (2015) developed an equilibrium model
to account for a negative risk-return trade-off.
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implies that whenever the representative investor is excessively optimistic and overestimates ex-

pected return, he tends to be overconfident and underestimates future volatility. Associating high

returns to low risk is the hallmark of a negative perceived relationship.

We hasten to add that a positive correlation between excessive optimism and overconfidence does

not necessarily induce a negative perceived relationship between risk and return. This is because

if sentiment is small, then it will not override the fundamental component. For example, during

the period September 2008 through the end of our sample period, the representative investor’s

perceived risk and return were positively correlated (with a regression slope coefficient of 0.07). At

the same time, excessive optimism and overconfidence were still positively related, with a correlation

coefficient of 0.8, but sentiment was small during this period.15 Figure 6 shows the risk-return

relationships under the objective and representative investor’s pdfs.

Like Yu and Yuan (2011), we find that for the objective pdf, the relationship between risk and

return is weaker when the Baker–Wurgler sentiment is positive than when it is negative.16 Yu and

Yuan suggest that this is because when sentiment is high, constraints on short sales magnify the

impact of investor errors.

When we perform the same analysis for the representative investor’s pdf encapsulating the

“market’s perception” of risk and return, which provides the basis for pricing assets, we find no

statistically discernable difference between periods of high sentiment and periods of low sentiment.

Rather, our analysis indicates that the negative risk-return relationship stems from excessive op-

timism and overconfidence being positively correlated and strong. Yu and Yuan (2011) base their

regression analysis on the Baker–Wurgler index, which is effectively a measure only of excessive op-

timism. Our findings indicate that the perceived risk-return trade-off is driven by the co-movements

of excessive optimism and overconfidence over time, not just the level of excessive optimism.

6.3. Duke/CFO Survey Responses

To provide another external check on our sentiment estimates, we use the Duke/CFO survey data.

The questions in the Duke/CFO survey that are most relevant to our study pertain to expected

S&P 500 return, volatility, and skewness, for a one year horizon. Graham and Harvey (2012)

15Distance measures between the log empirical SDF and log CRRA SDF (labeled RMSE and MAE) in the online
appendix provide an assessment for the level of sentiment at each date t.
16In going from negative to positive sentiment in our analysis, the coefficient of expected return on standard deviation
drops by about half, from 0.12 to 0.07. Both coefficients are statistically significant, implying that we do not find the
relationship to become flat when sentiment is high.
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describe how the survey is conducted and provide an overview of the survey results.17

The estimates for expected return, volatility, and skewness that are derived form the Duke/CFO

survey responses provide an interesting contrast to our estimates from the representative investor’s

pdf. Figure 7 (top panel) shows that the Duke/CFO expected return and representative investor’s

expected return are highly correlated after 2005, with a correlation coefficient of 0.6.18 For the

entire sample period, the correlation coefficient is 0.2.

As discussed in Ben-David, Graham, and Harvey (2013), the Duke/CFO series exhibits very

large overconfidence, with an average one year return volatility around 5%. The representative

investor’s conditional return volatility is around 20%, and thus more in line with historical lev-

els. Interestingly, the correlation between the Duke/CFO volatility series and the representative

investor’s return volatility is a very high 0.8; see Figure 7 (bottom panel). Although the two

volatility predictions are an order of magnitude different, the two measures comove strongly.

As for skewness, the correlation between the Duke/CFO values and the representative investor

values is negative (−0.4). The former features an inverted-U shape over time, while the latter is

U-shaped over time, as shown in the online appendix. This suggests that when volatility increases

at the beginning and end of our sample, the respondents to the Duke/CFO survey overfocus on

volatility associated with negative returns. In contrast, the representative investor focuses on high

positive returns, as well as negative returns, during periods of heightened volatility.

6.4. Yale/Shiller Crash Confidence Indexes

Next we turn our attention to left tail events or crashes. To do so, we compare the probability

of a left tail event under the representative investor’s pdf with two independent survey-based

counterparts, the Yale/Shiller crash confidence indexes for professional investors (CP) and for

individual investors (CI). Each crash confidence index is the percent of respondents who attach

little probability to a stock market crash in the next six months.19 Thus, a high value of the index

means a low probability of a market crash, according to the respondents.

To compare the crash confidence indexes CP and CI with our representative investor approach,

we consider left tail probabilities under the representative investor’s and objective pdfs. For each

17An archive of past surveys is available under the “Past Results” tab at http://www.cfosurvey.org.
18The sample of CFOs changed in 2004 when Duke changed survey partners from Financial Executives International
to CFO magazine. For this reason, the data from 2005 on appears to be more consistent than the data from the
earlier period.
19A detail description of the index and corresponding data are available at http://icf.som.yale.edu/stock-market-
confidence-indices-explanation.
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day t, we compute the conditional probabilities of a one year market return being less than −20%,

denoted by pR{ST /St < 0.8} and p{ST /St < 0.8}. Then we define the left tail sentiment bias as

log(pR{ST /St < 0.8}/p{ST /St < 0.8}), which resembles the sentiment function Λt,T in (7).

We find that the correlation coefficient between the representative investor’s left tail probability

pR{ST /St < 0.8} and CP is −0.8, and for CI is −0.6. In and of itself, there is no prior stipulation

that CP need reflect investors’ bias. However, an AR(2) regression of CP on p{ST /St < 0.8} and

log(pR{ST /St < 0.8}/p{ST /St < 0.8}) has only the left tail sentiment bias term being statistically

significant, with a t-statistic of −2.0.

Figure 4 (bottom panel) shows CP and pR{ST /St > 0.8}, where the latter is the probability

of not having a crash under the representative investors’ pdf. The comovements between the two

series are evident. For example, both series reach lowest levels at the end of 2002 and 2008, i.e.,

periods of large market turmoil. Figure 4 (bottom panel) also suggests that the fear of a market

crash, as measured by pR{ST /St > 0.8} and CP, fell in the middle part of our sample period.

This period is characterized by relatively stable market growth and low volatility, as well as high

excessive optimism and overconfidence; see Figure 3.

6.5. Corporate Bond Default Premiums

Given that left tail events give rise to corporate bond defaults, there is reason to expect that left

tail probabilities under the representative investor’s distribution impact credit spreads. We now

investigate whether this is the case.

In recent work, Gilchrist and Zakraǰsek (2012) develop an excess bond premium measuring the

component of corporate bond spreads that is not related to firm-specific information on expected

defaults. Gilchrist and Zakraǰsek contend that a rise in the excess bond premium represents a

reduction in the effective risk-bearing capacity of the financial sector and, as a result, a contraction

in the supply of credit with adverse consequences for the macroeconomy. Their credit spread index

decomposes into a predictable component that captures the available firm-specific information on

expected defaults and a residual component – the excess bond premium.

We find a strong positive impact of left tail probabilities under the representative investor’s pdf

on the excess bond premium. The correlation between the excess bond premium and pR{ST /St <

0.8} is 0.9.20 In addition, when regressing the excess bond premium on pR{ST /St < 0.8} and

p{ST /St < 0.8}, the t-statistics are 5.25 and 1.09, respectively, with an R-squared of 82%. Although

20We thank Simon Gilchrist for providing us with the data for this series.
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pR{ST /St < 0.8} and p{ST /St < 0.8} are highly correlated, 0.8, the regression indicates that the

representative investor’s left tail probability has a large impact on the excess bond premium, and

subsumes the information in the objective left tail probability. Unreported regression analysis

reveals that this result holds true when controlling for excessive optimism and overconfidence.

This suggests that large sentiment concentrated on left tail events could impair the intermediation

capacity of the financial sector.

6.6. Risk Aversion and Time Preference

Meyer and Meyer (2005) survey some of the key studies by economists of how the coefficient of

relative risk aversion varies across the population. Most of the survey data suggests values that

lie between 0.23 and 8. Meyer and Meyer perform an adjustment to reconcile the scales used by

the various studies and suggest an adjusted range of 0.8 to 4.72. We view this as a plausible range

within which to evaluate our estimates.

Figure 8 displays the time series estimates of θ0 and θ1 when the pricing kernel is constrained to

conform to the case of a representative investor with correct beliefs and CRRA utility. In standard

theory, θ0 is the discount factor for time preference and θ1 is the coefficient of relative risk aversion.

Our estimates for the time series θ1, mostly vary between 0 and 3.1, with a mean of 1.14. During

the middle of the sample period, θ1 lies between 1 and 3.1, thereby falling in the range described

in Meyer and Meyer (2005).

In our framework risk levels and risk appetites are not constant over time. At the beginning

and end of the sample period, which correspond to recessions, θ1 falls between 0 and 1, and even

dips below 0 in November 2007. This finding is consistent with prospect theory (Kahneman and

Tversky, 1979), which posits that after unfavorable events place agents into the domain of losses,

risk aversion declines, even to the point where investors might be risk seeking.

Our finding about θ1 declining during recessions does not imply that investors will take on

greater risks. It is so because the risk-return profile and the investment opportunity set are also

changing. In general investors’ holding of risk is driven both by preferences and beliefs. Our

analysis finds that during the financial crisis investors became pessimistic and underconfident (see

Figure 3), which may well have induced investors to rebalance their portfolios from risky to less

risky assets.

Formal analysis of how risk aversion covaries with excessive optimism and overconfidence reveals

that although θ1 is strongly correlated both with excessive optimism (0.68) and overconfidence
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(0.59), the correlation with excessive optimism is dominant.21 Thus during recessions risk aversion

declines and investors become particularly pessimistic about future returns.

One of the papers surveyed by Meyer and Meyer is Barsky, Juster, Kimball, and Shapiro (1997),

hereafter BJKS. In addition to investigating risk aversion, BJKS also conduct surveys to identify

time preference. They find considerable variation, but point out at zero interest rates, the modal

household expresses a preference for flat consumption over time, and the mean household expresses

a preference for increasing consumption over time. BJKS report a consumption growth range of

0.28% to 1.28% per year, which they interpret as negative time discounting. Their study provides

the backdrop for discussing our estimates of time preference.

The time series for the time preference variable θ0 tends to lie between 0.99 and 1.04 during

the early portion of the sample period, but in late 2004 gravitated to the range between 1.05 and

1.17, peaking in February 2005. The θ0-series then declined back to the range 1.05 to 1.11 until

November 2007, when it declined sharply to the range 0.97 to 1.1. After the Lehman bankruptcy in

September 2008, θ0 rose sharply to 1.3 in October, and then declined back to the region around 1.0

from December on. These findings are consistent with the general negative time preference pattern

reported by BJKS, but clearly stronger during a portion of the sample period.

The findings above are based on the CRRA SDF, with potential time varying risk aversion and

time preference, as the fundamental component of the empirical pricing kernel. In the literature

one common parametric specification of the SDF is the Epstein and Zin (1989) (EZ) SDF. What

EZ does, besides separating risk aversion and elasticity of substitution, is to provide a theoretical

framework to replace consumption growth as the only state variable with stock return and con-

sumption growth. How would the empirical findings above change if the CRRA SDF would be

replaced by the EZ SDF? There are a number of reasons to believe that the findings above would

only change marginally. First, consumption growth is notoriously smooth over time and has low

correlation with market returns. Including such a smooth variable in the SDF would essentially only

impact the constant part of the SDF. Indeed, the EZ log-kernel is linear in consumption growth and

market return, and thus consumption growth would theoretically only impact the intercept of the

pricing kernel (θ0), not its slope (θ1). Second, consumption data are only available at low frequency

21In a regression of θ1 on its own lagged value and contemporaneous values of excessive optimism and overconfidence,
the coefficient for optimism has a t-statistic of 1.9, whereas the coefficient for overconfidence has a t-statistic of
0.72; the adjusted R-squared is 81%. Moreover, the relationship is especially strong in first differences: A regression
of the first difference of θ1 on the first differences of excessive optimism and overconfidence respectively features a
t-statistic of 6.3 for excessive optimism and −0.44 for overconfidence, with an associated adjusted R-squared of 31%.
We interpret these results as descriptive of how our estimates of risk aversion and sentiment covary over time.
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(monthly at best) and affected by well-known measurement problems. Our analysis is carried out

at a relatively high frequency (weekly), and uses option and price data that are expected to readily

incorporate newly available information. Third, for the most part of our sample period, estimates

of the relative risk aversion (θ1) are close to 1, with the mean of 1.16 and standard deviation 0.67.

In the EZ SDF, when the coefficient of relative risk aversion is 1, consumption growth is irrelevant

to the pricing kernel.

7. Conclusion

We provide empirical estimates of aggregate investors’ sentiment, risk aversion, and time preference.

Our estimates are extracted from empirical pricing kernels, are largely consistent with independent

measures reported in the empirical literature, and yet provide several novel insights about investors’

beliefs and sentiment. Our estimates indicate that investors’ excessive optimism is highly correlated

with the Baker and Wurgler (2006) sentiment index; overconfidence is highly correlated with the

volatility predictions in the Duke/CFO survey data; tail risk is highly correlated with both the

survey-based Yale/Shiller crash confidence series and the bond premium developed in Gilchrist and

Zakraǰsek (2012); aggregate risk aversion is in line with the general findings reported in Meyer and

Meyer (2005), and varies over time in a way that is consistent with prospect theory (Kahneman

and Tversky, 1979); time preference is consistent with the negative discounting, as reported by

Barsky, Juster, Kimball, and Shapiro (1997).

Our main finding is that empirical pricing kernels strongly reflect behavioral elements. Our

analysis provides a number of insights. For example, the Baker–Wurgler index strongly reflects

investors’ excessive optimism, but not overconfidence and misjudgments about tail events. The

Baker–Wurgler index is thus an incomplete measure of investors’ sentiment. Excessive optimism

and overconfidence comove over time, i.e., investors tend to overestimate (underestimate) future

returns and underestimate (overestimate) future return volatility at the same time. This generates a

perceived negative risk-return trade-off, while objectively the relationship is positive. Large amount

of sentiment concentrated on left tail events can impair the intermediation capacity of the financial

sector with adverse consequences for the macroeconomy. Our empirical findings are robust to the

choice of the pricing kernel, and remain largely intact when only minimal and necessary assumptions

are imposed on the marginal utility of the representative investor.
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A. Derivation of the Sentiment Function Λ

Shefrin (2008) provides a formal derivation of the sentiment function Λt,T . For completeness we

briefly recall its derivation.

The sentiment function Λt,T in (6) encapsulates the representative investor’s biases. In this

section, we briefly describe the structure of the sentiment function, and its manifestation within

the SDF. To simplify notation, we drop t-subscripts and the argument of the pdf.

Let ξ denote state price. Then the SDF is given by M = ξ/p, which in a representative

investor CRRA-framework has the form ξ = pR θ0 (ST /St)
−θ1 . This last relationship follows from

the optimizing condition in which marginal rate of substitution (for expected utility) is set equal

to relative state prices, with consumption at t = 0 serving as numeraire.

Divide both sides of the previous equation for ξ by p θ0,e, where θ0,e corresponds to the value of

θ0 that would prevail if all investors held correct beliefs. Here, the subscript e denotes efficiency.

This last operation leads to the expression ξ/p = (θ0/θ0,e) (pR/p) θ0,e (ST /St)
−θ1 . Define eΛ =

(θ0/θ0,e) (pR/p), which is a scaled change of measure and corresponds to (7).

The change of measure (pR/p) associated with Λ exactly specifies the transformation of the ob-

jective pdf p into the representative investor’s pdf pR. Therefore, Λ encapsulates the representative

investor’s biases.

Shefrin (2008) establishes that θ1 does not vary as investors’ beliefs change. Then, in the

preceding expression for the SDF, eΛ multiplies the term θ0,e (ST /St)
−θ1 , and the latter is the SDF

Me that would prevail if all investors held correct beliefs. Therefore M = eΛMe. Taking logs,

obtain log(M) = Λ+log(Me). This expression stipulates that the log-SDF can be decomposed into

two components, one being the sentiment function and the other being the neoclassical log-SDF

that would prevail if all investors held correct beliefs.

Rearranging the decomposition of the log-SDF yields Λ = log(M) − log(Me). Notably, the

last relationship corresponds to (9) and explains why d serves as our estimate of the sentiment

function Λ.
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Maturity
Less than 60 60 to 160 More than 160

Moneyness Mean Std. Mean Std. Mean Std.

< 0.85 Put price $ 1.31 2.74 3.89 5.61 10.20 11.63

σbs% 49.44 20.16 39.45 14.83 31.26 10.18
Observations 11,849 10,359 10,292

0.85–1.00 Put price $ 9.94 10.67 24.37 16.55 43.95 23.18

σbs% 23.74 10.21 23.52 8.64 22.20 6.86
Observations 15,876 9,510 8,152

1.00–1.15 Call price $ 8.58 10.76 21.07 17.48 44.83 25.49

σbs% 17.76 8.86 18.57 7.99 18.22 6.46
Observations 13,807 9,201 7,538

> 1.15 Call price $ 0.67 1.67 1.74 3.65 6.38 9.33

σbs% 37.71 16.05 26.79 9.62 21.61 6.53
Observations 7,136 7,977 9,530

Table 1. Options dataset. For each moneyness/maturity category, entries show mean and standard
deviation (Std.) of out-of-the-money call and put option prices on the S&P 500 index, as well

as of Black–Scholes implied volatility (σbs) in percentage. Sample data are options observed on
Wednesdays from January 2002 to October 2009. Observations are the number of options for each
moneyness/maturity category. Filtering criteria of options are described in Section 5. Moneyness
is strike price divided by S&P 500 index. Maturity is in calendar days.

ω × 106 β α× 103 γ Persist. Ann. vol.

Objective GARCH parameters
Mean 1.215 0.926 3.473 0.117 0.989 0.198
Std. 0.207 0.005 4.141 0.013 0.002 0.016

Risk Neutral FHS GARCH parameters
Mean 4.153 0.789 2.169 0.358 0.970 0.212
Std. 5.600 0.208 9.366 0.360 0.033 0.074

Risk Neutral GAUSS GARCH parameters
Mean 3.987 0.756 3.479 0.448 0.983 0.252
Std. 5.575 0.201 12.280 0.371 0.021 0.112

Table 2. Objective and risk neutral GARCH parameters. The GARCH model is log(Su/Su−1) =
µu + ϵu, where Su is the S&P 500 index at day u, µu is the drift, and the conditional variance
σ2
u = ω + βσ2

u−1 + αϵ2u−1 + γIu−1ϵ
2
u−1, where ϵu = σuzu, zu is a standardized innovation and

Iu−1 = 1 when ϵu−1 < 0, and Iu−1 = 0 otherwise. For each Wednesday from January 2002 to
October 2009, a GARCH model is estimated using historical daily S&P 500 returns by maximizing
a Pseudo Maximum Likelihood, a GARCH model driven by Gaussian innovations is calibrated to
out-of-the-money options on the S&P 500 index by minimizing the sum of squared pricing errors,
a GARCH model driven by filtered historical innovations is similarly calibrated to options on the
S&P 500 index. Persist. is the persistency of the GARCH volatility and given by β+α+γ/2. Ann.
vol. is the annualized long-run mean of the GARCH volatility.
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Maturity
Less than 60 60 to 160 More than 160

Moneyness Mean RMSE Mean RMSE Mean RMSE
< 0.85 0.49 1.20 0.55 1.22 0.56 1.46

0.85–1.00 0.41 1.31 −0.41 1.43 −0.95 1.70
1.00–1.15 0.44 1.29 0.03 1.19 0.42 1.55
> 1.15 0.08 0.46 0.12 0.57 0.94 1.75

Table 3. Option pricing errors. For each moneyness/maturity category, entries show mean and
root mean square error (RMSE) of option price errors of the risk neutral FHS GARCH model.
Price error is defined as model-based option price minus market option price. Using the FHS
method, each Wednesday from January 2002 to October 2009, the GARCH model is calibrated to
out-of-the-money call and put options on the S&P 500 index. Calibration procedure is described in
Section 3. Filtering criteria of options are described in Section 5. Moneyness is strike price divided
by S&P 500 index. Maturity is in calendar days.

Intercept Lag1 Optimism Overconf. R2

Panel A: Objective Equity Risk Premium
0.18 0.92 −0.09 0.01 0.99
(1.98) (7.40) (−2.48) (1.46)

Panel B: Representative Investor’s Equity Risk Premium
0.79 0.71 0.07 −0.02 0.56
(4.79) (13.26) (3.96) (−2.02)

Panel C: Objective Variance Risk Premium
−1.57 0.33 0.05 0.38 0.92
(−5.40) (3.15) (0.81) (4.85)

Panel D: Representative Investor’s Variance Risk Premium
−0.04 0.96 0.01 −0.01 0.94
(−1.03) (5.95) (0.81) (−0.85)

Table 4. Impact of Sentiment on Equity and Variance risk premiums. Panel A: Time series regres-
sion of objective equity risk premium on a constant (Intercept), its two most recent lagged value
(Lag1), optimism and overconfidence; t-statistics in parentheses. Objective equity risk premium
is (Ep

t [ST /St] − Eq
t [ST /St]) × 100, where Ep

t is the conditional expectation at date t under the
objective pdf p, Eq

t is the conditional expectation at date t under the risk neutral pdf q, St is the
S&P 500 index at date t, and (T − t) is one year. Optimism is (EpR

t [ST /St] − Ep
t [ST /St]) × 100,

where EpR
t is the conditional expectation at date t under the representative investor’s pdf pR.

Overconfidence is (
√
Varpt [ST /St] −

√
VarpRt [ST /St]) × 100. Panel B: Same time series regression

as in Panel A for the equity risk premium perceived by the representative investor, defined as
(EpR

t [ST /St]−Eq
t [ST /St])×100. Panel C: Time series regression of objective variance risk premium

on a constant (Intercept), its two most recent lagged value (Lag1), optimism and overconfidence.
Objective variance risk premium is (Varpt [ST /St]−Varqt [ST /St])× 100. Panel D: Same time series
regression as in Panel C for the variance risk premium perceived by the representative investor,
defined as (VarpRt [ST /St]−Varqt [ST /St])× 100. R2 is the adjusted R-squared. Robust standard er-
rors are computed using the Newey and West (1987) covariance matrix estimator with the number
of lags optimally chosen according to Andrews (1991). Weekly observations from January 2002 to
October 2009.
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Intercept Lag1 Ret Stdv R2

Panel A: Optimism
0.70 0.67 0.64 −3.50 0.91
(4.55) (10.55) (2.17) (−4.22)

Panel B: Overconfidence
0.87 0.86 −0.22 −2.48 0.83
(3.93) (10.54) (−0.40) (−2.95)

Table 5. Optimism and overconfidence. Panel A: Time series regression of optimism on a constant
(Intercept), its most recent lagged value (Lag1), past one year S&P 500 return (Ret) and past
one year S&P 500 volatility (Stdv) namely the standard deviation of daily S&P 500 log-returns.
Optimism is (EpR

t [ST /St] − Ep
t [ST /St]) × 100, where EpR

t is the conditional expectation at date t
under the representative investor’s pdf pR, E

p
t is the conditional expectation at date t under the

objective pdf p, St is the S&P 500 index at date t, and (T − t) is one year. Panel B: Same

time series regression for overconfidence, defined as (
√
Varpt [ST /St]−

√
VarpRt [ST /St])× 100. R2 is

the adjusted R-squared. Robust standard errors are computed using the Newey and West (1987)
covariance matrix estimator with the number of lags optimally chosen according to Andrews (1991).
Weekly observations from January 2002 to October 2009.

Baker–Wurgler Series
Intercept Lag1 Lag2 Optimism Overconf. S&P VIX R2

0.01 0.92 −0.06 4.35 −1.00 0.93
(0.49) (10.21) (−0.75) (5.32) (−2.22)

0.00 0.92 −0.06 4.65 −1.09 −0.06 0.03 0.93
(0.11) (10.23) (−0.76) (3.75) (−2.01) (−0.15) (0.16)

0.08 0.94 −0.03 −0.27 −0.45 0.92
(3.45) (8.86) (−0.29) (−0.71) (−4.56)

Table 6. Baker–Wurgler series and sentiment. Time series regression of monthly Baker–Wurgler
series on a constant (Intercept), its two most recent lagged values (Lag1, Lag2), optimism, overcon-
fidence, S&P 500 monthly return (S&P), and VIX index; t-statistics in parentheses. Optimism is
EpR

t [ST /St]−Ep
t [ST /St], where EpR

t is the conditional expectation at date t under the representa-
tive investor’s pdf pR, E

p
t is the conditional expectation at date t under the objective pdf p, St is the

S&P 500 index at date t, and (T−t) is one year. Overconfidence is
√
Varpt [ST /St]−

√
VarpRt [ST /St].

Robust standard errors are computed using the Newey and West (1987) covariance matrix estima-
tor with the number of lags optimally chosen according to Andrews (1991). R2 is the adjusted
R-squared. Observations are end-of-month from January 2002 to October 2009.
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Intercept Slope R2

1. Objective expected return vs. volatility 0.02 0.12 0.67
(7.73) (6.26)

2. Rep. investor expected return vs. volatility 0.07 −0.13 0.50
(15.20) (−5.03)

Table 7. Risk and return. Regression 1: Time series regression of objective expected market return
on a constant (Intercept) and expected objective volatility (Slope); t-statistics in parentheses.
Objective expected return is Ep

t [ST /St−1], where Ep
t is the conditional expectation at date t under

the objective pdf p, St is the S&P 500 index at date t, and (T − t) is one year; expected objective

volatility is
√
Varpt [ST /St]. Regression 2: Same regression as Regression 1 for expected return and

volatility under the representative investor’s pdf, pR. Robust standard errors are computed using
the Newey and West (1987) covariance matrix estimator with the number of lags optimally chosen
according to Andrews (1991). R2 is the adjusted R-squared. Observations are weekly from January
2002 to October 2009.
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Figure 1. Upper graph: Objective (Pobj) and representative investor’s (Prep) probability density
functions for December 21, 2005. Lower graph: Behavioral unconstrained SDF (BehavKernel),
CRRA-constrained SDF (CRRAKernel), and the LogDiff function, i.e., log BehavKernel minus log
CRRAKernel. The latter difference is the function dt,T in (9), for December 21, 2005.
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Figure 2. Empirical SDF. For each Wednesday t in our sample, the empirical stochastic discount
factor (SDF), Mt,T , is estimated as Mt,T = e−rf (T−t) q(ST /St)/p(ST /St), where q is the conditional
risk neutral density of ST /St, p the conditional objective density of ST /St, rf is the risk free rate,
St the S&P 500 index at date t, and (T − t) is one year. The densities p and q are conditional on
the information available at date t and based on GARCH models with FHS innovations estimated
using historical S&P 500 returns and SPX options, respectively. Each graph shows the empirical
SDF over the corresponding two years period. Superimposed (solid thick line) is the average SDF.
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Figure 3. Time series for optimism and overconfidence. Optimism is (EpR
t [ST /St]−Ep

t [ST /St])×100,
where EpR

t is the time-t conditional expectation under the representative investor’s pdf pR, St

is the S&P 500 index at date t, (T − t) is one year, and similarly for Ep
t . Overconfidence is

(
√
Varpt [ST /St]−

√
VarpRt [ST /St])× 100. Density estimates are obtained using the FHS method.
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Figure 4. Upper graph: Baker–Wurgler sentiment series and optimism. Baker and Wurgler (2006)
monthly series of sentiment extracted using Principal Component Analysis of six specific sentiment
proxies, i.e., turnover on the New York Stock Exchange (NYSE), dividend premium, closed-end
fund discount, number and first-day returns on IPOs, and the equity share in new issues. Optimism
is (EpR

t [ST /St] − Ep
t [ST /St]) × 100, where EpR

t is the conditional expectation at date t under the
representative investor’s pdf pR, St is the S&P 500 index at date t, (T − t) is one year, and similarly
Ep

t is the conditional expectation under the objective pdf p. Lower graph: Yale/Shiller crash
confidence index (CP) and “probability of no crash” under the representative investor’s pdf. The
latter is Prob{ST /St > 0.8} under the representative investor’s pdf pR. For each Wednesday t,
from January 2002 to October 2009, the conditional probability Prob{ST /St > 0.8} is computed
numerically integrating the conditional density pR of the gross return ST /St, given the information
available at date t.
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Figure 5. Sentiment functions plotted for several days in 2002. The sentiment function at date t is
Λt,T = log(Mt,T ) − log(Mt,T (θ)), where Mt,T = e−rf (T−t) q(ST /St)/p(ST /St) is the unconstrained
SDF and Mt,T (θ) = θ0,t (ST /St)

−θ1,t is the CRRA-constrained SDF. q is the conditional risk neu-
tral density of ST /St, p is the conditional objective (i.e., historical) density of ST /St, rf is the
instantaneous risk free rate, θ0,t is the time discount factor, θ1,t is the coefficient of relative risk
aversion, St is the S&P 500 index at date t, and (T − t) is one year. On the x-axis, gross return is
ST /St.
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Figure 6. Risk and return. For each Wednesday t from January 2002 to October 2009, “Expected
Return, Objective” is the time-t conditional expected market return under the objective pdf p, i.e.,
Ep

t [ST /St−1]×100, where St is the S&P 500 index at date t, and (T−t) is one year; “Stdv. Return,
Objective” is the time-t conditional expected volatility of market return under the objective pdf p,

i.e.,
√
Varpt [ST /St] × 100. “Expected Return, Rep. Investor” and “Stdv. Return, Rep. Investor”

are representative investor’s expected return and volatility, respectively, computed using time-t
conditional representative investor’s pdf, pR. In each graph, superimposed is the regression line.
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Figure 7. Upper graph: Time series of one year S&P 500 expected return based on Duke/CFO sur-
vey responses and the representative investor’s distribution. Duke/CFO survey data are described
in Graham and Harvey (2012), quarterly frequency. The representative investor one year S&P 500
expected return is given by EpR

t [ST /St − 1] × 100, where EpR
t is the conditional expectation at

each Wednesday t in our sample under the representative investor’s pdf pR, St is the S&P 500
index at date t, and (T − t) is one year; weekly frequency. Lower graph: Time series of one year
S&P 500 return standard deviation based on Duke/CFO survey responses and the representative
investor’s distribution. For each Wednesday t in our sample, return standard deviation under the

representative investor’s pdf is
√
VarpRt [ST /St]× 100.
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Figure 8. Time series estimates of θ1,t and θ0,t in the CRRA SDF. θ1,t is the coefficient of relative
risk aversion and θ0,t is the discount factor measuring the degree of impatience at date t. The
constat relative risk aversion (CRRA) SDF is Mt,T (θ) = θ0,t (ST /St)

−θ1,t , where St is the S&P 500
index at date t, and (T − t) is one year. For each Wednesday t in our sample, θ0,t and θ1,t
are estimated fitting the CRRA-constrained SDF, Mt,T (θ), to the unconstrained SDF, Mt,T =
e−rf (T−t) q(ST /St)/p(ST /St), where q is the conditional risk neutral density, p is the conditional
objective (i.e., historical) density, St is the S&P 500 index at date t, and rf is the instantaneous
risk free rate.
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Marfè, R., 2015, “Survey Expectations and the Equilibrium Risk-Return Trade Off,” working paper,
Swiss Finance Institute.

Meyer, D., and J. Meyer, 2005, “Relative Risk Aversion: What Do We Know?,” Journal of Risk
and Uncertainty, 31, 243–262.

Mueller, P., A. Vedolin, and Y.-M. Yen, 2011, “Bond Variance Risk Premia,” working paper,
London School of Economics.

Nelson, D., 1991, “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Economet-
rics, 59, 347–370.

Newey, W. K., and K. D. West, 1987, “A Simple, Positive Semi-definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, 703–708.

Rosenberg, J., and R. Engle, 2002, “Empirical Pricing Kernels,” Journal of Financial Economics,
64, 341–372.

Ross, S., 2015, “The Recovery Theorem,” Journal of Finance, 70, 615–648.

Rossi, A., and A. Timmermann, 2015, “Modeling Covariance Risk in Merton’s ICAPM,” Review
of Financial Studies, 28, 1428–1461.

Shefrin, H., 2005, A Behavioral Approach to Asset Pricing. Elsevier Academic Press, Boston, First
edition.

, 2008, A Behavioral Approach to Asset Pricing. Elsevier Academic Press, Boston, Second
edition.

Todorov, V., 2010, “Variance Risk Premium Dynamics: The Role of Jumps,” Review of Financial
Studies, 23, 345–383.

White, H., 1982, “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50,
1–25.

Xiong, W., and H. Yan, 2010, “Heterogeneous Expectations and Bond Markets,” Review of Finan-
cial Studies, 23, 1433–1466.

Yu, J., and Y. Yuan, 2011, “Investor Sentiment and the Mean-Variance Relation,” Journal of
Financial Economics, 100, 367–381.

41


	Page de garde Barone Adesi
	Finance Research Seminar
	Supported by Unigestion
	Friday, October 16, 2015, 10:30-12:00
	Room 126, Extranef building at the University of Lausanne


	sentiment_pricing_kernel2015Aug28

