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Abstract

A model of infrequent rebalancing can explain specific predictability patterns

in the time-series and cross-section of stock returns. First, infrequent rebalancing

produces return autocorrelations that are consistent with empirical evidence

from intraday returns and new evidence from daily returns. Autocorrelations can

switch sign and become positive at the rebalancing horizon. Second, variations

in the degree of infrequent rebalancing across periods increase the cross-sectional

variance in expected returns in the period during which more traders rebalance.

This effect generates seasonality in the cross-section of stock returns, which can

help explain the empirical evidence.
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1 Introduction

Heston, Korajczyk, and Sadka (2010) document a striking pattern of periodicity in

intraday returns that persists over several days. Reproducing their main finding,

Figure 1 shows that the estimate from a cross-sectional regression of current half-hour

returns on lagged half-hour returns spikes at intervals of one trading day for several

days. The estimate can be interpreted as the return on a momentum strategy; a high

or low return on a stock in a given half-hour interval today can help predict the return

on the stock at the same time tomorrow and in the next days.

Figure 1: Time-series averages of cross-sectional regression estimates. The following
cross-sectional regression is estimated using NYSE half-hour simple returns over 2001-
2005: ri,t = αk,t + γk,tri,t−k + ui,t for k = 1, . . . , 65. The cross-sectional regressions
are overlapping and run for every half-hour return. The data are reproduced from
Heston et al. (2010) and scaled so that the units are percentages.
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In addition, changes in trading volume exhibit a similar periodicity but do not

fully explain the return periodicity. Heston et al. (2010) conjecture that systematic

trading and institutional fund flows lead to predictable patterns in trading volume.

They argue, however, that “if these patterns are fully anticipated, then they should

not cause predictability in stock returns.”

Motivated by this evidence, this paper contributes new theoretical and empirical re-

sults to the literature on return autocorrelation and seasonality by highlighting the role

of infrequent rebalancing for asset price dynamics. I study a dynamic model in which

a subset of agents only trade infrequently.1 Indeed, the literature on slow-moving cap-

ital documents that many market participants are only active intermittently (Duffie,

2010).

The model shows that infrequent rebalancing generates specific return autocorrela-

tion patterns. When traders absorb a liquidity shock in an asset, they end up holding

an excess position in the asset relative to its normal weight in their portfolio. At a

1The setup builds on the model of Duffie (2010) and relates to the finance literature on
models with overlapping generations. Related papers include Spiegel (1998); Watanabe (2008);
Biais, Bossaerts, and Spatt (2010); Banerjee (2011); and Albagli (2014).
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rebalancing date, traders with an excess position in the asset unload part of their posi-

tion in the market. This unloading is equivalent to another liquidity shock. Infrequent

rebalancing can then result in positive return autocorrelation by propagating liquidity

shocks across periods. This effect also modifies the dynamics of trading volume. A

large liquidity shock results in high volume during the current period. One rebalanc-

ing period later, infrequent traders adjust their abnormal positions by trading with

market makers, which generates high volume again.

Unless liquidity shocks are highly persistent, autocorrelations are negative at any

horizon in the economy without infrequent traders. More importantly, all autocorre-

lations have the same sign. With infrequent rebalancing, autocorrelations can switch

sign around traders’ rebalancing horizon and become positive. Momentum at the

rebalancing date is key in matching the empirical evidence. Similarly, variations in

trading volume are negatively autocorrelated at any horizon without infrequent rebal-

ancing. The results appear robust to having infrequent traders with heterogeneous

rebalancing horizons. This suggests that the model can simultaneously apply to dif-

ferent frequencies.

The infrequent rebalancing mechanism stressed by the theory can help understand

the previous empirical evidence on intraday returns. Assuming that a fraction of

agents trade only once a day, the model can reproduce the periodicity documented by

Heston et al. (2010).2 In the model, systematic trading generates predictable patterns

in returns despite being perfectly anticipated. The model can also explain other recent

evidence on intraday index returns. Gao, Han, Li, and Zhou (2014) find that the first

half-hour return on the SPDR S&P 500 ETF predicts the last half-hour return. This

result is in line with a fraction of agents adjusting their portfolios at the open and

close of the market.3

Empirically, I provide new evidence on the impact of infrequent rebalancing on

daily U.S. stock returns from 1983 to 2012.4 Cross-sectional regressions in the spirit

of Jegadeesh (1990) reveal patterns in return serial correlations that are consistent

with a significant fraction of investors rebalancing at a weekly frequency.5 The model

can fit the short-term autocorrelation pattern. Neglected stocks do not drive the

result since high turnover stocks display more pronounced patterns than low turnover

stocks. This is in line with the theory, in which infrequent rebalancing is distinct from

2Heston et al. (2010) discuss why funds flows and trading algorithms may lead to periodicity in
trading volume and order imbalances.

3As anecdotal evidence, The Wall Street Journal (September 10, 2010) reports the story of a
proprietary-trading firm that is mostly active at the open and close of the market (“The Traders
Who Skip Most of the Day”).

4Papers that are closest to this one include the studies of Jegadeesh (1990) on the profitability of
monthly contrarian strategies, and Lehmann (1990) on weekly return reversal in individual securities.
Nagel (2012) provides a more recent analysis on the profitability of reversal strategies.

5Rakowski and Wang (2009) find a day-of-the-week effect in mutual fund flows. Besides, the
rebalancing methodology documentation of several investment products suggests that weekly reviews
may take place on specific days of the week.
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thin trading. Daily volume change autocorrelations are broadly consistent with the

theoretical predictions.

Both return autocorrelation and changes in the cross-sectional variance of average

returns across calendar periods can drive the periodicity in Figure 1 (see Section 2).

Intraday and monthly returns cross-sectional regressions show persistent seasonality

patterns that go beyond autocorrelation effects. I extend the model to allow for varia-

tions in the proportion of infrequent traders across calendar periods. For instance, the

well-known intraday U-shaped pattern in trading volume suggests that many market

participants concentrate their trading at specific hours (Admati and Pfleiderer, 1988).6

I show that this extended model can generate persistent seasonality patterns in line

with the empirical evidence from intraday and monthly returns.7

In this extension, price impact varies across calendar periods. Traders require a

larger risk premium to hold an asset when they anticipate price impact to be higher

next period. More precisely, variations in the proportion of infrequent traders across

calendar periods generate a seasonality in the market risk premium. If assets have

different exposures to the market, then this mechanism amplifies the cross-sectional

variance in expected returns in the period during which more traders rebalance. This

effect generates seasonality in the cross-section of stock returns.

Several papers examine the impact of infrequent rebalancing on asset prices. Duffie

(2010) surveys the literature on slow-moving capital and studies the conditional price

response to a large liquidity shock. He does not discuss unconditional return properties

and trading volume. Bacchetta and van Wincoop (2010) study the role of infrequent

portfolio adjustments for the forward discount puzzle. Their setup is tailored to the

foreign exchange market. In particular, liquidity shocks do not matter for predictabil-

ity in their economy, while they play a key role in mine. Chien, Cole, and Lustig

(2012) show that intermittent rebalancing increases the volatility of the market price

of risk in a standard incomplete markets economy. Rinne and Suominen (2012) also

investigate short-term return reversals. Their paper, however, focuses on liquidity and

does not obtain the key prediction emphasized in this paper; namely, that infrequent

rebalancing generates shifts in return autocorrelations. In contemporaneous research,

Hendershott, Li, Menkveld, and Seasholes (2014) test a modified version of Duffie’s

model to shed light on deviations from efficient prices at different frequencies. Their

analysis uses impulse response functions and does not overlap my approach and results.

None of these papers examines return seasonality.

More broadly, this paper relates to the literature on heterogeneous investment

6Similarly, the fraction of agents who adjust their portfolios is likely not constant over a trading
week or year (Dellavigna and Pollet, 2009; Hong and Yu, 2009).

7Investors’ inertia has been shown to affect asset properties at longer horizons. Lou (2012) shows
that the high persistence in mutual fund flows can explain part of the medium and long-term pre-
dictability in stock returns. Vayanos and Woolley (2013) provide a theory of momentum and reversal
based on investment flows in a setup with rational agents.
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horizons and trading frequencies. For instance, Corsi (2009) motivates a cascade model

of realized volatility with heterogeneity in market participants’ trading frequencies.

Beber, Driessen, and Tuijp (2012) use heterogeneous investment horizons to study the

pricing of liquidity risk. More recently, Kamara, Korajczyk, Lou, and Sadka (2015)

empirically highlight the role of investors’ different rebalancing horizons in determining

risk premia.

The paper is organized as follows. Section 2 decomposes the cross-sectional re-

gressions used in Figure 1 and in rest of the paper. Section 3 introduces a dynamic

model with infrequent rebalancing. Section 4 studies return autocorrelation. Section 5

studies return seasonality. Section 6 examines trading volume. Section 7 concludes.

All the proofs are in Appendix A.

2 Patterns in the Cross-Section of Stock Returns

Heston et al. (2010) estimate the following regression to obtain Figure 1:

ri,t = αk,t + γk,tri,t−k + ui,t, (1)

where ri,t is the return on stock i in half-hour interval t. The regression coeffi-

cients are first estimated cross-sectionally at each date and then averaged over time

(Fama and MacBeth, 1973). The cross-sectional regression methodology avoids several

shortcomings of time-series estimates of serial correlation (Jegadeesh, 1990; Lehmann,

1990). As explained below, the cross-sectional regression estimates are, however, not

exactly equivalent to autocorrelations.

Heston and Sadka (2008) estimate the same cross-sectional regression on monthly

returns. They document a striking seasonality pattern. I replicate their analysis

in Figure 2. The average regression coefficient spikes every twelve lag. Most of

the spikes are significant. Contrary to the intraday evidence, the seasonal spikes

in the coefficients do not show any decay with the horizon.8 Using similar strate-

gies, Keloharju, Linnainmaa, and Nyberg (2014) provide substantial evidence about

the pervasiveness of seasonalities across asset classes and markets.

In Section 4.3, I provide empirical evidence with daily returns using a similar

methodology. Daily returns also exhibit specific patterns in their regression coefficients

(Figure 5). The coefficients spike at intervals of five trading days.

In summary, periodicity patterns in stock returns exist at different frequencies. To

better understand the sources of such patterns, one can decompose the average cross-

sectional regression coefficient. Let r̄t =
1
N

∑N
i=1 ri,t. The slope coefficient estimate is

8In addition, an investment strategy that builds on this result earns an economically significant
average return over the sample period (Heston and Sadka, 2008). This strategy shows a strong
January seasonality, but the returns remain significant in other months and are not restricted to
small stocks.

5



Figure 2: Time-series averages of cross-sectional regression estimates. The following
cross-sectional regression is estimated each month: ri,t = αk,t + γk,tri,t−k + ui,t for
k = 1, . . . , 240. The sample consists in U.S. common stock returns over the period
1964 to 2013 for the dependent variable. The right-hand side series starts in 1944.
Stocks with a price lower than $1 are excluded from the regressions.
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given by

γ̂k,t =
1

1
N

∑N

i=1 (ri,t−k − r̄t−k)
2

N∑

i=1

ri,t
1

N
(ri,t−k − r̄t−k)

︸ ︷︷ ︸

≡πt(k)

. (2)

The estimate closely relates to the profit of a relative strength strategy, denoted as

πt(k). This zero-investment strategy is long past winners and short past losers based

on their return in period t−k. Define the calendar function c(t) that gives the calendar

period for each date t (for instance, the day of the week). The expected return on the

strategy in calendar period c(t) is

E[πt(k)|c(t)] =
1

N

N∑

i=1

Cov[ri,t, ri,t−k|c(t)]− Cov[r̄t, r̄t−k|c(t)]

+
1

N

N∑

i=1

(
µi,c(t) − µc(t)

) (
µi,c(t−k) − µc(t−k)

)
, (3)

where µi,c(t) ≡ E[ri,t|c(t)], and µc(t) ≡ E[r̄t|c(t)]. As a result, the average γk,t coeffi-

cient in Equation (2) reflects three components: return autocorrelation, return cross-

autocorrelation, and cross-sectional variation in average returns (Lo and MacKinlay,

1990).9 Separating these different components is important because the periodicity

patterns may not reflect the same components at different frequencies.

9Many papers investigate the source of momentum profits using a similar decomposition (see, for
instance, Conrad and Kaul, 1998; Jegadeesh and Titman, 2002). Jegadeesh and Titman (1995) point
out, however, that applying this decomposition empirically may not correctly distinguish between the
autocovariance and cross-autocovariance components.
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Since changes in trading volume also exhibit marked periodicity patterns, investors’

trading seems a natural candidate to explain the patterns.10 In this paper, I explore

how infrequent rebalancing can help explain the empirical evidence from the cross-

sectional regressions previously shown. First, infrequent rebalancing generates spe-

cific return autocorrelation patterns linked to the rebalancing horizon of traders (first

component in Equation (3)). Second, infrequent rebalancing can generate persistent

seasonality patterns. Indeed, the last component in Equation (3) does not decay with

the lag. Persistent seasonality patterns in the average γk,t can therefore arise when

expected returns vary across calendar periods. I show that infrequent rebalancing

can generate variations in expected returns across calendar periods. The next section

presents a model to formalize this intuition.

3 A Dynamic Model with Infrequent Rebalancing

To better understand the impact of investors’ trading on return and volume pre-

dictability patterns, I study a model in which some traders readjust their portfolio

infrequently in an otherwise standard economy. The setup of the model builds on that

of Duffie (2010). In particular, I extend the model to multiple assets to study the

cross-sectional evidence of Section 2.

In addition, as suggested by extant empirical evidence on trading volume, the

fraction of agents who adjust their portfolios is likely not constant over a trading day,

week, or year. In this respect, Heston et al. (2010) find that their pattern is stronger

in the first and last half-hour of trading. Following this evidence, I further extend the

model to allow for a fixed but non-constant proportion of infrequent traders across

periods. Theoretically, Admati and Pfleiderer (1988) demonstrate that traders may

optimally cluster their orders at given periods.

3.1 The Economy

Time is discrete and goes from zero to infinity. At each date, N risky assets pay

dividends. The N × 1 vector of dividends follows a simple autoregressive process:

Dt+1 = aDDt + ǫDt+1, (4)

where 0 ≤ aD ≤ 1 represents the common dividend persistence. I assume that ǫDt+1 ∼
N (0,ΣD), where ΣD denotes the N×N variance-covariance matrix of dividend shocks.

The mean dividend does not matter for return autocorrelation and seasonality and is

10Using changes in turnover instead of returns to estimate Regression (1) produces patterns that
are similar to the return patterns (Heston and Sadka, 2008; Heston et al., 2010). In Section 6, I
provide new empirical evidence using daily changes in turnover.
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assumed to be zero. In addition, a risk-free asset with gross return R > 1 is available

in perfectly elastic supply.

Two types of agents with exponential utility over terminal wealth trade in the

economy. Frequent traders (also referred to as market makers) are present in the

market at every date. A frequent trader of age j maximizes the value of her terminal

wealth in h−j periods. At the end of her trading cycle, the agent starts investing again

with an horizon h. I assume a constant fraction of frequent traders across investment

horizons. Given this assumption, at each date the following groups of frequent traders

are active in the market: a fraction 1
h
of frequent traders with horizon h, a fraction 1

h

of frequent traders with horizon h− 1, and so on.

Long horizons frequent traders are a natural extension to evaluate the robustness

of multi-period return predictability patterns. Furthermore, investment horizons can

have large effects on asset prices, as illustrated by Albagli (2014). Let h − j be the

remaining horizon of a frequent trader (0 ≤ j ≤ h− 1). Her optimization problem is

then given by

max
XF

t,j

Et

[

−e−γFWF
t+h−j

]

, (5)

s.t. W F
t+1 = (XF

t,j)
′

(Pt+1 +Dt+1 −RPt) +RW F
t ,

where Pt is the vector of asset prices, and W F
t is the initial wealth. The expectation

is taken with respect to an information set that is common to all traders and includes

the current and past levels of all state variables (defined below), as well as the current

calendar period.

Infrequent traders—the second group of agents—trade to maximize the value of

their terminal wealth and then leave the market for k period. The inattention pe-

riod k is taken as exogenous. Bacchetta and van Wincoop (2010), Duffie (2010), and

Chien et al. (2012) make a similar assumption. The tractability offered by this as-

sumption allows one to draw clear predictions from the model. Solving for endogenous

participation or inattention in general equilibrium settings is challenging.11 It is un-

likely that a fixed fraction of infrequent traders participate in the market each period;

some investors may enter into the market when they perceive that profit opportu-

nities outweigh their participation cost, which is a state-dependent trading rule, as

opposed to the time-dependent rule implied by the exogenous k. In a partial equi-

librium setting, Abel, Eberly, and Panageas (2007) find that a constant rebalancing

interval is optimal when agents are subject to observation costs. In further research,

Abel, Eberly, and Panageas (2013) show that in the presence of both information costs

11Orosel (1998) studies an overlapping generations economy with endogenous participation arising
from a fixed cost of participation, but his setup does not include liquidity shocks. Taking another
modeling approach, Peng and Xiong (2006) define an agent’s attention to a particular stock as the
precision of the signal he receives about the stock’s future dividend. In this case, the agent is always
active in the market but allocates his limited attention across different stocks.
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and transactions costs, a time-dependent rule survives if the fixed component of the

transactions costs is small enough. Sections 4 and 5 show that the model’s implications

are consistent with empirical evidence; hence, a simple approximation of investors’

trading policies may help understand asset return properties.

The infrequent traders who are rebalancing at date t select their vector of asset

demands XI
t to maximize their expected utility:

max
XI

t

Et

[

−e−γIW
I
t+k+1

]

, (6)

s.t. W I
t+k+1 = (XI

t )
′
(
Pt+k+1 +

k+1∑

j=1

Rk+1−jDt+j

︸ ︷︷ ︸

cumulative payoff from t (ex-dividend) to t+k+1

−Rk+1Pt

)
+Rk+1W I

t ,

where W I
t is the initial wealth. Infrequent traders adjust their portfolio and do not

trade for the rest of their investment horizon. The dividends paid while the agent is

out of the market are reinvested at the risk-free rate.

The model requires an additional element to generate trade. Here, liquidity traders

supply inelastic quantities of assets every period. Equivalently, a fraction of market

makers could receive state-contingent endowment shocks as in the setup of Biais et al.

(2010). Liquidity traders’ supplies are given by the following zero-mean N×1 process:

θt+1 = aθθt + ǫθt+1, (7)

where 0 ≤ aθ ≤ 1 represents liquidity trading persistence. I assume that ǫθt+1 ∼
N (0,Σθ), where Σθ denotes the N ×N variance-covariance matrix of liquidity shocks.

The autocorrelation effect highlighted in Section 4 requires that a shock affecting

traders’ positions reverses over time. The model allows this shock to be asset-specific or

common to many assets. Importantly, the infrequent rebalancing mechanism does not

require any persistence in the shock to generate specific return predictability patterns

(aθ = 0). To focus on the simplest possible setting, I use an autoregressive process of

order one. This assumption also makes the setup comparable to previous literature.

3.2 Equilibrium

Infrequent and frequent traders are present in proportion q and 1− q in the economy,

respectively. I consider two cases. First, the mass of rebalancing infrequent traders at

each date is constant over time. Second, the mass of rebalancing infrequent traders

varies with the calendar period and equals qc(t), where c(t) indicates the calendar

period at date t. With C calendar periods,
∑C

j=1 qj = q. In this general case, market
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clearing requires

qc(t)X
I
t +

1− q

h

h−1∑

j=0

XF
j,t = S̄ + θt −

k∑

i=1

qc(t−i)X
I
t−i, (8)

where S̄ is the N × 1 vector of share supplies.12 The lagged demands of infrequent

traders reduce the number of shares available in the market today.

The following three conditions define a linear rational expectations equilibrium

(REE). (i) Prices and demands are linear functions of the state variables. (ii) Agents

optimize Problems (5) and (6). (iii) Markets clear according to (8).

I first focus on the case in which the mass of rebalancing infrequent traders is

constant every period. This provides a benchmark model to focus on return auto-

correlation. I study the general model with a varying mass of infrequent traders in

Section 5.

3.3 Constant Proportion of Infrequent Traders

A constant and identical proportion of infrequent traders readjust their portfolio every

period, such that qc(t) =
q

k+1
.

Proposition 1. In a linear stationary REE, if it exists, the vector of asset prices is

given by

Pt = P̄ + Pθθt +
aD

R − aD
Dt +

k∑

i=1

PXi
XI

t−i, (9)

where the matrices of coefficients are solutions to a system of nonlinear equations given

in the Appendix.

The lagged demands of infrequent traders are state variables in equilibrium.

The matrices PXi
determine how lagged demands affect current prices. The ma-

trix Pθ reflects the price impact of liquidity shocks. The price vector includes the

present value of expected future dividends discounted at the risk-free rate; indeed,

Et

[
∑

∞

j=1R
−jDt+j

]

= aD
R−aD

Dt.

Polar cases of the economy help gain intuition since the equilibrium coefficients

have to be solved for numerically.13 When q = 0 (or k = 0), only frequent traders are

active in the market, and therefore lagged demands are not state variables anymore.

12If S̄ = 0N×1, then the unconditional expected excess return is zero for all assets. Thus, to study
expected returns I assume that all the assets are in positive supply. Some securities can be in zero
net supply as long as they are correlated with securities in positive supply.

13This results from having multiple groups of traders. Watanabe (2008), Biais et al. (2010), and
Banerjee (2011) also resort to numerical solutions.
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The price vector is then given by

Pt = P̄ + Pθθt +
aD

R− aD
Dt. (10)

The price vector (10) has the same form whether h = 1 or h > 1, but an analytical so-

lution for Pθ is only available when h = 1 because of the nonlinear hedging demands.14

I refer to this economy as the frictionless economy.

The following corollary solves for the equilibrium coefficients when the economy

contains only infrequent traders with inattention period k (infrequent rebalancing econ-

omy).

Corollary 1. Infrequent rebalancing economy. Assume that q = 1. In a linear sta-

tionary REE, the lagged demands price coefficients in Equation (9) are given by

PX1 = PX2 = . . . = PXk
= − 1

k + 1

(
Rk+1 − ak+1

θ

Rk+1 − akθ

)

Pθ, (11)

where Pθ solves a quadratic matrix equation given in the Appendix.

When q = 1, Equation (11) shows that PXi
and Pθ are proportional to each other.15

Since agents only trade on liquidity shocks, lagged demands directly reflect past liq-

uidity shocks. To gain intuition, assume for example that liquidity traders sell a large

quantity of the asset. The price drops to give agents an incentive to hold the addi-

tional asset supply. The traders who accommodate the liquidity shock now hold the

asset in excess of their steady-state optimal position. As a result, these traders want

to liquidate their abnormal holdings when they rebalance their portfolio in k+1 peri-

ods. At that future date, the rebalancing trades create a selling pressure proportional

to the initial liquidity shock. This mechanism has specific implications for return

autocorrelation, which I explain in Section 4.1.

3.3.1 Equilibrium Multiplicity and Existence

The infrequent rebalancing economy solves the same problem as the frictionless econ-

omy with adjusted fundamental parameters. Thus, the results of Watanabe (2008)

for the frictionless economy apply. In particular, he shows that if liquidity and div-

idend shocks volatilities and correlations are the same for all assets, then only four

“symmetric” equilibria exist (i.e., equilibria in which price and demand coefficients are

equal across assets). A “low volatility” equilibrium coexist with three “high volatility”

equilibria. This multiplicity stems from the infinite horizon of the economy and the

14The case h = 1 is similar to the model of Spiegel (1998). Corollary 2 in the Appendix provides
the analytical solution for this case.

15The negative sign in Equation (11) comes from the market clearing condition (8); if θt represents
demand shocks instead of supply shocks, then Pθ and PX1

have the same sign.
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finite lives of agents. The low volatility equilibrium is the unique equilibrium of the

finite horizon frictionless economy (Banerjee, 2011). Moreover, as agents lives’ goes to

infinity in the frictionless economy (with intermediate consumption), a unique linear

equilibrium always exists (Albagli, 2014). Albagli’s analysis further suggests that the

low volatility equilibrium converges to this unique equilibrium. I show in the online

Appendix that the low volatility equilibrium is the only “stable” equilibrium when

q = 0 or q = 1.16

When 0 < q < 1, I found multiple equilibria in all my numerical calibrations.

Assuming that fundamental parameters are the same for all assets, I always found

four symmetric equilibria that converged to the analytical polar cases as q → 0 or

q → 1. For the previous reasons, I focus my analysis on the low volatility equilibrium.

Importantly, the paper’s main results also hold in the high volatility equilibria. This is

because the analysis does not rely on comparative statics, for which different equilibria

typically give opposite results (see, for instance, Banerjee, 2011).

Concerning existence, the effect of fundamental parameters is intuitive in both

polar economies; more volatile and persistent sources of risk shrink the existence region.

Increasing the persistence of liquidity trading aθ may, however, widen the existence

region when q = 1, as explained in the online Appendix. The exact equilibrium

existence conditions in the polar economies are given in the online Appendix. When

0 < q < 1, numerical experiments indicate that a small q helps obtain an equilibrium.

Increasing aD, σθ, or σD directly increases volatility. High volatility leads to non-

existence. More precisely, a risk-averse agent with a finite horizon requires a price

discount to absorb a liquidity shock. This price discount increases price volatility.

Increased volatility leads the agent to require an even larger discount. An equilibrium

fails to exist if the loop does not converge. Since aθ may have an opposite effect on

the existence region when q = 0 and q = 1, aθ can have an ambiguous effect on the

existence region when 0 < q < 1. Increasing h helps find an equilibrium, in line with

the results of Albagli (2014).

4 Return Autocorrelation

This section examines return autocorrelation in a dynamic equilibrium model in which

some traders adjust their portfolios infrequently.

16Multiple equilibria arise because agents have self-fulfilling beliefs about the volatility of future
prices. Following Bacchetta and Van Wincoop (2006), stability requires an equilibrium to be robust
to a small deviation in next period’s belief regarding volatility. The online Appendix is available at
https://documents.epfl.ch/users/b/bo/bogoussl/www/IR_onlineAppendix.pdf.
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4.1 Theory

In the frictionless economy, the vector of (dollar) excess returns between time t+ s−1

and t+ s is given by

Qt+s ≡Pt+s +Dt+s −RPt+s−1

=Pθǫ
θ
t+s +

R

R− aD
ǫDt+s + (aθ −R)Pθθt+s−1.

A dividend shock affects prices but does not modify expected returns (Wang, 1994).

Return autocovariances are then given by

Cov[Qt+s, Qt] = (aθR − 1)as−1
θ

R− aθ

1− a2θ
PθΣθP

′

θ, aθ < 1, s ≥ 1. (12)

Dividend persistence does not affect the sign of excess return autocovariances.17 Since

the price vector (10) takes the same form when h > 1, Equation (12) also shows that

long horizons affect neither the sign of the autocovariances nor their rate of decay.

The model requires aθR < 1 to produce short-term return reversal, which is widely

documented by previous research (see, for instance, Jegadeesh, 1990) and confirmed

by the empirical analysis on daily returns in Section 4.3.

When 0 < aθR < 1, the frictionless model predicts that all return autocovariances

are negative at any horizon and decay exponentially. The negative autocorrelation of

price changes stems from the reversal of transitory order flows and the risk-aversion of

market makers (Grossman and Miller, 1988). Makarov and Rytchkov (2012) demon-

strate that a version of Equation (12) holds for the more general case of asymmetrically

informed traders. They show that asymmetric information alone cannot generate price

momentum in the standard stationary setting in which liquidity trading follows a first

order autoregressive process. This implication contrasts with the finite horizon model

of Cespa and Vives (2012), in which autocorrelations are positive if information qual-

ity increases sufficiently across periods and liquidity trading is persistent enough (see

also Holden and Subrahmanyam, 2002).

In a stationary setup, liquidity shocks determine autocovariance dynamics because

of the market clearing condition. When q = 0 (and h = 1), the market clearing

condition is γFΣ
(
θt + S̄

)
= Et[Qt+1], where Σ ≡ Vart[Pt+1 +Dt+1] is a constant

matrix. This implies that Cov[Qt+1, Qt] = γFΣCov[θt, Qt]. Since Cov
[
ǫDt , ǫ

θ
t

]
= 0,

signals about future dividends are not informative about future liquidity shocks and

17Campbell, Grossman, and Wang (1993) derive a similar equation in a single-asset setup with
myopic agents and exogenously time-varying risk aversion instead of liquidity shocks. Following their
paper and the related literature, I focus my analysis on dollar returns Qt to highlight the economic
intuition. Percentage returns are not well-defined with normally distributed prices and do not have
analytical expressions. Numerical experiments indicate that the main qualitative results hold with
percentage returns.
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cannot help generate positive return autocorrelation alone.18

According to the model, infrequent rebalancing can have a large impact on return

autocorrelation. Figure 3 displays the first ten autocorrelations generated by the

model for different degrees of infrequent rebalancing and persistence parameters of

liquidity trading. The patterns are robust to variations in the other parameters. The

calibration is detailed Appendix B and assumes that infrequent traders readjust their

portfolios every five periods. To focus solely on the patterns generated by infrequent

rebalancing, I scale the autocorrelations so that their absolute values sum up to one

for the first ten lags.

Figure 3: Autocorrelations (scaled) for different persistence levels of liquidity trading
(aθ) and degree of infrequent rebalancing (q). The figure plots the scaled first element
of the matrix Cov[Qt+s, Qt] for s = 1, . . . , 10. The autocorrelations are scaled so that
their absolute values sum up to one for the first ten lags. The calibration is shown in
Table 1 (left column).
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18The previous result holds in the model of Biais et al. (2010), which uses endowment shocks.
Asymmetric information can increase return autocorrelation but cannot make it positive unless aθR >
1. In a stationary setup, Albuquerque and Miao (2014) obtain positive autocorrelation with a signal
about future dividends. The main trading mechanism of their model is, however, the existence of a
non-traded investment opportunity as in the model of Wang (1994). The hedging motive relies on a
non-zero correlation between dividend shocks and private investment shocks, which is why the signal
affects return autocorrelation.

14



The left column shows autocorrelations in the frictionless economy. These autocor-

relations are always negative and decay proportionally to the persistence of liquidity

trading. As shown in the middle and right columns, infrequent rebalancing shifts

the autocorrelations around the rebalancing horizon. In particular, autocorrelations

can switch sign and become positive regardless of the persistence of liquidity trading.

Even in a similar non-stationary setting, returns reverse when the liquidity trading is

transient. In the model of Cespa and Vives (2012), return autocorrelations are always

negative when aθ = 0, in spite of the non-stationary variance dynamics associated

with the gradual revelation of information.

To understand the underlying mechanism, consider the single-asset case and assume

that a large liquidity shock takes place at date t. The price drops so that agents who

are present in the market accommodate the shock; hence, Qt is low. Infrequent traders

partially absorb the liquidity shock, and XI
t is larger than its steady-state level. At

time t+k+1, the infrequent traders come back to the market. Since liquidity trading

is transient, these traders now hold an abnormal position in the asset relative to the

current asset supply. Thus, they liquidate part of their excess holdings. The resulting

order flow is equivalent to a liquidity shock; the price drops, and Qt+k+1 is low. This

effect increases Cov[Qt+k+1, Qt]. Infrequent rebalancing is akin to serially correlated

liquidity shocks, which is why autocorrelations can become positive despite the result

of Makarov and Rytchkov (2012). A liquidity shock today transmits to the future date

when agents rebalance their holdings.

More formally, consider a single-asset economy with k = 1 and aθ = 0. In this

case, all autocovariances beyond the first lag are zero in the frictionless economy. This

provides a clean benchmark. The next proposition formalizes the intuition developed

previously.

Proposition 2. Let aθ = 0, k = 1, and h = 1. In the single-asset economy with

0 < q < 1, if Pθ < 0 and PX > 0, then Cov[Qt, Qt+1] < 0 and Cov[Qt, Qt+2] > 0.

The conditions Pθ < 0 and PX > 0 are intuitive and hold in the polar economies.

First, a liquidity shock should have a negative price impact. Second, a positive lagged

demand should increase the price of the asset since it restricts the current asset supply.

Under these conditions, infrequent traders absorb part of the liquidity shocks and

therefore provide liquidity when 0 < q < 1.19

Proposition 2 formally shows that infrequent rebalancing generates positive return

autocorrelation when liquidity trading is transient and that autocorrelations can switch

sign. As indicated by Figure 3, a similar effect applies when k > 1. In summary, the

theory produces the following implication.

19See Lemma 4 in the Appendix. These conditions always held in the four symmetric equilibria
that I found numerically. Assuming that k = 1 and h = 1 is made for convenience and does not
appear to affect the result.
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Implication. With infrequent rebalancing, return autocorrelations are subject to

shifts linked to traders’ rebalancing horizon and can switch sign. Without infrequent

rebalancing, all return autocorrelations have the same sign and decay exponentially.

This mechanism seems specific to the model. The online Appendix presents a model

in which liquidity trading occurs at low and high frequencies. That is, a fraction of

liquidity traders trade infrequently. I show that autocorrelations are negative unless

liquidity trading is highly persistent and cannot switch sign if the first autocorrelation

is negative. The key difference is that infrequent traders provide liquidity (Lemma 4

in the Appendix). Thus, when they liquidate their abnormal positions, they trade in

the same direction as the initial liquidity shock that they absorbed. The same is not

true for low-frequency liquidity shocks since they revert over time.

Positive return autocorrelation can be obtained by mechanically adjusting the liq-

uidity trading process (7). Assuming that θt = ǫθt + βǫθt−k leads to a price function of

the form Pt = Pθǫ
θ
t +
∑k

i=1 Pθ,iǫ
θ
t−i. Economically, this specification of liquidity trading

can be broadly interpreted as a form of order-splitting strategy. If β > 0, this setup

produces positive autocorrelation between the excess return today and the excess re-

turn in k periods. For instance, with k = 2, Cov[Qt, Qt+2] = βΣΣθΣ. This result

illustrates that infrequent rebalancing propagates liquidity shocks across periods.

4.1.1 Heterogeneous Rebalancing Horizons

In the online Appendix, I extend the benchmark model to allow for infrequent traders

with heterogeneous rebalancing horizons. More precisely, I consider an economy with

two groups of infrequent traders (in addition to frequent traders). Group i has a

mass qi and an inattention period ki. Though analytical solutions are again not avail-

able, the rebalancing mechanism seems robust to having multiple groups of infrequent

traders. Namely, the autocorrelation pattern is subject to shifts at both rebalancing

horizons, k1+1 and k2 +1. In particular, both autocorrelations can switch sign. This

suggests that the model can simultaneously explain predictability patterns at different

frequencies.

4.2 Empirical Evidence: Intraday Returns

Figure 3 suggests that a model in which a fraction of traders only adjust their portfolio

once a day can help explain the predictability pattern documented by Heston et al.

(2010) and reproduced in Figure 1. The multi-asset settings allows for an exact replica-

tion of the regressions using simulated returns from a calibrated version of the model.20

20Solving the model for a large number of assets is numerically challenging with high k and corre-
lated assets. To ease the procedure, one can assume that the variance-covariance matrices of dividends
and liquidity shocks commute and use an eigenvalue decomposition. The method only requires to
solve for (2k + 2) eigenvalues independently of the number of assets.
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Since the current model only relies on the autocorrelation component of Equation (3),

the regression estimates are almost identical to autocorrelations in the model. For

clarity, I report autocorrelations. This paper does not aim to provide an exact quan-

titative match to the data. The parameters are therefore chosen to broadly match the

patterns observed in the data while keeping the calibration as simple and transparent

as possible. Appendix B details the calibrations used in the paper.

Figure 4 plots the autocorrelations obtained from the model. The results are in line

with the empirical evidence; as expected, the regression coefficient spikes at horizons

that are multiples of one trading day (since a trading day is composed of 13 half-hour

intervals, traders’ inattention period is set to k = 12). Infrequent rebalancing produces

a persistent pattern of return predictability despite being perfectly anticipated by

frequent traders.

Figure 4: Autocorrelations predicted by the model for intraday returns. The calibra-
tion is shown in Table 1.

0 13 26 39 52 65

−0.1

0

0.1

lag k

In Figure 4, the proportion of infrequent traders must be set to a high level (i.e.,

q = 0.99) for the pattern to persist over several days. A small fraction of frequent

traders is consistent with the calibrations of related papers.21 The model also ab-

stracts from transaction costs; these costs limit the arbitrage activity of frequent

traders and could therefore partially explain the persistence of the pattern in the

data (Heston et al., 2010). The decay in the coefficients is consistent with a repeated

shock explanation. But the persistence of the pattern at higher lags points towards

cross-sectional variations in average returns that differ across calendar periods (see

Section 2). Section 5 investigates this effect, which generates persistent seasonality

patterns.

Heston et al. (2010) report that changes in trading volume exhibit similar periodic

daily patterns. The model also predicts this relationship. A large liquidity shock

21Chien et al. (2012) assume 5% of active traders, 45% of intermittent traders and 50% of non-
participants in their economy. Bacchetta and van Wincoop (2010) study a foreign exchange market
setup only populated by infrequent traders. The results are robust to variations in the other pa-
rameters; for instance, liquidity shocks volatility can be adjusted to calibrate the magnitudes of the
coefficients.
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results in high volume during the current period. One day later, infrequent traders

reduce their abnormal positions and generate high volume again. I examine trading

volume in Section 6.

4.3 Empirical Evidence: Daily Returns

This section examines whether daily returns exhibit predictability consistent with

infrequent rebalancing. I use daily returns on NYSE and Amex common stocks from

CRSP over the period January 1983 to December 2012. The data are cleaned as

follows: CRSP share code is equal to 10 or 11; penny stocks (average price less than

one dollar) are eliminated; returns above 400% are winsorized; each stock is required

to have at least 250 days of data. This procedure leaves an average of 2000 stocks each

period in the data set. I focus on the last thirty years of data because structural shifts

in investors’ rebalancing frequencies are likely to be an issue over longer samples.

Intuitively, conjecture that some traders rebalance at a weekly frequency (i.e., ev-

ery five consecutive trading days). For instance, Rakowski and Wang (2009) find a

day-of-the-week effect in mutual fund flows. Alternatively, it could be that investment

products are rebalanced on specific days.22 To test this intuition, I use the methodol-

ogy of Jegadeesh (1990) and estimate a multiple cross-sectional regression of current

returns on lagged returns at each date.

As explained in Section 2, cross-sectional variations in average returns across cal-

endar periods can generate persistent seasonality patterns that are picked up by the

regression coefficients. This is likely to be a concern here since prior research docu-

ments that average stock returns are not equal across days of the week (French, 1980;

Gibbons and Hess, 1981). The infrequent rebalancing model developed in Section 3.3

provides a repeated shock explanation for return predictability, although variations in

unconditional expected returns across days of the week could arise from variations in

the degree of infrequent trading throughout the week (see Section 5). To focus on the

repeated shock mechanism, I estimate the following cross-sectional regression at each

date:

ri,t = αt + γ1,tri,t−1 + . . .+ γl,tri,t−l + γµ,tµi,t + ui,t, (13)

where µit is the average same-day (as day t) return on stock i over the previous year

(excluding the past l returns). Here, µit controls for variation in expected returns

across days of the week, which is similar to a day-of-the-week fixed effect. Regres-

sion (13) follows the methodology of Keloharju et al. (2014) but uses a multiple re-

gression. Multiple regressions provide a cleaner picture of autocorrelation patterns

22An example is the S&P Leveraged Loan Index for which each weekly review “typically occurs on
Friday.” Source:
http://us.spindices.com/indices/fixed-income/sp-lsta-us-leveraged-loan-100-index.
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than univariate regressions (1).

The upper panel of Figure 5 plots the time-series averages of the cross-sectional re-

gression estimates with l = 20 and their associated Newey and West (1987) t-statistics.

The results are not sensitive to the precise number of lags. At short horizons, the co-

Figure 5: Time-series averages of cross-sectional regression estimates. The following
cross-sectional regression is estimated each day: ri,t = αt+γ1,tri,t−1+ . . .+γ20,tri,t−20+
γµ,tµi,t + ui,t, where µit is the average same-day (as day t) return on stock i over the
previous year excluding the past 20 returns. The sample consists in NYSE/Amex
common stock returns over the period 1983 to 2012. The t-statistics are computed
using a Newey-West correction with twenty lags. Significance bounds at the level of 5%
are shown in red. Panel (a): all stocks. Panel (b): one-third of stocks with highest
average turnover over 250 days at date t− 20.
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efficients are all negative and significant. The first estimate is large in absolute value

because of the bid-ask bounce (-0.09, truncated in the figure). The decaying pattern

in slope coefficients is consistent with the q = 0 model. But the fifth and tenth es-

timates appear abnormally high relative to the other estimates. More formally, the

frictionless model predicts that all autocorrelations decay exponentially. This implies

the following null hypothesis:

Hypothesis 1. |γ̂5| ≥ |γ̂6|
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This hypothesis is rejected at 1% with a t-statistic of 2.93, which is inconsistent

with the frictionless model and may indicate infrequent rebalancing every five trading

days as illustrated in Figure 3. Hypothesis 1 can only invalidate the frictionless model

and does not constitute direct evidence of infrequent rebalancing. Still, infrequent

rebalancing offers a plausible explanation that seems difficult to obtain with other

theories. Furthermore, variations in average returns across days of the week do not

generate the results, though γ̂ is strongly significant. Using simple regressions or

demeaning returns in the cross-section before estimating γµ,t does not affect this result.

To evaluate the role of trading volume, I split stocks into three portfolios at each

date based on their average turnover during the past 250 days. The cross-sectional

regression (13) is then estimated on the one-third of stocks that are in the high turnover

portfolio at date t−20. Panel (b) of Figure 5 shows that the shift at lag five is markedly

stronger for high turnover stocks. Hypothesis 1 is rejected at the level of 1% with a

t-statistic of 3.61. Neglected stocks do not drive the results; the shift at lag five is

weak for low turnover stocks (not reported). Moreover, the γk coefficients tend to be

lower in absolute value for high turnover stocks, indicating smaller reversal for these

stocks.

The model can match the predictability patterns in daily returns. As for intraday

returns, I compare the regression estimates to the partial autocorrelations predicted by

the model since they are almost identical.23 Panel (a) of Figure 6 reports the model’s

partial autocorrelations. The model seems to fit the short-term dependence in stock

returns in Figure 5. Infrequent rebalancing generates a shift in the autocorrelation

pattern at the rebalancing horizon.

The turnover results in Figure 5 are also potentially consistent with the model.

A decrease in the persistence of liquidity trading aθ increases turnover and decreases

return autocorrelation (in absolute value). Nevertheless, aθ has an ambiguous role

on equilibrium price coefficients with infrequent rebalancing. Section C in the online

Appendix explains why this is the case. Numerically, I find that, when aθ is large, the

pattern becomes more pronounced as aθ decreases, consistent with the evidence. As

an illustrative example, Panel (b) of Figure 6 shows that the infrequent rebalancing

pattern is more pronounced for a lower value of aθ. In particular, the autocorrelation

becomes positive.

The previous results are robust to using midquote returns, controlling for firm size,

and over different subsamples. The online Appendix reports the detailed resulted. In

addition, the results do not appear to be driven by a quarterly measure of institutional

ownership after controlling for turnover. The coefficients are, however, insignificant

over an older sample that runs from 1963 to 1993.

23The regression coefficients cannot be directly compared to partial autocorrelations. Nevertheless,
adjusting the volatility of dividends or liquidity shocks can fit the magnitudes of the autocorrelations
while preserving the shape of the autocorrelation pattern. The calibration is discussed in detail in
Appendix B.
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Figure 6: Partial autocorrelations predicted by the model (with 20 lags) for daily
returns with different levels of liquidity trading persistence (aθ). The calibration is
shown in Table 1.
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4.4 Additional Empirical Evidence

The model can potentially shed light on additional recent evidence from intraday

returns. Gao et al. (2014) find that the first half-hour return on the SPDR S&P 500

ETF predicts the last half-hour return of the trading day. The infrequent rebalancing

model is consistent with this evidence assuming that some infrequent traders adjust

their portfolios at the open and close of the market. This assumption is economically

intuitive. The U-shaped pattern in trading volume across the trading day suggests

that many market participants concentrate their trading at market open and close.

Increasing the fraction of traders adjusting their portfolios in a given calendar period

increases trading volume and strengthens the autocorrelation pattern in this period.

Thus, the model can provide a simple explanation for the results of Gao et al. (2014).

Furthermore, these results come from time-series regressions and therefore only reflect

autocorrelations.

5 Return Seasonality

The persistence of the coefficients in Figures 1 and 2 strongly suggests that the cross-

sectional variance in average returns is not constant across half-hour intervals of a

trading day and months of the year. The benchmark infrequent rebalancing model

of Section 3.3 focuses on the autocovariance component and abstracts from cross-

sectional variation in expected returns. In what follows, I show that variations in

the proportion of infrequent traders across calendar periods can generate persistent

seasonality patterns.

In the general setup of Section 3, the following proposition holds:
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Proposition 3. In a linear stationary rational expectations equilibrium, if it exists,

the vector of asset prices is given by

Pt = P̄c(t) +
aD

R − aD
Dt + Pθ,c(t)θt +

k∑

i=1

PXi,c(t)X
I
t−i, (14)

where the matrices of coefficients are solutions to a system of nonlinear equations given

in the Appendix.

The main insights developed using the simpler model of Section 3.3 hold, but here

the equilibrium price coefficients vary with the calendar period c(t) at date t. Expected

returns now differ across calendar periods.24

To convey the main intuition in the simplest possible way, I focus on the case with

two different calendar periods and let k = 1. The mass of frequent traders is fixed and

equals 1 − q, where q = q1 + q2. Further, let h = 1 for ease of exposition. Using the

market clearing condition (8), the expected return in a given calendar period is

E[Qt+1|c(t)] =
γF

(1− q)
Var[Qt+1|c(t)]

(
S̄ − qc(t)E

[
XI

t |c(t)
]
− qc(t−1)E

[
XI

t−1|c(t)
])

,

(15)

where I used the fact that Vart[Qt+1] = Pθ,c(t+1)ΣθP
′

θ,c(t+1)+
(

R
R−aD

)2

ΣD is constant for

a given calendar period. The term in the parenthesis in Equation (15) is independent

of the calendar period. Thus, when q1 6= q2, differences in the conditional variance

across calendar periods solely generate differences in expected return across calendar

periods. When q1 > q2, a larger mass of rational traders is present in the market

in period 1, which reduces the price impact of liquidity shocks. This remark implies

that |Pθ,i,2| > |Pθ,i,1| for asset i; hence, expected returns are larger in period 1 than in

period 2. In summary, traders require a higher premium to hold an asset when they

anticipate price impact to be higher next period. The next proposition formalizes this

reasoning using the same intuitive conditions as Proposition 2.

Proposition 4. Consider a single-asset economy with two calendar periods, and as-

sume that k = 1 and h = 1. Infrequent traders rebalance their portfolio only in the first

calendar period. If Pθ,c < 0 and PX,c > 0 (c = 1, 2), then the expected excess return

on the asset is larger in the first calendar period than in the second calendar period.

The previous result is specific to the infrequent rebalancing setup. As a point of

comparison, consider a frictionless economy (q = 0) in which the mass of traders—or

equivalently the risk aversion—varies deterministically from one calendar period to

the next. In this economy, the opposite result holds.

24Let date t be the beginning of a calendar period. The vector of expected returns in calendar
period j is then given by E[Pt+1 +Dt+1 −RPt|c(t) = j]. This definition ensures that increasing
traders’ risk aversion in a calendar period increases expected returns in the same calendar period.
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Proposition 5. Consider a single-asset economy with two calendar periods and only

frequent traders with h = 1. The expected excess return on the asset is largest in the

period when less traders are in the market.

A smaller mass of traders requires a larger expected return to absorb liquidity

shocks. This effect dominates the price impact effect described above. In the infrequent

rebalancing economy, the average asset supply that frequent traders must absorb is

the same in both calendar period, as shown in Equation (15).

Expected returns are larger in the period in which more traders rebalance. This

effect also leads to a larger spread in expected returns between assets in the rebalancing

period. Intuitively, high risk assets are disproportionately affected relative to low risk

assets—the extreme case being a riskless asset, which is not affected. To see this, note

that a conditional form of the CAPM holds. The expected excess return on asset i in

a given calendar period is

E[Qi,t+1|c(t)] =
Cov[Qi,t+1, Qm,t+1|c(t)]

Var[Qm,t+1|c(t)]
E[Qm,t+1|c(t)], (16)

where Qm,t+1 is the market excess return.25 Variations in the degree of infrequent

rebalancing generate a seasonality in the market risk premium. If assets have different

exposures to market risk, then the model generates a seasonality in the cross-section

of asset returns.

As an example, consider two assets that are identical but for their liquidity shocks

volatility. Panel (a) of Figure 7 plots the expected excess return for each asset in

both calendar periods as a function of the first asset’s liquidity shocks volatility. Since

q1 > q2 in this example, the cross-sectional variation in expected returns is larger in

calendar period one than in calendar period two. This effect comes from anticipated

price impact; the conditional variance is more sensitive to variations in the mass of

traders for the riskier asset than for the safer asset. In addition, expected returns are

larger in the period in which more traders rebalance, in line with Proposition 4 (not

shown in the figure since returns are normalized).

The previous mechanism generates persistent return seasonalities. Panel (b) of

Figure 7 plots the average coefficients in Regression (1) estimated from simulated

returns with different proportions of infrequent traders. Return autocorrelation mainly

determine the coefficients at lower lags; with infrequent rebalancing, the repeated shock

mechanism produces a large positive autocorrelation in the second period (middle and

right panels). At higher lags, the coefficients are positive because of cross-sectional

variation in mean returns. When q1 6= q2, these coefficients shift from period to period

since the cross-sectional variance in mean returns differs across calendar periods.

25The market return is computed using the expected number of shares available in the mar-
ket. More precisely, Qm,t+1 =

∑N

i=1 siQi,t+1, where si is the ith element of the vector S̄ −
∑k

i=1 qc(t−i)E
[
XI

t−i|c(t)
]
.
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Figure 7: Panel (a) shows the expected excess return for each stock in each calendar
period as a function of the first stock’s liquidity shocks volatility (σθ,1). The expected
returns are normalized to one for σθ,1 = σθ,2 = 0.5. Panel (b) shows cross-sectional
regression estimates from Qi,t = αk,t + γk,tQi,t−k + ui,t based on averages of 500 sim-
ulations of a 20-stock economy over 500 periods. The calibration assumes q1 = 0.65,
q2 = 0.05, aθ = 0, aD = 0, σD = 0.2, ρD = 0.3, R = 1.05, h = 2, and S̄ = 10.
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Therefore, variations in the degree of infrequent rebalancing can potentially ex-

plain the evidence presented by Heston et al. (2010) and other persistent seasonality

patterns in cross-sectional regression estimates. At low lags the cross-sectional re-

gressions pick up a repeated shock mechanism, while at high lags they only reflect

cross-sectional variation in mean returns.

Market risk is the single risk factor in the model.With additional sources of risk,

variations in the proportion of rebalancing traders may generate seasonality in multiple

risk premia. Return seasonalities could then persist even after sorting assets on specific

characteristics or factors. This effect may shed light on the evidence presented by

Keloharju et al. (2014) about seasonality strategies across asset classes. Furthermore,

a seasonality strategy is exposed to systematic risk in the model, consistent with their

findings. The model is also consistent with the evidence on similar seasonalities in

trading volume (Section 2).

In the online Appendix, I show that a model with a seasonality in mean liquidity
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trading can also generate persistent seasonality patterns. Buying or selling pressures

on some stocks at the open and close could generate the seasonality in mean liquidity

trading and explain the persistence of the pattern in Figure 1. This model cannot,

however, explain the decaying pattern in the coefficients (from lag 13 to 26 and so

on), the daily return empirical evidence in Section 4.3, and any predictability evi-

dence based on time series regressions (Section 4), which are all consistent with an

autocorrelation effect from infrequent rebalancing.

Moreover, the seasonal mean model does not generate any calendar pattern in

return volatility. In this model, it is the price of risk that varies with the calendar

period. This model may therefore better apply to seasonalities at lower frequencies,

such as the January effect. First, the monthly seasonality in Figure 2 is much stronger

when estimating the regression on January returns only. Second, volatility does not

appear to be larger in January. The shifts in mean liquidity trading could arise from

tax-loss selling and rebalancing in January (Ritter, 1988).

6 Trading Volume

Infrequent rebalancing generates specific volume autocorrelation patterns. When only

one group of agents trades in the market, the dynamics of volume are exogenously

given by the dynamics of liquidity trading. Banerjee and Kremer (2010) discuss this

feature of standard RE model, which makes the study of volume uninformative.

Proposition 6. When q = 0 or q = 1, and 0 < aθ < 1, changes in trading volume

are negatively autocorrelated. That is, Corr [∆Vt,∆Vt+j] < 0, j ≥ 1.

In the model, the multiple groups of agents can generate specific volume dynamics.

First, the rebalancing of infrequent traders directly modifies trading volume dynamics.

A large liquidity shock today reverberates in k+1 periods when traders readjust their

portfolios. These rebalancing trades increase the autocorrelation between changes

in trading volume; hence, Corr [∆Vt,∆Vt+k+1] can be positive. Proposition 6 shows

that this is impossible in the frictionless economy. Second, market makers anticipate

liquidity shocks by trading with the rebalancing infrequent traders.

Figure 8 plots Corr [∆Vt,∆Vt+j ] for the q = 0 economy and the q = 0.6 economy

using the baseline calibration (the online Appendix explains how to compute volume

autocorrelations when 0 < q < 1). For both cases, Corr [∆Vt,∆Vt+1] is large and

negative (≈ −0.49). The autocorrelations are negligible beyond the first lag in the

q = 0 economy. When 0 < q < 1, the autocorrelations are still small but many times

larger than in the frictionless economy. Patterns linked to infrequent rebalancing

appear. Interestingly, Corr [∆Vt,∆Vt+4] > 0. This effect—not discernible in the case

of returns—reflects the trading of market makers. For instance, when market makers

expect a positive liquidity shock tomorrow, they sell the asset; their counterparty is
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the group of infrequent traders currently in the market, who are not affected by a

liquidity shock tomorrow.

Figure 8: Volume changes autocorrelations (Corr [∆Vt,∆Vt+j ]) predicted by the model.
The calibration is shown in Table 1.
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The setup can potentially explain why Heston et al. (2010) find that the half-hour

volume periodicity does not fully account for the return periodicity. When q = 1,

liquidity trading determines trading volume (Proposition 6), but infrequent rebalanc-

ing still generates a return periodicity pattern. Therefore, the volume pattern cannot

explain the return pattern in this polar case. When q < 1 volume remains partly

determined by liquidity trading and therefore cannot fully explain return periodicity.

To test the model’s predictions, I estimate the following regression on the daily

data set:

vit = αt + γkvi,t−k + γν,tνi,t + ui,t, (17)

where vit = ln
(

Turnoveri,t
Turnoveri,t−1

)

, and νi,t is the average same-day (as day t) change in

turnover over the past year.26 Figure 9 plots the average γk coefficient and their t-

statistics. The first coefficient γ1 (truncated in the figure) is large and negative (−0.39).

The regression reveals shifts in the autocorrelation at the fifth and tenth lags that are

qualitatively consistent with an infrequent rebalancing mechanism. Similar to the daily

return evidence, the fixed effect coefficient γ̂ν is positive and highly significant but does

not explain the shifts in the coefficients. Clearly, specific predictability patterns also

exist for daily changes in trading volume.

The model overestimates the magnitude of the fifth coefficient and does not produce

a large positive tenth lag coefficient. Moreover, the fourth lag coefficient does not

exhibit any shift, which seems to indicate that either traders do not anticipate the

26To estimate Regression (17), I exclude all stocks that have zero volume on one day from the
sample. This procedure leaves an average of roughly 950 observations per period. The results of
Section 4.3 are unaffected.
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Figure 9: Time-series averages of cross-sectional regression estimates. The following
cross-sectional regression is estimated each day: vit = αt+ γkvi,t−k + γν,tνi,t+ui,t. The
sample consists in NYSE/Amex common stock turnover series over the period 1983 to
2012. The t-statistics are computed using a Newey-West correction with twenty lags.
Significance bounds at the level of 5% are shown in red.
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repeated liquidity shocks on average, or that they are not able to reliably trade on

them. In summary, the model provides new insights to understand the short-term

dynamics of trading volume, though additional elements are needed to realistically

model these dynamics.

7 Conclusion

This paper shows that infrequent rebalancing can have an important impact on asset

return autocorrelation and seasonality. In the model, return autocorrelations exhibit

specific patterns and can even switch sign, consistent with empirical evidence from

intraday returns and new evidence from daily returns. Despite being perfectly antic-

ipated, the lagged demands of infrequent traders affect return dynamics. The model

also makes specific predictions about trading volume, for which I find support in the

data.

A variable proportion of infrequent traders across calendar periods can generate

return seasonality. The spread in expected returns between assets with different ex-

posures to the market widens when more traders rebalance in the market. As a result,

the cross-sectional variance in mean returns differs across calendar periods. This vari-

ation generates persistent seasonality patterns in cross-sectional regression estimates

of current returns on lagged returns. More work remains to be done to better un-

derstand the fundamental driving factors behind seasonalities in stock returns. This

is important because seasonalities have a large impact on the cross-section of stock

returns.27

27For instance, monthly returns on many well-known anomalies are subject to strong seasonalities
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A Appendix: Proofs

To derive Proposition 1, I first conjecture that asset prices and infrequent traders’ demands
are linear in the state variables (defined below). Using this conjecture I derive frequent
traders’ demands (Lemma 1) and infrequents traders’ demands (Lemma 3). Finally, I verify
the initial conjectures by plugging the demands into the market clearing condition (Proposi-
tion 1). The dividend and liquidity trading mean vectors are given by D̄ and θ̄ in the proofs
and are set to 0N×1 in the analysis.

Derivation of the state variables process. I follow Duffie (2010) and focus on linear
equilibria. Conjecture that the price and infrequent traders’ demand vectors are given by

Pt = AYt, XI
t = BYt, (A.1)

where A and B are constant parameter matrices of dimensions N × 1 + (2 + k)N , and Yt is
the following (1 + (2 + k)N)-dimensional vector of state variables:

Yt ≡
(
1 θ′t D′

t XI′
t−1 . . . XI′

t−k

)
′

. (A.2)

The lagged demands of infrequent traders XI
t−i (1 ≤ i ≤ k) are state variables in equilibrium.

Given the vector of state variables (A.2) it follows that

Yt+1 = AY Yt +BY ǫt+1, (A.3)

where ǫt ≡ (ǫθt ǫDt )
′ ∼ N (0,ΣY ) is the vector of innovations and the matrices AY , BY ,

and ΣY are defined below. First,

AY =

















1 01×N · · · 01×N

(1− aθ)θ̄ aθIN 0N · · · 0N
(1− aD)D̄ 0N aDIN 0N · · · 0N

B
0N×1 0N 0N IN 0N · · · 0N 0N
...

...
... 0N

. . .
...

...
... 0N

0N×1 0N 0N 0N . . . 0N IN 0N

















,

where IN denotes the identity matrix of dimension N ×N , and B is the N × (1+ (2+ k)N)
matrix of conjectured equilibrium demand coefficients from (A.1). Similarly,

BY =







01×N 01×N

IN 0N
0N IN

0kN×N 0kN×N






.

The variance-covariance matrix of innovations is

ΣY =

[
Σθ 0N
0N ΣD

]

.

The dynamics of Yt imply that

Yt+j = Aj
Y Yt +

j
∑

i=1

Aj−i
Y BY ǫt+i, j ≥ 1. (A.4)

To simplify notation, let A0
Y = IN . I also introduce the following matrices for convenience:
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ϕD, ϕθ, and ϕx, which are defined such that θt = ϕθYt, Dt = ϕDYt,
(
XI

t−1 . . . X
I
t−k

)
′

= ϕXYt,
and ϕS̄Yt = S̄.

Define Qt+1 ≡ Pt+1 +Dt+1 −RPt, the vector of excess dollar returns. It follows that

Qt+1 = AQYt +BQǫt+1, (A.5)

where AQ ≡ (A+ ϕD)AY −RA, and BQ ≡ (A+ ϕD)BY .
Finally, denote the cumulative payoff from t (ex-dividend) to t+ k + 1 as

Tt,t+k+1 ≡ Pt+k+1 +
k+1∑

j=1

Rk+1−jDt+j . (A.6)

Lemma 1. Given the initial conjectures (A.1), the asset demands of frequent traders’ with
remaining horizon h− j (0 ≤ j < h) at date t are given by

XF
t,j =

1

αj+1
Fj+1Yt, (A.7)

where

Fj+1 = (BQΞj+1B
′

Q)
−1(AQ −BQΞj+1B

′

Y U
′

j+1AY ),

αj = Rαj+1.

The coefficients are solved for recursively starting from the conditions αh = γF and Uh =
01+2N+kN . Ξj+1 and Uj+1 (0 ≤ j < h) are constant matrices defined below.

Proof. The proof parallels the derivations of He and Wang (1995) in a non-stationary
setup. Let j be the age of the investor (0 ≤ j < h) and J(Wt, Yt, j) be the value function.
The Bellman optimization problem for an investor aged j at date t is

J(Wt, Yt, j) = max
Xt,j

Et[J(Wt+1, Yt+1, j + 1)]

such that Wt+1 = X
′

t,jQt+1 + RWt and J(Wt, Yt, h) = −e−γFWt . Conjecture that

J(Wt+1, Yt+1, j + 1) = −e−αj+1Wt+1−
1
2
Y ′

t+1Uj+1Yt+1 . It then follows that

Et[J(Wt+1, Yt+1, j + 1)] =− e−αj+1(RWt+X′

t,jAQYt)
Et

[

e−αj+1X
′

t,jBQǫt+1−
1
2
Y ′

t+1Uj+1Yt+1

]

=− e−αj+1(RWt+X′

t,jAQYt)−
1
2
Y ′

tA
′

Y Uj+1AY Yt

Et

[

e(−αj+1X
′

t,jBQ−Y ′

tA
′

Y
Uj+1BY )ǫt+1−

1
2
ǫ′t+1B

′

Y
Uj+1BY ǫt+1

]

.

Using the multivariate normality of ǫ (see for instance Vives, 2010, sect. 10.2.4) gives

Et

[

e(−αj+1X
′

t,jBQ−Y ′

tA
′

Y Uj+1BY )ǫt+1−
1
2
ǫ′t+1B

′

Y Uj+1BY ǫt+1

]

=
∣
∣I +ΣYB

′

Y Uj+1BY

∣
∣−

1
2

e
1
2
(−αj+1X

′

t,jBQ−Y ′

tA
′

Y
Uj+1BY )(I+ΣY B′

Y
Uj+1BY )−1ΣY (−αj+1B

′

Q
Xt,j−B′

Y
U ′

j+1AY Yt).

Define

ρj+1 ≡
∣
∣I +ΣY B

′

Y Uj+1BY

∣
∣−

1
2 ,

Ξj+1 ≡(Σ−1
Y +B′

Y Uj+1BY )
−1.

Using the previous results the first-order conditions are

AQYt − αj+1BQΞj+1B
′

QXt,j −BQΞj+1B
′

Y U
′

j+1AY Yt = 0.
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Thus, the vector of demands is given by

Xt,j =
1

αj+1
Fj+1Yt,

where Fj+1 ≡ (BQΞj+1B
′

Q)
−1(AQ − BQΞj+1B

′

Y U
′

j+1AY ). Last, I verify the conjecture for
the value function. Plugging the optimal demand expression in the optimization problem
gives

Et[J(Wt+1, Yt+1, j + 1)] = −ρj+1e
−αj+1RWt−

1
2
Y ′

tMj+1Yt

where Mj+1 ≡ A′

Y Uj+1AY + F ′

j+1BQΞj+1B
′

QFj+1 − A′

Y Uj+1BY Ξj+1B
′

Y U
′

j+1AY . Matching
terms with the conjectured valued function yields

αj = Rαj+1, Uj = Mj+1 − 2 ln(ρj+1)I11,

where I11 is a matrix whose first element is 1 and all others are zero (i.e., Y ′

t I11Yt = 1).
The terminal condition gives αh = γF and Uh = 01+2N+kN . All the coefficients can then be
solved for recursively.�

The following lemma is needed to derive infrequent traders’ demands:

Lemma 2. Given the initial conjectures (A.1), the equilibrium stationary j-period payoff
variance V art(Tt,t+j) is a constant matrix Σj given by (j ≥ 1)

j
∑

i=1

(

AAj−i
Y +

Rj−i+1 − aj−i+1
D

R− aD
ϕD

)

BY ΣYB
′

Y

(

AAj−i
Y +

Rj−i+1 − aj−i+1
D

R− aD
ϕD

)
′

. (A.8)

Proof. Since Tt,t+j = AYt+j +
∑j

i=1 R
j−iDt+i, it follows that (using (A.4))

Vart[Tt,t+j ] = Var

[

A

j
∑

i=1

Aj−i
Y BY ǫt+i +

j
∑

i=1

Rj−i

(
i−1∑

s=1

asDǫ
D
t+i−s + ǫDt+i

)]

. (A.9)

The matrix Vart[Tt,t+j ] only depends on independent shocks and is therefore constant. To
compute Vart[Tt,t+j ], note that

j
∑

i=1

Rj−i

(
i−1∑

s=1

asDǫ
D
t+i−s + ǫDt+i

)

=

j
∑

i=1

g(R, aD, j − i)ϕDBY ǫt+i, (A.10)

where the function g(R, aD, j − i) is defined recursively by

g(R, aD , i) = g(R, aD, i− 1)R + aiD, i ≥ 1,

and g(R, aD, 0) = 1. It is direct to prove by induction that g(R, aD , i) =
Ri+1

−ai+1
D

R−aD
. Plugging

this function in the conditional variance expression (A.9) gives

Σj = Var

[
j
∑

i=1

(

AAj−i
Y +

Rj−i+1 − aj−i+1
D

R− aD
ϕD

)

BY ǫt+i

]

. (A.11)

Since the error terms ǫt+i in (A.11) are independent of each other, the lemma follows.�

Lemma 3. Given the initial conjectures (A.1), infrequent traders’ demands are given by

XI
t =

1

γI
Σ−1
k+1

k∑

j=0

Rk−jAQA
j
Y Yt, (A.12)
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where Σk+1 ≡ Vart[Tt,t+k+1] is the equilibrium stationary (k + 1)-period payoff variance and
is shown to be constant in Lemma 2.

Proof. From the optimization problem (6) and given that prices are normally distributed
under the conjecture (A.1), infrequent traders’ demands are as follows:

XI
t =

1

γI
Σ−1
k+1



Et



Pt+k+1 +

k+1∑

j=1

Rk+1−jDt+j



−Rk+1Pt





=
1

γI
Σ−1
k+1

k∑

j=0

Rk−j
Et[Qt+j+1]. (A.13)

Using (A.4) and (A.5), infrequent traders’ demands (A.13) reduce to (A.12). The vector of
demands is linear in the state variables, as conjectured initially.�

Proof of Proposition 1. Replacing the demands (A.12) and (A.7) in the market clearing
condition (8) with qc(t) = q

k+1 and rearranging terms yields the following system of fixed
point equations:

q/γI
k + 1

Σ−1
k+1





k∑

j=0

Rk−jAQA
j
Y



+
1− q

h





h−1∑

j=0

1

αj+1
Fj+1



− ϕθ − ϕS̄ +
q

k + 1
ϕX = 0,

(A.14)

1

γI
Σ−1
k+1





k∑

j=0

Rk−jAQA
j
Y



−B = 0.

(A.15)

A linear REE exists if this system of equations admits a solution.
Using the expressions for AQ and AY , the dividend coefficient matrix of (A.15) can be

rewritten as

(aD (PD + IN )−RPD)





k∑

j=1

Rk−jajD +Rk



 = 0N ,

where the equality follows from the fact that agents do no trade on dividends (no-trade
theorem). Hence, PD = aD

R−aD
IN . The result can also be directly deduced from (A.14) and

(A.15).�

Corollary 2. Frictionless economy. Assume that q = 0 and h = 1. In a linear stationary
REE, the price vector is given by

Pt = P̄ + Pθθt +
aD

R− aD
Dt.

Pθ solves the following quadratic matrix equation:

PθΣθP
′

θ +
R− aθ
γF

Pθ +

(
R

R− aD

)2

ΣD = 0N . (A.16)

This equation has 2N solutions if 1
4

(
R−aθ
γF

)2
IN −

(
R

R−aD

)2
Σ

1
2
θ ΣDΣ

1
2
θ is positive definite.

Proof. Spiegel (1998) and Watanabe (2008) provide similar derivations. Conjecture that
Pt = P̄ + Pθθt + PDDt. The demand of frequent traders is XF

t = 1
γF

Σ−1
1 Et[Qt+1], where
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Σ1 ≡ Vart[Qt+1] = PθΣθP
′

θ + (PD + IN )ΣD(PD + IN )′ is a constant matrix under the price
conjecture. The market clearing condition is γFΣ1

(
θt + S̄

)
= Et[Qt+1], where

Et[Qt+1] = P̄ + (1− aθ)Pθ θ̄ + (1− aD)(PD + IN )D̄ + aθPθθt + aD(PD + IN )Dt −RPt.

Matching terms with the price conjecture gives

PD =
aD

R− aD
IN ,

PθΣθP
′

θ +
R− aθ
γF

Pθ +

(
R

R− aD

)2

ΣD = 0N , and (A.17)

P̄ =
1

R− 1

(

(R − aθ)PθS̄ + (1− aθ)Pθθ̄ +
(1− aD)R

R− aD
D̄

)

.

The last equation uses the fact that γFΣ1 = −(R − aθ)Pθ from the second equation. The
price impact matrix Pθ solves the quadratic matrix equation (A.17) and must be symmetric.

Assuming that Σθ is positive definite, multiply both sides of (A.17) by Σ
1
2
θ (the unique

positive definite square root of Σθ) and reorganize the terms to obtain

(

Σ
1
2
θ PθΣ

1
2
θ +

R− aθ
2γF

IN

)2

=
1

4

(
R− aθ
γF

)2

IN −
(

R

R− aD

)2

Σ
1
2
θ ΣDΣ

1
2
θ . (A.18)

If 1
4

(
R−aθ
γF

)2
Σ−2
θ −

(
R

R−aD

)2
Σ
−

1
2

θ ΣDΣ
−

1
2

θ is positive definite, then its spectral decomposition

is given by ΓΛΓ′, where Λ is a diagonal matrix of eigenvalues λi (i = 1, . . . , N) and Γ is an
orthonormal matrix with eigenvectors as columns. Thus,

Pθ = −1

2

(
R− aθ
γF

)

Σ−1
θ + ΓΛ

1
2Γ′. (A.19)

Since each diagonal element of Λ
1
2 can take values ±

√
λi to satisfy (A.18), Pθ admits 2N

solutions.�
Proof of Corollary 1. For simplicity, let P̄θ = 0, D̄ = 0, and S̄ = 0. This implies that

P̄ = 0. When q = 1, the market clearing condition becomes

1

k + 1
XI

t = θt −
1

k + 1

k∑

i=1

XI
t−i. (A.20)

This gives the B coefficients in (A.1). Plugging infrequent traders’ demands (A.13) in the
market clearing condition yields

Rk+1Pt = Et[Tt,t+k+1]− γI(k + 1)Σk+1θt + γIΣk+1

k∑

i=1

XI
t−i. (A.21)

The cumulative payoff from date t to date t+ k + 1 is given by

Tt,t+k+1 = Pθθt+k+1 + (PD + IN )Dt+k+1 +
k∑

i=1

Rk+1−iDt+i +
k∑

i=1

PXi
XI

t+k+1−i. (A.22)

Using (4) and matching terms for the dividends in (A.21) gives

Rk+1PD = ak+1
D (PD + IN ) +

k∑

i=1

Rk+1−iaiDIN .
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This condition simplifies to PD = aD
R−aD

IN .

From (7), θt+k+1 = ak+1
θ θt +

∑k−1
i=0 ak−i

θ ǫθt+1+i + ǫθt+k+1. Now the sum of future lagged

demands
∑k

i=1 PXi
XI

t+k+1−i has to be expressed in terms of current lagged demands. The
following equality holds:






XI
t+k
...

XI
t+1




 =






XI
t−1
...

XI
t−k




+ (k + 1)








θt+k − θt+k−1

θt+k−1 − θt+k−2
...

θt+1 − θt







.

This equation follows from the market clearing condition (A.20) and since agents trade only
every k + 1 periods. The (t+ k)-demand of an infrequent trader equals her (t− 1)-demand
plus the additional liquidity trading that takes place between t+ k− 1 and t+ k. Using this
result and (7) again, it follows that

Et

[
XI

t+i

]
= XI

t+i−(k+1) + (k + 1)Et[θt+i − θt+i−1]

=

{

XI
t+i−(k+1) − (k + 1)ai−1

θ (1− aθ)θt, 1 < i < k + 1.

XI
t−k − (k + 1)(1 − aθ)θt, i = 1.

Finally, using the previous results and matching terms for the liquidity shocks and lagged
demands in (A.21) gives

Rk+1Pθ = ak+1
θ Pθ − γI(k + 1)Σk+1 − (k + 1)(1 − aθ)

(
k−1∑

i=1

ak−i
θ PXi

+ PXk

)

, and (A.23)

Rk+1PXi
= PXi

+ γIΣk+1, i = 1, . . . , k. (A.24)

Equation (11) follows from (A.23), (A.24), and (1− aθ)
(
∑k−1

i=1 ak−i
θ + 1

)

= 1− akθ .

To prove the second part of the corollary I show that Σk+1 = Vart[Tt,t+k+1] defines
a system of quadratic matrix equations that admits 2N solutions under some parametric
condition. Since PX1 = PX2 = . . . = PXk

≡ PX , it follows that

k∑

i=1

PXi
XI

t+k+1−i = PX





k∑

i=1

XI
t−i + (k + 1)

k−1∑

j=0

(θt+k−j − θt+k−1−j)





= PX

(
k∑

i=1

XI
t−i + (k + 1)(θt+k − θt)

)

.

Plugging the last formula in the expression for Tt,t+k+1 (A.22) and using (11) to replace PX

with Pθ gives

Σk+1 = Vart

[

aD
R− aD

Dt+k+1 +

k+1∑

i=1

Rk+1−iDt+i + Pθǫ
θ
t+k+1 −

Rk+1(1− aθ)

Rk+1 − akθ
Pθθt+k

]

.

Since dividends and liquidity shocks are uncorrelated, I can focus on both terms sepa-
rately. First, consider dividend shocks. Tedious computations show that

Vart

[

aD
R− aD

Dt+k+1 +

k+1∑

i=1

Rk+1−iDt+i

]

=

(
R

R− aD

)2
(

k∑

i=0

R2i

)

ΣD. (A.25)

Lemma 2 provides more details about similar computations.
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Second, consider liquidity shocks. Again, tedious computations show that

Vart

[

Pθǫ
θ
t+k+1 −

Rk+1(1− aθ)

Rk+1 − akθ
Pθθt+k

]

=

(

1 +

(
Rk+1(1− akθ)

Rk+1 − akθ

)2
)

PθΣθP
′

θ. (A.26)

This last expression implies that Σk+1 defines a quadratic matrix equation for Pθ. Finally,
use (A.23), (A.24), and simplify terms to obtain

Σk+1 +
(Rk+1 − 1)(Rk+1 − ak+1

θ )

γI(k + 1)(Rk+1 − akθ)
Pθ = 0. (A.27)

Replacing Σk+1 with (A.25) and (A.26) gives the following quadratic matrix equation for Pθ:

(

1 +

(
Rk+1(1− akθ)

Rk+1 − akθ

)2
)

PθΣθP
′

θ +
(Rk+1 − 1)(Rk+1 − ak+1

θ )

γI(k + 1)(Rk+1 − akθ)
Pθ

+

(
R

R− aD

)2
(

k∑

i=0

R2i

)

ΣD = 0. (A.28)

The rest of the proof is similar to Corollary 2’s. The quadratic matrix equation admits 2N

solutions if

1

4

(

(Rk+1 − 1)(Rk+1 − ak+1
θ )

γI(k + 1)(Rk+1 − akθ)

)2

IN

−
(

R

R− aD

)2
(

1 +

k∑

i=1

R2i

)(

1 +

(
Rk+1(1− akθ)

Rk+1 − akθ

)2
)

Σ
1
2
θ ΣDΣ

1
2
θ (A.29)

is positive definite.�
To prove Proposition 2, I use the following lemma:

Lemma 4. Let k = 1 and h = 1. In the single-asset economy with 0 < q < 1, if Pθ < 0 and
PX > 0, then infrequent traders absorb part of the liquidity shocks.

Proof. Infrequent traders’ demand at time t is linear in the state variables and can be
written as XI

t = X̄I +Xθθt+XXXI
t−1. If Xθ > 0, then infrequent traders absorb part of the

liquidity shocks. When k = 1, h = 1, and N = 1, the following four equations hold:

q

2
Xθ + (1− q)γ−1

F Σ−1
1 ((aθ −R)Pθ + PXXθ) = 1, (A.30)

q

2
XX + (1− q)γ−1

F Σ−1
1 PX (XX −R) = −q

2
, (A.31)

Xθ = γ−1
I Σ−1

2

(
aθ (aθPθ + PXXθ) + PXXXXθ −R2Pθ

)
, (A.32)

XX = γ−1
I Σ−1

2

(
PXX2

X −R2PX

)
. (A.33)

Equations (A.30) and (A.31) are obtained from the market clearing condition. Equa-
tions (A.32) and (A.33) follow from the optimization problem of infrequent traders. Since
I assume that Pθ < 0 and PX > 0, Equation (A.31) implies that XX < R. But then
Equation (A.33) requires −R < XX < 0.

Next, assume Xθ < 0. Equation (A.30) then implies that (aθ − R)Pθ + PXXθ > 0,
which is equivalent to RPθ < aθPθ + PXXθ < 0. Moreover, Equation (A.32) implies that
aθ (aθPθ + PXXθ)+PXXXXθ−R2Pθ < 0. Combining the last two conditions gives aθRPθ+
PXXXXθ −R2Pθ < 0. This is a contradiction since the middle term is positive. Therefore,
if Pθ < 0 and PX > 0, then Xθ > 0 in any equilibrium.�
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Proof of Proposition 2. Infrequent traders’ demand is linear in the state variables and
can be written as XI

t = X̄I +Xθθt +XXXI
t−1. The first lag autocovariance is then given by

Cov[Qt+1, Qt] =P 2
θCov

[

ǫθt+1 −Rǫθt , ǫ
θ
t −Rǫθt−1

]

+ PXPθCov
[

XI
t −RXI

t−1, ǫ
θ
t −Rǫθt−1

]

+ P 2
XCov

[
XI

t −RXI
t−1,X

I
t−1 −RXI

t−2

]

=−RP 2
θ σ

2
θ + PXPθXθ (1−R (XX −R))σ2

θ + P 2
X (XX −R)2 XXVar

[
XI

t

]
.

Lemma 4 implies that Xθ > 0 and XX < 0. Hence, each term is negative.
The second lag autocovariance is given by

Cov[Qt+2, Qt] =P 2
XCov

[
XI

t+1 −RXI
t ,X

I
t−1 −RXI

t−2

]

+ PXPθCov
[

XI
t+1 −RXI

t , ǫ
θ
t −Rǫθt−1

]

=P 2
X (XX −R)2 X2

XVar
[
XI

t

]
+ P 2

X (XX −R)XXX2
θσ

2
θ

+ PXPθ (XX −R) (1−RXX)Xθσ
2
θ .

Since Xθ > 0 and XX < 0, each term is positive.�
Proof of Proposition 3. Since the proof is quite similar to the proof of Proposition 1, I

only provide the key steps. Conjecture that Pt = Ac(t)Yt and XI
t = Bc(t)Yt. The dynamics

of the state variables and excess returns are then given by

Yt+1 = AY,c(t)Yt +BY ǫt+1 (A.34)

Qt+1 = AQ,c(t)Yt +BQ,c(t+1)ǫt+1, (A.35)

where the matrices are defined as in Proposition 1. Using (A.34), it follows that

Yt+j =

(
j
∏

i=1

AY,c(t+j−i)

)

Yt +

j−1
∑

i=1

(
i∏

s=1

AY,c(t+j−s)

)

BY ǫt+j−i +BY ǫt+j . (A.36)

Infrequent traders demand can then be written as

XI
t =

1

γI
Σ−1
k+1,c(t)

{

Ac(t+k+1)

(
k+1∏

i=1

AY,c(t+k+1−i)

)

+

(
k+1∑

i=1

Rk+1−iaiD

)

ϕD

}

Yt, (A.37)

where Σk+1,c(t) is a constant matrix. This verifies the conjecture that demands are linear in
the state variables.

Consider now the problem of frequent traders. The value function of a frequent trader
of age j who trades in calendar period c(t) is

J(Wt, Yt, j, c(t)) = max
Xt

Et[J(Wt+1, Yt+1, j + 1, c(t+ 1))], (A.38)

such that Wt+1 = X
′

t,jQt+1 +RWt and J(Wt, Yt, h, c(t)) = −e−γFWt . When the agent is one
period older, the calendar period is then c(t+ 1). Conjecture that J(Wt+1, Yt+1, j + 1, c(t+

1)) = −e−αj+1Wt+1−
1
2
Y ′

t+1Uj+1,c(t+1)Yt+1 .
Using standard arguments, it follows that:

Xt,j =
1

αj+1
Fj+1,c(t+1)Yt, (A.39)

where Fj+1,c(t+1) =
(

BQ,c(t+1)Ξj+1,c(t+1)B
′

Q,c(t+1)

)
−1

(

AQ,c(t) −BQ,c(t+1)Ξj+1,c(t+1)B
′

Y U
′

j+1,c(t+1)AY,c(t)

)

. (A.40)
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All the parameter matrices are defined recursively from αh = γF and Uh,c(t) = 01+2N+kN .

αj =αj+1R, (A.41)

Uj,c(t) =Mj+1,c(t+1) − 2 ln ρj+1,c(t+1)I11, (A.42)

Mj+1,c(t+1) =A′

Y,c(t)Uj+1,c(t+1)AY,c(t)

+ F ′

j+1,c(t+1)BQ,c(t+1)Ξj+1,c(t+1)B
′

Q,c(t+1)Fj+1,c(t+1)

−A′

Y,c(t)Uj+1,c(t+1)BY Ξj+1,c(t+1)B
′

Y U
′

j+1,c(t+1)AY,c(t), (A.43)

ρj+1,c(t+1) =|I +ΣYB
′

Y Uj+1,c(t+1)BY |−
1
2 , (A.44)

Ξj+1,c(t+1) =
(
Σ−1
Y +B′

Y Uj+1,c(t+1)BY

)
−1

. (A.45)

The market clearing condition is

qc(t)X
I
t +

1− q

h

h−1∑

j=0

XF
t,j = S̄ + θt −

k∑

i=1

qc(t−i)X
I
t−i

=

(

ϕS̄ + ϕθ −
k∑

i=1

qc(t−i)ϕXi

)

Yt. (A.46)

Equation (A.46) verifies the conjecture that the price is linear in the state variables. Using
Equations (A.37) and (A.39), the market clearing condition determines a system of fixed
point equations for the Ac(t) coefficients. The demand coefficients Bc(t) can be solved for
using the fixed point system from Equation (A.37):

1

γI
Σ−1
k+1,c(t)

{

Ac(t+k+1)

(
k+1∏

i=1

AY,c(t+k+1−i)

)

+

(
k+1∑

i=1

Rk+1−iaiD

)

ϕD

}

−Bc(t) = 0. (A.47)

This concludes the proof.�
Proof of Proposition 4. Assuming that k = 1, infrequent traders’ demand vector at time

t can be written as XI
t = X̄I,c(t) +Xθ,c(t)θt +XX,c(t)X

I
t−1. When h = 1, the market clearing

condition gives the following equilibrium condition:

qc(t)Xθ,c(t) + (1− q)γ−1
F Σ−1

c(t)

(
aθPθ,c(t+1) −RPθ,c(t) + PX,c(t+1)Xθ,c(t)

)
= 1, (A.48)

where Σc(t) = Pθ,c(t+1)ΣθP
′

θ,c(t+1) +
(

R
R−aD

)2
ΣD.

Consider the case with two calendar periods, and let q2 = 0. Equation (A.48) implies

q1Xθ,1 + (1− q1)γ
−1
F Σ−1

1 (aθPθ,2 −RPθ,1 + PX,2Xθ,1) = 1, and (A.49)

(1− q1)γ
−1
F Σ−1

2 (aθPθ,1 −RPθ,2) = 1. (A.50)

For simplicity, assume that there is only one asset. Plugging (A.50) in (A.49) gives

q1Xθ,1 +

(
aθPθ,2 −RPθ,1 + PX,2Xθ,1

aθPθ,1 −RPθ,2

)
Σ2

Σ1
= 1. (A.51)

Equation (A.50) implies that aθPθ,1 − RPθ,2 > 0. Using the methodology of Lemma 4, the
conditions Pθ,c(t) < 0 and PX,c(t) > 0 imply that Xθ,c(t) > 0. In that case, if Pθ,1 < Pθ,2, then
Σ2
Σ1

> 1 and
aθPθ,2−RPθ,1+PX,2Xθ,1

aθPθ,1−RPθ,2
> 1, which is impossible. As a result, Pθ,1 > Pθ,2 in any

equilibrium. Equivalently, Σ1 > Σ2. Equation (15) therefore implies that E[Qt+1|c(t) = 1] >
E[Qt+1|c(t) = 2].�

Proof of Proposition 5. The risk-aversion (mass) of frequent traders varies with the
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calendar period and is given by γc(t). In equilibrium, it is direct to show that aθPθ,c(t+1) −
RPθ,c(t) = γc(t)

(

Pθ,c(t+1)ΣθP
′

θ,c(t+1) +
(

R
R−aD

)2
ΣD

)

. With two calendar periods and one

asset, if γ1 > γ2, then Pθ,1 < Pθ,2 in any equilibrium (by contradiction). Since price impact
is negative, this implies that aθPθ,2 −RPθ,1 > aθPθ,1 −RPθ,2.

Using the market clearing condition, the expected excess return is

E[Qt+1|c(t)] = γc(t)

(

P 2
θ,c(t+1)Σθ +

(
R

R− aD

)2

ΣD

)

S̄

=
(
aθPθ,c(t+1) −RPθ,c(t)

)
S̄. (A.52)

The proof follows from applying the previous result in Equation (A.52).�
Proof of Proposition 6. When q = 0 (or q = 1), trading volume is given by Vt =

|θt − θt−1|. To compute volume autocorrelation, the following standard lemma is useful and
stated without proof:

Lemma 5. Let X and Y be jointly normal r.v. with zero mean, variances σ2
X and σ2

Y , and
correlation ρ.

Cov[|X|, |Y |] = 2

π

(

ρ arcsin(ρ) +
√

1− ρ2 − 1
)

σXσY .

Using the properties of θt gives

θt+j − θt+j−1 = const + (aθ − 1)ajθθt−1 + ǫθt+j + (aθ − 1)

j−1
∑

i=0

aj−1−i
θ ǫθt+i, j ≥ 1.

Hence, the autocovariance of ∆θt+j ≡ θt+j − θt+j−1 is given by

Cov[∆θt,∆θt+j ] = −
(
1− aθ
1 + aθ

)

aj−1
θ σ2

θ , j ≥ 1.

Therefore, ρ∆θt,∆θt+j
≡ ρ∆θ(j) =

−

(

1−aθ
1+aθ

)

a
j−1
θ

σ2
θ

2
1+aθ

σ2
θ

= −
(1−aθ

2

)
aj−1
θ , j ≥ 1. Thus, ρ∆θ(j) < 0

and is an increasing concave function of j for 0 < aθ < 1.
Using Lemma 5, one has

Cov[Vt, Vt+j ] =
2

π

(

ρ∆θ(j) arcsin(ρ∆θ(j)) +

√

1− ρ∆θ(j)
2 − 1

)

σ2
∆θ.

Note that
dCov[Vt,Vt+j ]

dρ∆θ(j)
= 2

π
arcsin(ρ∆θ(j))σ

2
∆θ . Using this fact and the properties of the arcsin

function, it is direct to show that Cov[Vt, Vt+j ] > 0 and is a decreasing convex function of j
(j ≥ 1). Note that, when aθ = 1, Cov[Vt, Vt+j ] = 0, j ≥ 1.

Since Cov[∆Vt,∆Vt+j ] = 2Cov[Vt, Vt+j ] − Cov[Vt, Vt+j−1] − Cov[Vt, Vt+j+1], it follows
that Cov[∆Vt,∆Vt+j ] < 0 by Jensen’s inequality.�
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B Appendix: Calibration

Parameter Daily returns Intraday returns
Proportion of infrequent traders q 0.6 0.99
Inattention period k 4 13
Risk aversion γF , γI 1 1

Risk-free rate R 1.05
1

250 1.0001
Persistence of dividends aD 0 0
Persistence of liquidity trading aθ 0.8 0.7
Volatility of dividends σD 0.04 0.01
Volatility of liquidity shocks σθ 1 0.6
Correlation of dividend shocks ρD 0.3 0.3
Correlation of liquidity shocks ρθ 0 0
Number of assets N 2 2
Horizon of frequent traders h 20 20

Table 1: Model calibrations for daily and intraday returns

Table 1 shows the calibration used to compare the model’s predictions to the empirical
analysis on intraday returns in Section 4.2 and daily returns in Section 4.3. This paper does
not aim to provide an exact quantitative match to the data. The parameters are therefore
chosen to broadly match the patterns observed in the data while keeping the calibration as
simple and transparent as possible.

Trading frequencies. The calibration of q for intraday returns is discussed in Sec-
tion 4.2. For daily returns, I assume that 60% of the agents adjust their portfolios once a
week (q = 0.6, k = 4), while the remaining agents trade every period with a monthly horizon
(h = 20). Frequent traders have long horizons to illustrate that they do not arbitrage away
the return predictability pattern.

Dividends. Dividends are iid for simplicity since dividend persistence does not affect
excess return autocorrelation. Dividend shocks volatility does not affect the qualitative
results. I use σD = 0.04 for daily returns and σD = 0.01 for intraday returns. Dividend
shocks correlation is set to 0.3.

Liquidity shocks. The persistence of liquidity shocks is the only parameter that can
generate persistence in excess return autocorrelation in this type of setup. In this respect,
the empirical autocorrelation plot provides a direct way to estimate aθ. For daily returns,
Figure 5 suggests a relatively high persistence. The persistence of liquidity shocks required
by the model to approximately match the decaying autocorrelation pattern for the first lags
in the data seems lower for intraday returns than for daily returns (Figures 1 and 5). This
evidence is inconsistent with a single liquidity trading process driving both intraday and daily
returns. For instance, a combination of low-frequency and high-frequency liquidity shocks
would result in a more complicated process than an AR(1). Still, the AR(1) assumption
represents a clean benchmark to evaluate the main results. Furthermore, the infrequent re-
balancing mechanism does not require any persistence in liquidity shocks (Section 4.1). Prior
literature does not provide precise guidance about liquidity shocks volatility, which is hard
to estimate. I set σθ to a lower value than the equivalent value estimated by Campbell et al.
(1993). Liquidity shocks correlation is set to zero for simplicity.
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