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1 Introduction

Recent years have seen a growing importance of banks’ reliance on wholesale funding, in

particular through the development of “shadow banks” with no direct access to deposits

that need to rely on other institutions to finance their investment opportunities. They do so

through various techniques such as repackaging, reselling, or collateralized borrowing. Even

for more traditional banks, the search for cheap funding is a key determinant of profitability

(see e.g. Hanson, Kashyap, and Stein (2011)). As highlighted by the subprime crisis, this

search for funds may result in long chains of intermediation, in which part of the assets

originated in some U.S. states transited through various banks until reaching some European

banks.

This paper offers a model of the building up of intermediation chains based on the search

for liquidity. We analyze how the dissemination of assets across such chains and their length

are affected by the architecture of the financial system, the supply of liquidity in the system,

and some properties of the traded asset, in particular its collateral value.

The typical situation we have in mind is the following. An ‘originator’ has an opportunity

to extend loans to households or firms but does not have enough cash to finance the operation.

He can use various sources of financing: unsecured borrowing at the market rate, secured

borrowing using the loans as collateral, sale of some of the loans to other institutions. In the

last case, the originator will typically resort to an OTC transaction and make offers to some

intermediaries with whom he usually trades. If an intermediary accepts the offer but does not

have enough cash or is not willing to use it all to finance the purchase, he may, in turn, rely

on the three channels described above. If he also chooses to sell some of the assets bought

(possibly at a different price), the process goes on until nobody wants to disseminate assets

any further. In this model the only gains from trade come from differences in funding costs

and in available cash across different agents, other elements like diversification or differences

in information are on purpose kept out of the model.

Each intermediary in the chain makes an offer to his partners that solves a trade-off

between getting more funding via selling more assets or at a higher price, and making an

offer that is attractive enough to have a high chance of being accepted. This trade-off depends
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on the financing needs of the intermediary, as higher needs will make the intermediary more

eager to ensure that his offer will be accepted. It also depends on the funding costs of the

intermediaries who receive the offer, which themselves depend on how much they can get

from other intermediaries, and so on. We show that in equilibrium all intermediaries along

an intermediation chain finance their purchases first by using all their cash, and then always

sell part of their assets and use the rest as collateral for secured borrowing.

We can then derive a number of implications. A first variable of interest is the price at

which the asset is sold by the different intermediaries. We show that intermediaries concede

larger rebates when their financing needs are higher, which implies that the negotiated price

goes up along the intermediation chain. Moreover, the rebate is proportional to the haircut

on the asset when it is used as collateral. Intermediaries can more easily finance the purchase

of the asset when it has a lower haircut, which makes its price closer to its fundamental value.

We then study the determinants of the intermediation chain’s length, and show that it

results from the interaction of several effects. An increase in the supply of liquidity in the sys-

tem (through various parameters such as for instance lower haircuts or more intermediaries)

makes it optimal to use shorter intermediation chains to finance a given volume of originated

loans. As funding becomes cheaper however, the originated volume increases, so that the

total impact is ambiguous. If origination is very sensitive to funding costs, an increase in

liquidity eventually leads to longer chains and more dissemination of the asset.

This has interesting implications if the collateral value is too high because tail risk is

underestimated, in which case a high asset origination and dissemination will follow simply

due to financial intermediaries’ search for cheap financing. The haircut in the model can also

be interpreted as set by the central bank in its liquidity provision operations, in which case

the model gives a framework to understand how decisions to accept new assets as collateral

can affect the market for these assets and investment.

This formation of intermediation chains also has important consequences ex post when

the asset return is realized. Since all intermediaries along a chain provide their cash entirely

to avoid costly unsecured borrowing, after the transactions take place all intermediaries along

a chain are ‘tight’ in cash and have engaged all their assets as collateral. If the asset has a

lower return than expected, specifically lower than the collateral value, they all at the same
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time do not have enough cash to repay their creditors, except maybe the last intermediary

in the chain. This ‘systemic’ event is not due to contagion, since our intermediaries have no

engagement between themselves, but to a common exposure and the fact that strategic trades

generate an extreme use of their cash. Exploiting the joint determination of the network of

realized trades and of the asset quantities held by the different banks thus gives new results

on systemic risk, as the number of distressed intermediaries is directly related to the number

of intermediaries in the chain.

The end of this section relates our work to the literature. Then Section 2 describes the

model, Section 3 solves for the equilibrium, Sections 4 and 4.2 derive the implications of the

model for OTC trading and for systemic risk, respectively. Section 5 concludes.

Related literature. In terms of results, this work is related to recent strands in the litera-

ture on securitization and on shadow banking. The literature on securitization is surveyed in

Gorton and Metrick (2011). Our contribution to the understanding of securitization activity

is to show how the functioning of repo markets and OTC markets for the securitized prod-

ucts simultaneously determine the price at which these products can be resold, and thus the

quantity originated. Erel, Nadauld, and Stulz (2012) show that the holdings of highly-rated

securitization tranches differed widely across U.S. banks before the crisis and that differences

are well explained by securitization activity. They do not look however at non-bank buyers

of these tranches, through whom the assets can be disseminated outside the banking system.

Adrian and Ashcraft (2012) survey the literature on shadow banking. This literature has

looked at the creation of credit chains, in particular through repo markets. Krishnamurthy,

Nagel, and Orlov (2012) in particular show that the contraction of repo markets affected more

key dealer banks. We offer a view complementary to this literature by looking at the impact

of these markets on the dissemination of assets. A related paper is Gennaioli, Shleifer, and

Vishny (2013), where securitization and the sale of securitized assets are important financing

means, but their framework does not allow for the building of intermediation chains.

This paper is also connected to recent theories of freezes on OTC markets, see for instance

Acharya, Gale, and Yorulmazer (2011), Caballero and Simsek (2013) or Camargo and Lester

(2011), based on informational problems. In contrast, in our model drops in OTC volumes
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can be triggered by changes in haircuts or in the topology of the OTC network. Another

potential application of our model would be to dealer networks, see for instance Li and

Schuerhoff (2012) or Neklyudov (2012).

Methodologically, our approach is a compromise between two strands of the literature.

On the one hand, papers like Duffie, Garleanu, and Pedersen (2005), Duffie, Garleanu, and

Pedersen (2007), Lagos and Rocheteau (2007) or Lagos, Rocheteau, and Weill (2009) study

how search frictions affect the pricing and the liquidity of assets on OTC markets. The most

related paper in this literature is Atkeson, Eisfeldt, and Weill (2012), which introduces profits

from intermediation. It is difficult however to study intermediation chains and origination in

these models, which rely on a stationary environment.

On the other hand, the network literature has extensively studied chains and contagion,

for instance Gai and Kapadia (2010), and what optimal banking networks would look like, see

Castiglionesi and Navarro (2007). Anand et al. (2012) in particular study contagion through

common exposure, and not only through banks’ balance sheets. It is difficult however to study

analytically endogenous trading decisions and derive predictions on prices and volumes with

this approach. Bluhm, Faia, and Krahnen (2012) for instance include endogenous prices in

a quite general network setup, but their approach is different as the objective is to calibrate

the model and obtain numerical results. Blume et al. (2009) or Gofman (2011) come closer

to our objective but do not allow to study asset dissemination, as intermediaries cannot keep

part of the assets they resell. Malamud and Rostek (2012) develop a very general model of

decentralized trading and mainly study the implications on an asset’s liquidity, but not the

build-up of intermediation chains per se.

The present paper studies a question that is best set up in a network framework, but by

assuming a particular network structure we can embed the game in a tractable stationary

problem closer to the search approach, and use this stationarity to derive an analytical

solution and qualitative implications of the model.
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2 The model

2.1 Assumptions and definitions

The asset and the originator: each unit of an asset delivers a random revenue ρ̃ ∈ R+

according to a continuous distribution F (.). We denote ρ the expected value of ρ̃. An

“originator” chooses to originate k assets at a cost C(k). C satisfies C(0) = 0, is strictly

increasing and convex (C ′ > 0, C ′′ ≥ 0). The asset could for instance be loans to households

or companies, in which case C is the sum of the amount lent plus search or monitoring costs.

To simplify, the originator does not have any cash and needs to finance C(k) either by

selling some units of this asset, using unsecured borrowing, or borrowing using the assets as

collateral. There is no liquid market for the asset, which can only be sold over-the counter

to an intermediary. This intermediary has some cash but maybe not enough to buy all the

assets, in which case the difference must be financed using the same three options. The initial

volume k will thus be distributed on a network of intermediaries selling sequentially on an

over-the-counter market.

Sources of funding: each intermediary starts with some amount of cash ω independently

drawn from a distribution G(.) on R+. Cash is invested at the safe interest rate, normalized

to zero. Additional sources of cash are secured and unsecured borrowing. Each unit of asset

that is not sold can be used as collateral. Against one unit left as collateral, external financiers

are ready to lend some amount ` at the safe interest rate, as long as the probability of the

asset’s value being lower than ` is lower than some small value α (as e.g. in Brunnermeier and

Pedersen (2009)). Thus we need Pr(ρ̃ < `) ≤ α, and ` can be thought of as the value-at-risk

of the asset at level α and will be considered a parameter of the model. ρ− ` is the haircut

per unit of collateral.

To complement secured borrowing, each intermediary can also borrow on the unsecured

market at an exogenous interest rate r, so that he has to repay 1 + r after ρ̃ is realized. No

collateral is required.

All agents are supposed to be risk neutral and have unlimited liability. We can think of

them as desks in large institutions, whose debt is backed by the institution so that the risk of
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unsecured lending is not linked to the desk’s decisions (small compared to the total positions

of the institution). Another interpretation of unsecured lending is that the desk is using the

institution’s capital, in which case r would be an internal rate of return.

The trading process: we assume that each agent knows d other intermediaries, among

them each one has a probability q to be available for trade (independent draws). The tree of

all intermediaries available for trade whom the originator could potentially reach is thus the

outcome of a Galton-Watson process, frequently analyzed in the computer science literature

(see e.g. Kleinberg and Raghavan (2005)).

An intermediary I at a given layer of the tree decides on a take-it or leave-it offer (p, v)

made to all his partners in the following layer. As cash is invested at the safe interest rate,

I can attract the liquidity of other intermediaries by offering them a positive return. Each

intermediary who receives the offer decides whether to accept it, in which case he buys v

units of the asset at price p, or refuse. The intermediary decides on an offer before he learns

how many partners are available and we make the simplifying assumption that only one deal

at most can be done. If several intermediaries accept the offer, then I randomly chooses one

of them to trade with.

Finally, when making an offer, I only knows the distribution G but not the amount of

cash owned other intermediaries. It is useful to define the probability H(ω) that at least one

intermediary at a given layer of the network is active and has more cash than ω:

H(ω) = 1− [1− q + qG(ω)]d (1)

We assume that H is log-concave.1 As a result, the function H(ω)ω is first increasing and

then decreasing to 0, and we denote ω∗ the maximum of this function.

Figure 1 gives an example with the first two layers of a network starting with the origi-

nator. One intermediary is inactive in the first layer, one rejects the offer, and the last one

accepts it. This intermediary makes a new offer, which is rejected by two intermediaries and

accepted by one2.

1The log-concavity of H is implied by that of the distribution G. Most common distributions (Gaussian,
uniform, beta, or exponential) are log-concave.

2All figures and tables are in the Appendix A.
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[Insert Fig. 1 here.]

Different assumptions could of course be made about the trading protocol. What matters

for our results is that the OTC market we consider is not frictionless: the originator cannot

simply borrow from cash-rich intermediaries at a competitive price, so that the network

structure and the distribution of cash have an impact on the originator’s funding costs.

Intermediaries could use more sophisticated trading mechanisms, which would presumably

make the situation closer to a centralized environment but without qualitatively altering the

main trade-offs we study.

2.2 The financing decision

We describe here the problem faced by intermediary I, who has himself received an offer,

denoted by (p0, v0)3, and can make a new offer, thus acting as an intermediary. To decide

whether or not to accept the initial offer, I evaluates how much profit can be achieved by

accepting it, and accepts if profit is non-negative. This profit depends on how the purchase

is financed. In particular, I’s optimal behavior will depend on his that an offer to sell some

units of the asset is accepted.

Financing needs: assume I has ω in cash and accepts the offer (p0, v0). Since the v0 units

can be used as collateral, the amount `v0 + ω can be obtained at zero interest to finance the

purchase p0v0. I’s financing needs are defined as:

y = max[(p0 − `)v0 − ω, 0] (2)

This is the quantity that I needs to borrow if he makes no offer, in which case his profit is

(ρ− p0)v0 − ry. (3)

Offers: let I make an offer (p, v) to his usual partners. He cannot sell more units than he

buys and v has to be lower than v0.

3Once k assets have been originated, the originator is in the same position as an intermediary who bought
k assets at price C(k)/k.
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If (p, v) is not accepted, I is in the same situation as if he had made no offer: y must be

borrowed on the unsecured market at the cost ry, and the expected profit is as in (3).

If (p, v) is accepted, I keeps v0 − v units, receives pv from the sales, and can borrow

`(v0 − v) on the unsecured market. The amount pv + `(v0 − v) + ω is thus available at zero

interest cost. If this amount is lower than p0v0, the remaining financing needs are equal to

p0v0 − (pv + `(v0 − v) + ω), which can be rewritten as y − (p− `)v: the financing needs are

diminished by the value of the sale minus the loss in collateral. In the sequel we call (p− `)v

the net cash value of the transaction. There are three cases to consider:

(i) the offer’s net cash value under finances the needs: y− (p− `)v is positive and has to

be borrowed on the unsecured market; (ii) the offer’s net cash value over finances the needs,

y−(p−`)v is negative, and the intermediary keeps some cash which earns zero interest (this is

surely the case when y is null); (iii) the net cash value exactly covers the needs: no unsecured

borrowing is needed and no cash is retained. In any case, the interests to be paid due to

unsecured borrowing or those received due to extra cash are equal to rmax[y − (p− `)v, 0].

The profit expected from offer (p, v) if it is accepted is thus equal to:

π = ρ(v0 − v)− p0v0 + pv − rmax[y − (p− `)v, 0]. (4)

Beliefs on acceptance: an offer may not be accepted because no partner is available or

no available partner finds it attractive. An intermediary forms some belief Φ(p, v) that an

offer (p, v) is accepted. The function Φ thus describes an intermediary’s expectations about

acceptance probabilities.

Profit, benefit and optimal behavior: given the belief described by Φ, using (3) and

(4) and rearranging, the intermediary I’s expected profit from offer (p, v) is

π(p0, v0, y; p, v) = (ρ− p0)v0 − ry + rBΦ(y; p, v) (5)

where rBΦ(y; p, v) = Φ(p, v)×

 ((1 + r)p− ρ− r`)v if (p− `)v ≤ y

(y − (ρ− p)v) if (p− `)v ≥ y
(6)
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rBΦ(y; p, v) is the expected benefit for I due to the possibility that offer (p, v) is accepted,

which reduces the financing costs. This expected reduction depends on I’s total financing

needs y and is surely less than H(0)y. Upon the receipt of offer (p0, v0), intermediary I

determines his behavior in two steps.

First, I looks for an offer maximizing the expected benefit (6). Making offers more

attractive by decreasing the asked price lowers the benefit drawn from the transaction in

case of success, but lowers the risk of refusal and costly unsecured borrowing. Formally, an

optimal offer solves

Π(p0, v0, y) = max
p≤ρ,v≤v0

π(p0, v0, y; p, v). (7)

Second, I accepts the proposed offer if this yields a non-negative profit in (5). (p0, v0) is thus

accepted if the value Π(p0, v0, y) is non-negative. Observe that for p0 > ρ profit is negative,

so that such an offer is never accepted. From now on we will thus consider only prices not

larger than ρ.

Acceptance threshold: we now show that the intermediaries who accept an offer are those

with enough cash. Observe that an intermediary with no financing needs surely makes a non-

negative profit by accepting an offer since prices are less than the expected return ρ, as can be

seen from (5). Under our assumption of unbounded support, there are such intermediaries.

Second, profit is decreasing in y and thus increasing in the intermediary’s cash ω. This

implies that there is a threshold level of ω above which an offer (p0, v0) is accepted and this

threshold is surely lower than (p0 − `)v0. This defines the threshold function WΦ by:

WΦ(p0, v0) = inf{ω such that Π(p0, v0,max[(p0 − `)v0 − ω, 0]) ≥ 0}. (8)

A first particular case is p0 = ρ. An intermediary accepts an offer with price ρ only if his

financing needs are null: for p0 = ρ, the profit derived from accepting is bounded above by

−ry + rH(0)y since the benefit is lower than H(0)y. This upper bound is negative for any

positive y.

A second case to consider is p0 = ρ+r`
1+r

, a price we denote τ . At this price an intermediary

without cash can still buy the asset, collateralize it and finance the remaining needs using
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unsecured borrowing without making a loss. A purchase at price τ can only yield a positive

profit (equation (3)). Such an offer is thus surely accepted and WΦ(τ, v0) = 0.

We have shown the following properties if WΦ, for any Φ:

Property 1. Let intermediary I face offer (p0, v0) and have financing needs y.

1. If y = 0 then I accepts the offer without making a new one.

2. If p0 = ρ then the intermediary accepts the offer only if y = 0.

3. WΦ(p0, v0) ≤ (p0 − `)v0, with equality if and only if p0 = ρ.

4. WΦ(τ, v0) = 0.

These properties imply that any reasonable Φ will be such that Φ(τ, v) = H(0) for any v

and Φ(p, v) > 0 for p ≤ ρ. Also, the probability of acceptance is bounded by the probability

that at least one intermediary is available, hence Φ(p, v) ≤ H(0).

When p0 < ρ there are thus intermediaries with y > 0 who accept the offer (p0, v0). By

making a new offer (p, v) with p = ρ and v ≤ v0 the offer has some chance of being accepted

and the benefit in case of acceptance is positive. This improves expected profit, which shows

that an intermediary with y > 0 always makes an offer. Moreover, this offer is surely such

that p > τ : using (6), the benefit in case of acceptance is smaller than −(ρ− p)v+ r(p− `)v,

which is negative when p ≤ τ . These observations give us the following property:

Property 2. An intermediary I facing offer (p0, v0) and with financing needs y > 0 always

makes a new offer (p, v), with τ < p ≤ ρ and 0 < v ≤ v0.

It follows from these properties that the game ends under two circumstances: no interme-

diary accepts the offer (sometimes because nobody receives it) or the selected receiver has no

financing needs. In particular, the game surely ends if the offered price is ρ. On the contrary,

the game goes on when an intermediary accepts the offer but needs extra financing. Surely

offers are made at a price between τ and ρ.

3 Equilibrium

The game has two components: the investment decision of the originator, and the financing

decisions of all intermediaries in the ensuing network. We first need to solve the second
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component, before analyzing the originator’s choice.

3.1 The financing game

The situation faced by an intermediary is entirely characterized by the offer (p0, v0) it receives

and his liquidity ω. The number of intermediaries between the initial proposer and the

intermediary under consideration does not matter. The setting is thus Markovian with states

described by (p0, v0, ω). We look for a stationary equilibrium of this financing game, such

that two intermediaries in the same state behave identically. Equilibrium entails a condition

of correct expectations on the behavior of the receivers: assuming that the intermediaries’

probability of acceptance follows a certain function, the optimal response induces the same

function.

Let an intermediary facing offer (p0, v0) expect receivers to accept an offer (p, v) with prob-

ability Φ(p, v). This intermediary will accept the offer (p0, v0) if his cash is above the threshold

WΦ(p0, v0) defined by (8). Hence the probability that (p0, v0) is accepted is H(WΦ(p0, v0)).

Equilibrium requires that this is equal to Φ(p0, v0).

Definition 1. An equilibrium is characterized by a threshold W and an acceptance probability

Φ such that W (p0, v0) = WΦ(p0, v0) and Φ(p0, v0) = H(W (p0, v0)) for any (p0, v0).

We construct an equilibrium of the financing game by considering a sequence of games.

Define Gn as the financing game with the restriction that the game will stop after at most n

offers are accepted. We start with G1; then, knowing the behavior of an intermediary facing

a network with at most one layer of other intermediaries, we can iterate and consider the

problem of an intermediary facing two layers, three layers and so on. We show that the

optimal strategy in the financing game coincides with the optimal one in a game with a finite

number of layers.

3.1.1 The game G1 with one layer only

Consider an intermediary I with financing needs y facing offer (p0, v0). I makes an offer to

his partner intermediaries, who do not have access to any other intermediaries themselves.

The game is solved by backward induction.
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An intermediary R receiving offer (p, v) and with cash ω must finance yR = max[(p −

`)v − ω, 0] on the unsecured market. This yields the profit (ρ − p)v − ryR. When yR > 0,

R optimally accepts the offer if (ρ − p)v − r[(p − `)v − ω] is non-negative. This yields the

acceptance threshold

W1(p, v) =
p− ρ+ r(p− `)

r
v =

1 + r

r
(p− τ)v.

It follows that the probability of acceptance is H(W1(p, v)). We now consider I’s optimal

offer and show that it does not over finance I’s financing needs. Assume by contradiction

that (p− `)v > y. The expected benefit is H(W1(p, v))
(
y − ρ−p

r
v
)

by (6). As long as there is

overfinancing, a small decrease in v thus increases the benefit in case of acceptance (or keeps

it unchanged if p = ρ) and increases the probability that the offer is accepted. Such an offer

cannot be optimal.

Thus (p, v) satisfies (p− `)v ≤ y. Using (6), the benefit in case of acceptance is 1+r
r

(p−

τ)v = W1(p, v), which gives the expected benefit:

B1(y0; p, v) = H(W1(p, v))×W1(p, v).

The proposer’s optimal strategy maximizes this expression over the (p, v) that satisfy p ≤

ρ, v ≤ v0 and (p − `)v ≤ y. Notice that choosing the optimal offer (p, v) is equivalent to

choosing a certain target acceptance level W1(p, v). In G1 the benefit for I is exactly equal

to the probability to find an intermediary with ω ≥ W1(p, v) times W1(p, v), as if I simply

extracted the cash of the chosen target.

Remember that ωH(ω) first increases and then decreases with a maximum reached at ω∗.

An optimal strategy for the proposer is an offer (p, v) with p = ρ and:

-v = y/(ρ− `) if y ≤ ω∗, so that W1(p, v) = y and the expected benefit is H(y)y;

-v = ω∗/(ρ− `) if y > ω∗, so that W1(p, v) = ω∗ and the expected benefit is H(ω∗)ω∗.

Since y ≤ (ρ − `)v0, in both cases we have v ≤ v0. Hence I’s strategy is equivalent to

choosing a target cash level that depends only on y (and not on v0), the optimal target can

be denoted Ω1(y) and maximizes ωH(ω) subject to ω ≤ y. In the case y ≤ ω∗, I sells just

enough to cover his financing needs and does not need to borrow in case of acceptance. In
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the case y > ω∗ however, I needs to borrow y − ω∗ at the unsecured rate. The equilibrium

benefit for I in G1 can thus be defined as:

B∗1(y) = H(y)y, for y ≤ ω∗, H(ω∗)ω∗ for y ≥ ω∗. (9)

Denote y1 = ω∗. The benefit B∗1(y) strictly increases for y ≤ y1 and is constant for y ≥ y1.

Furthermore it does not depend on ρ, ` and r.

3.1.2 Equilibrium of the financing game

To construct an equilibrium of the financing game, we now iterate by adding new layers of

intermediaries, creating the games Gn. As we can see on Figure 3 where B∗1 is plotted in

an example, when y ≥ ω∗ the benefit B∗1 does not increase any more because the proposer

extracts the maximum expected cash from a single layer of intermediaries. With a second

layer it is possible to reach a higher benefit up to a new threshold, which can be increased

again by adding a third layer, and so on. For each game Gn we can define B∗n(y) the maximal

expected benefit that an intermediary with financing needs y can make and Ωn(y) the cash

level targeted by an optimal offer.

We will show by induction that, for each y, there is a maximal value N(y) for the number

of rounds n beyond which the benefit B∗n(y) stops increasing and stays constant as more

rounds are allowed and, furthermore, the optimal target Ωn(y) does not change. We denote

B∗(y) and Ω(y) these limit values.

Example-single-valued distribution: before solving the general case it is instructive to

start with a simple case where all intermediaries (almost surely) have the same level of cash

ω∗. Clearly it is then optimal to target exactly this amount of cash, so that for any y we have

Ω(y) = ω∗ and the probability that an offer is accepted is H(ω∗)4. The offer itself however

depends on the financing needs. Indeed, for y > ω∗ the financing needs of the targeted

intermediaries decrease by ω∗ at each step. Thus, N(y) + 1 intermediaries are needed to

finance y, where N(y) is defined by y = N(y)ω∗+ω, 0 < ω < ω∗. We will show in the general

4The distribution G is degenerate in this example, but the notations extend easily by considering G as
the limit of non-degenerate distributions.
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case that B∗(y) = H(ω∗)(ω∗ + B∗(y − ω∗)), which by iteration implies here the following

expression for the benefit:

B∗(y) = [H(ω∗) +H(ω∗)2 + ...+H(ω∗)N(y)]ω∗ +H(ω∗)N(y)+1(y −N(y)ω∗). (10)

This explains why the optimal offer depends on y even though its chance of being accepted is

constant and equal to H(ω∗): an offering intermediary with y > ω∗ takes into account that

his direct partners will themselves make an offer which may be rejected, then his partners’

partners will make offers and so on, until (N(y) + 1)ω∗ covers the needs. To sum up, what

matters is not only the direct acceptance probability but also the cumulative ones.

In the general case of a non degenerate distribution, there is an additional effect due to

the fact that the targeted cash levels and the probability of acceptance vary with the level

y. The functions Ω and B∗ then have to satisfy the following:

Theorem 1. The benefit B∗ and the target Ω do not depend on ρ, `, and r.

They are characterized by:

B∗(y) = max
ω≤y

H(ω)(ω +B∗(y − ω)) (11)

Ω(y) = argmax
ω≤y

H(ω)(ω +B∗(y − ω)). (12)

B∗ is increasing and bounded from above. For y > 0, Ω(y) is smaller than ω∗. Moreover,

there exists y
1
∈ (0, ω∗) such that for y ≤ y

1
we have B∗(y) = B∗1(y) and Ω(y) = Ω1(y).

These functions characterize equilibrium strategies in the financing game: an intermediary

I who accepts an offer and has positive financing needs y makes an offer (P (y), V (y)) that

exactly covers his financing needs and gives zero profit to the target:

(P (y)− `)V (y) = y and (ρ− P (y))V (y)− ry + r(Ω(y)−B∗(y − Ω(y))) = 0. (13)

The proof is given in the Appendix B. The main difficulty is to prove that an optimal

offer always exactly covers its proposer’s financing needs, which is not at all obvious: facing

a general probability of acceptance Φ(p, v), it may be optimal to choose an offer that does
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not entirely cover an intermediary’s need in order to guarantee a higher probability that it is

accepted, or even to choose an offer that does more than cover financing needs. We observe

that this is not the case in G1 however, and iterate in order to prove that the equilibrium Φ

is such that choosing (p− `)v = y is optimal. Figures 2 and 3 show plots of Ω(y) and B∗(y)

in an example, as well as Ωn(y) and B∗n(y) for the first three iterations5.

[Insert Fig. 2 and 3 here.]

3.1.3 Equilibrium policy and rewards

From Theorem 1, we know that the optimal offers are characterized by the equilibrium benefit

and target functions. We examine here this offer policy, and derive some properties on the

sequence of targeted intermediaries, that we call chain, and the intermediaries’ profit.

Once the equilibrium functions B∗ and Ω are solved for, we can define the financing needs

of the targeted intermediary Z(y):

Z(y) = y − Ω(y). (14)

We easily derive the following explicit formulas for the offered price and volume P (y) and

V (y) from (13), as well as some of their properties.

Corollary 1.

P (y) =
ρy + r`(Z(y)−B∗(Z(y)))

y + r(Z(y)−B∗(Z(y)))
(15)

V (y) =
y + r(Z(y)−B∗(Z(y)))

ρ− `
(16)

Z(y) and V (y), are non-decreasing in y. For y ≤ y
1
, P (y) = ρ and V (y) = y/(ρ − `).

For y large enough, P (y) converges to τ , while V (y) is equivalent to (1 + r)y/(ρ− `).

Corollary 1 is fairly intuitive, the only point that is not straightforward is the monotony

of Z, which is proven in the Appendix C.1. For high financing needs an intermediary chooses

a low price, close to τ , as he is more eager to get financed. Since the price is lower he also

5The parameterization we use is introduced in Section 3.3.
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has to sell more in order to cover more financing needs. As y goes down on the contrary the

price increases and goes to ρ when we reach the region where Ω(y) = y, that is P (y) = ρ.

An intermediary with financing needs y targets an intermediary with cash Ω(y) and

financing needs Z(y) = y − Ω(y). This target will himself choose a target Ω(Z(y)), and this

target will have financing needs Z(y) − Ω(Z(y)) = Z2(y). By iteration we can thus define

a targeted chain starting with an intermediary with financing needs y. The length of this

chain is N(y), where N(y) is the smallest integer j such that Zj(y) ≤ y
1
. As Ω(y) ≤ ω∗ by

Theorem 1, the financing needs of an intermediary along the targeted chain decrease by at

most ω∗ at each step. To reach financing needs of y
1

starting with some y, one surely needs

at least b(y − y
1
)/ω∗c+ 1 steps.

The same iteration can be made on the benefit function: we have B∗(y) = H(Ω(y))(Ω(y)+

B∗(Z(y))) and for Z(y) > 0, B∗(Z(y)) = H(Ω(Z(y)))(Ω(Z(y)) + B∗(Z2(y)) and so on. We

thus obtain:

Corollary 2. The length of the targeted chain N(y) is increasing in y and

B∗(y) = H(Ω(y))

Ω(y) +

N(y)∑
i=1

Ω(Zi(y))
i∏

j=1

H(Ω(Zj(y)))

 . (17)

This expression generalizes (10) which was obtained for a degenerate distribution. The

expected benefit for the first intermediary as expressed in (17) is the sum of the cash used by

each targeted intermediary in the chain, weighted by the probability of acceptance at each

step. The decision of each intermediary can be understood as determining the targeted chain

that maximizes the cash extracted along the chain. Notice that the total expected cash is

higher than this quantity: at the first step for example, an accepting intermediary is likely

to have more cash than the target, and the extra cash does not accrue to the originator. As

a result, such an intermediary will make some profit.

Let us consider the intermediaries who receive proposal (P (y), V (y)). Those with cash

ω ≥ Ω(y) accept the offer and their profit is

(ρ− P (y))V (y)− rz + rB∗(z) where z = max(y − ω, 0). (18)
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As B∗ is non-decreasing, we have:

Corollary 3. The profit of an intermediary accepting (P (y), V (y)) increases in his cash ω.

Each marginal unit of cash ω above Ω(y) brings a marginal profit of r(1 − B∗′(y − ω)).

This is positive for ω < y, reflecting the benefit drawn from the sales of the asset to other

intermediaries, but smaller than r, reflecting the fact that these intermediaries face a risk

of refusal. When the financing needs become null the profit is constant and equal to (ρ −

P (y))V (y).

3.2 Origination and the full game

We now study the optimal origination decision. Remember that originating k units of the

asset costs C(k). As a benchmark, assume that the originator has no access to a network of

partner intermediaries. The amount `k is borrowed at a null rate and, assuming no initial

fund, C(k)− `k needs to be borrowed at the unsecured rate r. The profit expected from the

investment is thus

ρk − C(k)− r(C(k)− `k).

As C is convex, a positive level of investment is profitable only if C ′(0) is low enough. More

precisely, the optimal level of k is characterized by

ρ− C ′(k)

C ′(k)− `
= r or C ′(k) = τ if C ′(0) ≤ τ, k = 0 otherwise. (19)

With access to a network, the originator has access to the cash resources of other intermedi-

aries and can finance the projects at a possibly lower cost. Once he has originated k assets,

the originator is in the same situation as any other intermediary: he has k assets to sell or

use as collateral, and financing needs y(k) = C(k)− `k. An optimal offer for financing needs

k will provide the expected benefit B∗(y(k)), so that his profit is:

ΠO(k) = ρk − C(k)− ry(k) + rB∗(y(k)). (20)

As any other agent, the originator may choose p = ρ, in which case the game would always

stop after the first round.
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Proposition 1. Let k be the optimal investment for the originator. It satisfies, if positive,

ρ− C ′(k)

C ′(k)− `
= r(1−B∗′(y(k))) where y(k) = C(k)− `k. (21)

k is larger than its level without a network. k is increasing in ρ, and for ρ large enough, the

originator makes an offer with p < ρ, and chains have more than two intermediaries with

positive probability. k is non-increasing in r, and is non-decreasing in ` if B∗ is concave.

See the Appendix C.2 for the proof. This implies that how many assets the originator

sells to the next intermediary may increase or decrease when ρ is higher: a more valuable

asset increases origination, but can decrease the incentives to sell. Similar remarks apply to

the other financial parameters. Their impact on k, hence on y(k) and the subsequent offers,

are important to assess their overall impact on OTC trading.

Note that the impact of ` on origination depends on the concavity of B∗. B∗ is concave in

the case of a degenerate distribution6. We found no numerical example where this property

did not hold in the general case but could not prove it formally. We thus mention explicitly

when a result requires this assumption.

3.3 Numerical example

Before turning to the model’s implications, we illustrate the equilibrium with a numerical

example. We first choose a set of baseline parameters, chiefly for their computational conve-

nience.7 We solve for B∗ and Ω and determine the optimal level of origination k. We then

simulate the game 10.000 times and record empirical averages, at each level in the realized

chain of intermediaries, of the volume v0 faced by the intermediary, the price p and the vol-

ume v he offers, the volume v0− v he keeps, his cash level ω, the cash level Ω he targets and

his benefit B. We additionally record for each layer the probability pa that an intermediary

makes a new offer, pr that nobody accepts an offer, and pc that someone completes the vol-

ume and closes the chain. The averages of v0, ω and v0 − v are weighted by the proportion

6It is piece-wise linear in y with kinks at points where N(y) jumps to N(y) + 1; at other points, the slope
is equal to H(ω∗)N(y)+1.

7` = 0.8, r = 1.2, ρ = 3.5, d = 3, q = 0.5, G(.) is the CDF of a Gamma distribution Γ(κ, θ) with
κ = 3, θ = 0.1. The cost function is C(x) = x+ (c/2) ∗ x2, with c = 1.

18



of intermediaries making a new offer or completing the volume at a given layer, while p, v,

Ω and B are weighted by the proportion of intermediaries making a new offer.

The results obtained with the baseline parameters are the following. The originator

chooses to issue k = 1.03 units and targets a chain of size N(y(k)) = 7. On average, the

realized chain has a size of 1.96 (the originator plus close to 2 intermediaries). The originator

offers to sell 37% of the originated volume at a 23% discount. This offer is accepted by

intermediaries who have at least ω = 0.13 and has thus an acceptance probability of 81%,

which yields a benefit B∗ equal to 0.39 on average. Table 1 gives the results at each level.

[Insert Table 1 here.]

4 Implications for OTC trading and dissemination

We review in this section the implications of our model on asset dissemination, as well as

empirical implications on trading behaviour on particular markets. To that purpose, we

derive how a change in the environment as reflected by the different parameters affects the

equilibrium outcome. We decompose the impact of each parameter into three effects: a

trading effect is an impact on an intermediary’s offer for given financing needs (a change

of the function Ω), a financing needs effect is a change in the financing needs y for an

intermediary receiving a given offer and having a given cash, and an origination effect is a

change in the volume k chosen by the originator. These three effects allow us to disentangle

the different channels through which each parameter affects observable variables such as

originated volumes and chain size.

4.1 Implications on trading behaviour

We examine here the impact of the financial parameters ρ, ` and r on the offer of an inter-

mediary with a given y. From the previous analysis, specifically Theorem 1, we know that

an intermediary with given financing needs y makes an offer with a target Ω(y) that does

not depend on the financial parameters. Thus the probability of acceptance is unaffected as

19



well. However, the offer itself and the profits are affected. We have from (15) and (16):

ρ− P (y)

ρ− `
= 1− y

y + r(Z(y)−B∗(Z(y)))
(22)

V (y)(ρ− `) = y + r(Z(y)−B∗(Z(y))) (23)

ρ − P (y) is a liquidity rebate, which shows how much an intermediary is ready to concede

in order to attract potential buyers. The terms on the right hand side of each equation are

independent of ρ and `. Recall that ρ− ` is interpreted as a haircut reflecting the difficulty

to borrow against the asset as collateral. Direct inspection delivers the following implication

on the impact of the financial parameters on the offer policy and profit.

Implication 1. For given financing needs y, the target and the probability that the optimal

offer is accepted are independent of ρ, ` and r. As for the offer itself:

1. P (y) is non-increasing in r and non-decreasing in ρ and `. V (y) is non-decreasing in r

and ` and non-increasing in ρ.

2. The liquidity rebate is directly proportional and the offered volume inversely proportional

to the haircut.

From 2, increasing ρ and ` by the same amount, thus not affecting the haircut ρ−`, leavex

the liquidity rebate and the offered volume constant. An increase in the haircut makes it

less attractive to keep the asset and use it as collateral, thus increasing the incentives to sell.

But the same change makes it more difficult to finance the purchase of the asset, so that the

seller has to concede a larger liquidity rebate, which turns out to be exactly proportional to

the haircut.

An intermediary’s offer depends on r even though his targeted intermediary does not.

For this reason, the profit made by any intermediary with a cash level above the target

will depend on r. To study this, denote (Pr(y), Vr(y)) the offer made by an intemediary

with financing needs y. As the target is left unchanged, the zero profit condition yields

(ρ−Pr(y))Vr(y) = r(y−Ω(y)−B∗(y−Ω(y)). Thus, the offer is adjusted to a change in r so

that its net value, (ρ−Pr(y))Vr(y), is proportional to r. As a result, an intermediary R with

more cash than the target but not enough to finance the whole volume, i.e. Ω(y) < ω < y
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((Pr(y)− `)Vr(y) = y), has a profit of:

ΠR(ω) = (ρ− Pr(y))Vr(y)− r(y − ω) + rB∗(y − ω)

= r[ω − Ω(y)−B∗(y − Ω(y) +B∗(y − ω)]

For institutions with cash larger than y, the profit is equal to ΠR(y). Thus ΠR is proportional

to r. In particular, the increase in the offer’s net value outweighs the additional financing

cost due to the increase in r. Considering the impact of an increase in r on the whole chain,

starting with a fixed investment k, we thus obtain that the originator’s profit decreases while

that of all intermediaries either stay null or increase, as long as r is small enough so that the

investment is profitable for the originator.

Implication 2. Intermediation profit is proportional to the unsecured interest rate r, while

the originator’s profit is decreasing in r.

Note that aggregate profit is decreasing in r because the use of unsecured borrowing oc-

curs exactly under the same circumstances but a larger cost. Nonetheless, the profit of the

intermediaries increase (as long as the investment is made). Ultimately cash allows to avoid

using unsecured borrowing; the larger its associated cost, i.e. the larger r, the more cash is

rewarded.

These implications can apply to different settings:

If secured borrowing in the model is interpreted as borrowing from other market partic-

ipants at a competitively priced haircut, then changes in haircuts can be driven by market

expectations. Simsek (2013) shows in a model of belief disagreement how optimism about

upside returns may have led to both low haircuts and high asset prices (or low liquidity

rebates) in the run-up to the crisis, which would also imply a high origination and long in-

termediation chains in our setup. In other periods disagreement about downside risks may

have led to high haircuts, in which case we typically expect less origination in our model8.

8In our model haircuts are determined by a competitive and exogenous supply of funding against collateral,
whereas in Simsek (2013) investors endogenously choose to lend or borrow, so that haircuts and asset prices
are simultaneously determined.
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This view of a chain of cash-constrained intermediaries demanding liquidity to other

intermediaries fits well the networks of dealers in municipal bonds studied by Green, Hollifield,

and Schuerhoff (2007). Our intermediaries could be interpreted as dealers, and the ω of each

intermediary as depending on a flow of buy orders coming from customers. It is less costly for

a dealer facing strong demand from customers to buy the asset, while a dealer facing a lower

demand will have to either hold the asset or sell it to a different dealer. The authors show

that dealers demand liquidity on average, intermediation costs increase with trade size and

the asset’s risk, and decrease with transaction frequency. These observations are consistent

with our theoretical results: y−B∗(y) which is a measure of financing cost increases in y and

thus with trade size in our model, the relation between costs and the asset’s risk and thus its

haircut is consistent with Implication 1. Finally, Li and Schuerhoff (2012) show that on the

same market transaction prices go up on average along an intermediation chain: as dealers

down the chain have lower financing needs, they make sale offers using higher prices and the

liquidity rebate, ρ− P (y), goes to zero when financing needs become small enough, which is

consistent with Corollary 1.

Secured borrowing could also be interpreted as borrowing at the central bank against

collateral, and the haircut is thus a choice variable for the central bank. Since the outbreak

of the financial crisis, several central banks have accepted more assets as collateral when

lending to banks, which can be seen as a change in haircut from 100% to some lower number.

Our model could be tested by looking at how decisions taken on which assets are eligible

or on the required haircuts have an impact on the volume of assets traded and the level

of origination. Of particular interest in our model is the fact that lowering haircuts may

encourage banks to transact more with each other, so that central bank liquidity is less

needed and the total risk exposure of the central bank decreases. The optimal collateral

policy of a central bank in this model is an interesting topic left for future research.

4.2 Chain size and the number of impacted layers

One of the distinctive features of our model is that it allows us to study the dissemination

of assets across various layers of intermediaries, for instance different geographical regions

or parts of the banking system. An intuitive measure of dissemination is to look at the size
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of the intermediation chain, which gives the number of regions in which some banks hold

the asset. The impact of each parameter on this measure will be the result of its effects on

trading strategies, financing needs, and origination.

Impact of ρ and r. It follows from the characterization of the optimal investment (Propo-

sition 1) that the originated volume is non-decreasing in ρ and non-increasing in r. Since the

financing needs and the trading strategies are unaffected by ρ or r, an increase in k directly

translates into an increase in y(k). Hence the size of the chain and the targeted levels in

the chain all increase. In addition, as the originator’s benefit function does not depend on

ρ and k, the impact of these parameters on the originator’s profit follows from the envelope

theorem. This gives us the following implication:

Implication 3. The investment of the originator and the size of the targeted chain are non-

decreasing in the expected return ρ and non-increasing in the unsecured rate r.

The originator’s profit is increasing in the expected return ρ and in ` and decreasing in

the unsecured rate r.

Assets that are expected to be more valuable will be originated in larger quantities, making

the chain size higher. An increase in r on the contrary increases the originator’s costs and

thus reduces origination and chain size. Implication 3 is valid for any cost function. When

k is fixed, the financing needs of the originator are unaffected by r and ρ. In that case the

targeted chain is unchanged, and it follows directly from implication 1 that the sales of the

originator decrease and the price increases in ρ.

Impact of `. An increase in ` has a non-ambiguous positive effect on the origination level k

when B∗ is concave, so that the origination effect is positive. An increase in ` simultaneously

reduces the financing needs y(k), leading to shorter chains. Whether the origination or the

financing needs effect dominates depends on the flexibility of origination. We consider two

extreme cases:

Implication 4. For a fixed k, the size of the targeted chain is decreasing in `.
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Assume C to be linear: C(k) = ck, with c > τ . Then the originated volume k, the origi-

nator’s financing needs y(k), the size of the targeted chain and the holdings of the originator

and all intermediaries in a targeted chain all increase in the collateral value `.

See the Appendix C.3 for the proof. In the linear case origination is quite flexible and the

origination effect dominates, so that the originator’s financing needs increase. The targeted

intermediaries then have larger financing needs and all optimally target longer chains of

intermediaries.

To summarize, unless the cost function is too convex, an increase in the collateral value

of the asset will lead to more origination and higher total financing needs, so that more

layers will be needed to cover them entirely. Optimism leading to higher collateral values in

particular can be expected to favour the dissemination of an asset to many layers.

Impact of the network. d and q have no impact on an intermediary’s financing needs,

and it is straightforward to show that an increase in either parameter reduces the originator’s

costs and thus has a positive origination effect. But d and q also have a trading effect: if an

intermediary has access to more trading partners or knows they have a higher probability of

being active then this changes the probability H(ω) that an offer targeting type ω is accepted,

which thus changes the strategy of an intermediary with given financing needs. The optimal

offer ω must satisfy the first-order condition associated to (11), which can be written as:

H ′(ω)

H(ω)
+

1−B∗′(y − ω)

ω +B∗(y − ω)
(24)

The parameters d and q have an effect on both members of this equation. First, there is

a direct effect on the probability of acceptance and how this probability reacts to a change

in the targeted ω. Second, the probability of acceptance is affected for all the subsequent

intermediaries in the chain so that the shape of the benefit function is also altered.

The combination of both effects is in general ambiguous. However, we can study how

d and q affect a lower bound on the length of the targeted chain. Remember that ω∗ is

the ω maximizing the function ωH(ω), and thus depends only on parameters related to the
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network, d and q, and the distribution of cash G(.). Moreover, ω∗ satisfies by definition:

ω∗H ′(ω∗)

H(ω∗)
= −1 (25)

As is shown in the Appendix C.4, H ′/H is always positively impacted by an increase in d or

q, so that ω∗ is increasing in both parameters. As Ω(y) ≤ ω∗ by Theorem 1, the financing

needs of an intermediary along the targeted chain decrease by at most ω∗ at each step. To

reach financing needs of y
1

starting with some y, one surely needs at least b(y − y
1
)/ω∗c+ 1

steps. As moreover y
1
≤ ω∗, we obtain:

N(y) ≥ b y
ω∗
c. (26)

As ω∗ increases in d and q, we deduce:

Implication 5. The lower bound on the size of any targeted chain N(y) decreases when d

or q increase.

See the Appendix C.4. This result illustrates well the importance of endogenizing the

intermediaries’ trading decisions. One may have expected that increasing the number of

intermediaries at each layer or their probability to answer an offer would increase dissemi-

nation, as there is a higher probability to find someone ready to buy some of the asset. But

precisely for this reason, intermediaries tend to endogenously choose offers that are accepted

by fewer intermediaries, so that the length of the chain can ultimately decrease. This can

be best understood by considering the extreme case d → +∞: for any financing need y an

intermediary is sure that an offer to sell all his assets at price ρ will be accepted, so that it

is always optimal to target ω = y and the chain has a length of 1. Observe however that

the origination effect goes in the other direction: as d and q increase, it becomes cheaper to

finance the origination of assets, so that y(k) increases and thus N(y(k)) as well.

Impact of the distribution of cash G. The distribution G(.) has an impact through the

trading effect and the origination effect. For a degenerate distribution where all intermediaries

almost surely have the same level of cash ω∗, we have seen that Ω(y) = ω∗ for any y, hence the
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size of the targeted chain is equal to the lower bound given in equation (26). This observation

yields the following:

Implication 6. If cash is distributed according to some cdf. G(.) and ω∗ maximizes ωH(ω),

the length of the chain targeted by an intermediary with financing needs y is larger than if all

intermediaries had a cash level ω∗ for sure, while the originated volume is lower.

The asymmetric information between the proposer and the receiver thus has two effects

on chain length: the proposer faces a risk that the next intermediaries have a low level of cash,

in which case the offer may be rejected. This increases costs and thus reduces the originated

volume. But the proposer also lowers the targeted cash level below ω∗, which means that

intermediaries with lower financing needs can accept the offer, and more additional steps are

needed before enough cash is extracted to cover the initial financing needs.

The analysis of this section can be summed up in the following table:

[Insert Table 2 here.]

Interestingly, each parameter in the model plays a role via at most two of the three

possible effects we have identified. While all parameters have an impact on origination, d, q

and the distribution also impact the size of the targeted chain by modifying trading decisions,

and ` has an impact on financing needs but not on trading. While in all cases where there

are two effects they go in opposite directions, the relative strength of each depends on the

convexity of C, a more convex C implying a weaker origination effect.

Finally, the realized intermediation chain will in general be different from the targeted

chain. We use simulations to study how changing several parameters from their baseline

values affects the average length of the realized chain, the length of the targeted chain and

the level of origination (top panels of Fig. 4, 5 and 6). We use both the baseline cost function

and an infinitely convex cost function, thus suppressing the origination effect. We first look

at the impact of the distribution G(.) by changing its mean, and then its standard deviation.

The impact of the mean is non-monotonic, even after shutting down the origination effect,

which means that the trading effect can be ambiguous. A higher standard deviation seems
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to increase the size of the targeted chains (intermediaries are more cautious when making

an offer) but decreases the probability that a given offer is accepted, leading to a negative

impact on the realized length. ` tends to decrease chain length in this example (the financing

needs effect dominates), so that lower haircuts imply less dissemination, even though the

total originated volume increases.

[Insert Fig. 4, 5 and 6 here.]

4.3 Common exposure and dissemination

Consider an intermediary I who bought v0 units of the asset and then sold v < v0. I sold

exactly enough assets to cover his financing needs, did not keep any cash and thus ended

up with v0 − v units of the asset and pledged them as collateral against a debt of `(v0 − v).

The same is true at each layer in the realized intermediation chain, except the last one. The

asset’s final value is random and equal to ρ̃. The value ` is supposed to be such that the

probability to have ρ̃ < ` is negligible and debt is essentially risk-free (as we have assumed

so far). If however ` was chosen too optimistically and such a bad shock realizes, the value

of each intermediary’s assets is lower ex post than what he has to pay back to creditors:

Implication 7. Whenever ρ̃ < `, all intermediaries in the chain simultaneously lack of cash

to reimburse their debt.

A typical example of an abnormally high ` would be the run-up to the subprime crisis,

when the quality of mortgage loans was severely overestimated (see e.g. Rajan, Seru, and Vig

(2013)). In our model, when such an underestimation occurs origination increases, the asset

is disseminated to more regions (layers), and an unanticipated negative shock simultaneously

affects all participating intermediaries. Gennaioli, Shleifer, and Vishny (2013) also elaborate

on this assumption of optimism in a model of shadow banking. Such asset dissemination

through the shadow banking system seems to have been an important mechanism through

which problems with securitised products based on U.S. subprime mortgages spread to other

constituencies, including Europe, thereby creating an important international systemic risk.

Following Acharya, Pedersen, Philippon, and Richardson (2012), we can define a systemic

event as happening when the total value of assets in the system falls below z times their
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volume for some positive target level z, and define SESi the systemic expected shortfall of

intermediary I as the expected difference between z times his asset holdings and his equity

value, conditional on a systemic event. SESI measures the expected contribution of I to the

global shortfall in case of a systemic event. In this model it is equal to

SESI = (v0 − v)E(z − (ρ̃− `)|ρ̃− ` < z)Pr(ρ̃− ` < z)

SESI is proportional to v0−vI which are the asset holdings of intermediary I. What matters

for risk is then the asset holdings of an intermediary at a given layer, which would correspond

for instance to the number of units held by banks in a given geographical area, or pledged as

collateral to other banks in the same region. As we have shown in Implication 4, following

an increase in ` all intermediaries will choose to sell more of the asset. But this implies

that they will also all receive more units, so that the total impact on the asset holdings is

ambiguous. The bottom panels of Fig. 4, 5 and 6 show the impact of the collateral value and

the distribution of cash on asset holdings in the first three levels of the chain. For a fixed

origination a higher collateral value implies that more assets stay on the balance sheet of the

first bank, and the asset holdings at the next levels decrease. When the origination effect is

taken into account however, asset holdings increase at all levels, so that an underestimation

of risk leads to more dissemination.

5 Conclusion

Securing a cheap access to funding has been an increasingly important determinant of profits

for financial firms. When cash is in scarce supply, reducing funding costs is a powerful

motive to trade besides more traditional ones such as diversification. We propose a model

in which financial intermediaries differ only in their access to liquidity and show how these

intermediaries’ positions in an OTC market for a risky asset are determined by their liquidity

needs and the ease with which they can sell to partner intermediaries. Intermediation chains

arise naturally from such a model and assets get disseminated among many intermediaries,

depending on how cash is distributed among them.
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We show how funding conditions on the market for collateralized lending affect incentives

to keep the assets and use them as collateral vs. selling them, and thus the liquidity premium

at which these assets trade and the length of the intermediation chains. The volume of assets

originated increases when the collateral value of the asset increases, which can happen for

instance when agents are more optimistic about tail risk. Even though cheaper collateralized

funding decreases the need to sell assets to other intermediaries, through this origination

effect the length of intermediation chains and the dissemination of assets can increase.

As financial intermediaries are looking for cheaper sources of financing and cash is always

their cheapest option, it always gets used first, and then all their assets are pledged as

collateral. Haircuts are supposedly set so that the assets’ liquidation value is larger than the

value of the loan with a very high probability. When the asset’s value turns out to be lower,

then all members of the intermediation chain make losses at the same time due to their

endogenously chosen common exposure. This implies in particular that cheaper financing

through collateralized loans can increase the common exposure component of systemic risk.

Other applications such as the formation of rehypothecation chains or implications for a

central bank’s collateral policy are left for future research.
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A Figures and Tables

Offer Hp,vL

Offer Hp',v'L
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Figure 1: Two first layers of a network, example.

y1 y2 Ω* y3 y4 y5 y6

y0

0.05

0.1

0.15

0.2

0.25

Ω*

W

W1 W2 W3 W

Figure 2: Equilibrium Ω and Ωn for n ≤ 3.
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Figure 3: Equilibrium B∗ and B∗n for n ≤ 3.
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Figure 4: Impact of the distribution’s mean on chain length and asset holdings.

Reading (e.g. top left panel): when the distribution’s mean is 0.165 instead of its baseline value of 0.3, k,

N(k) and the averaged length of the realized chain are to about 100%, 155% and 75% of their values under

the baseline parameters, respectively.
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Figure 5: Impact of the distribution’s standard deviation on chain length and asset

holdings.

Reading (e.g. top left panel): when the distribution’s standard deviation is 0.12 instead of its baseline value

of 0.17, k, N(k) and the averaged length of the realized chain are to about 103%, 100% and 110% of their

values under the baseline parameters, respectively.
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Figure 6: Impact of the collateral value on chain length and asset holdings.

Reading (e.g. top left panel): when the collateral value ` is 0.68 instead of its baseline value of 0.8, k, N(k)

and the averaged length of the realized chain are to about 93%, 104% and 114% of their values under the

baseline parameters, respectively.
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Layer v0 p v Holdings ω Ω B pa pr pc

Orig. 1.027 2.71 0.384 0.715 0 0.130 0.390 1 0 0

1 0.384 2.99 0.203 0.222 0.315 0.121 0.274 0.794 0.1867 0.0193

2 0.202 3.26 0.097 0.144 0.314 0.103 0.164 0.468 0.1431 0.1829

3 0.097 3.41 0.049 0.081 0.310 0.080 0.097 0.1436 0.0784 0.246

4 0.049 3.45 0.032 0.045 0.306 0.062 0.067 0.0178 0.0211 0.1047

5 0.030 3.5 0.014 0.030 0.304 0.037 0.032 0.0009 0.0024 0.0145

6 0.012 n.a. n.a. 0.012 0.203 n.a. n.a. n.a. 0.0001 0.0008

Table 1: Simulation results. Empirical averages under the baseline parameters.

Param./Effect Trading Financing needs Origination

ρ 0 0 +

` 0 − +†

r 0 0 −
d −∗ 0 +

q −∗ 0 +

Asym. info. +∗ 0 −

Table 2: Direction of the different effects on the size of the targeted chain.

The effects denoted with a ∗ are based on the study of a lower bound on chain size only. The effect denoted

with a † is based on the assumption that B∗ is concave.

B Appendix-Proof of Theorem 1

We prove Theorem 1 in three steps. We start by redefining strategy and benefit functions in the

auxiliary games Gn. We then define recursively a function denoted B∗n(y) and show a number of its

properties in Lemma 1. Then we show in Proposition 2 that the equilibrium benefit function for

intermediaries accepting offers coincides with B∗n(y). We conclude by showing how the properties

of B∗n(y) shown in Lemma 1 imply the theorem.
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B.1 Definition of benefit and strategy functions in the games Gn
In what follows, it will be convenient to define the transactions value of an offer (p, v) made by an

intermediary with financing needs y:

T (y; p, v) =
1

r

(
ry − (ρ− p)v − r[y − (p− `)v]+

)
Assume intermediary I is the first player in the game Gn+1, faces the offer (p0, v0) and has

positive financing needs y (the case of null y is trivial). Notice that I could be the originator O

having to finance the same amount. If I proposes (p, v), then a receiver R plays the game Gn as the

first player, faces (p, v) and has cash ω, giving financing needs yR = [(p− `)v − ω]+. Let us denote

by Bn(p, v, yR) R’s equilibrium expected benefit by making a proposal in Gn. R’s expected profit if

he accepts (p, v) is

Πn(p, v, yR) = (ρ− p)v − ryR + rBn(p, v, yR) with yR = [(p− `)v − ω]+. (27)

Denote Wn+1(p, v) the associated threshold, that is the minimum cash for R that ensures non-

negative profit to R:

Wn+1(p, v) = inf{ω such that Πn(p, v,max[(p0 − `)v0 − ω, 0]) ≥ 0}.

In Gn+1, I expects the acceptance probability to be given by H(Wn+1(p, v)), so Property 1

holds. Furthermore, the threshold is always positive. If that’s not the case, then I’s benefit is equal

to H(0)T (y; , p, v). Wn+1(p, v) = 0 implies that rBn((p− `)v) = −(ρ− p)v + r((p− `)v).

If y ≥ (p − `)v we get H(0)T (y; p, v) ≤ H(0)Bn(p, v, (p − `)v). Since I can get Bn(y) ≥
Bn(p, v, (p − `)v) by playing the strategy chosen by an intermediary with financing needs y in Gn
this is surely not optimal.

If y < (p − `)v we have H(0)T (y; p, v) = H(0)(Bn(p, v, (p − `)v) + (y − (p − `)v)). I cannot

directly get Bn(p, v, (p − `)v) as his financing needs are too low. Notice however that for any y

and any dy we have Bn(p; v, y + dy) ≤ Bn(p, v, y) + H(0)dy as the best an intermediary can hope

for with extra financing costs dy is to have the full amount covered with the maximal probability

H(0). This gives us that necessarily Bn(p, v, (p − `)v) ≤ Bn(p, v, y) + H(0)((p − `)v − y). Thus

H(0)T (y; , p, v) ≤ H(0)Bn(p, v, y)− ((p− `)v − y)(1−H(0)) < H(0)Bn(p, v, y). Since by definition

v ≤ v0, I can at least get Bn(p, v, y) and we have a contradiction.

The maximal benefit that I can expect is thus

Bn+1(p0, v0, y) = max
p,v,p≤ρ,v≤v0

H(Wn(p, v))T (y; p, v) (28)

This defines the equilibrium functions Bn recursively.

36



B.2 Definition and properties of B∗n

We want to show that the functions Bn actually have a simple form. Starting with B∗1 , let us define

recursively the functions B∗n for n ≥ 1 by:

B∗n(y) = max
ω≤y

H(ω)(ω +B∗n−1(y − ω)) (29)

The next lemma collects useful properties on the functions B∗n:

Lemma 1. The functions B∗n satisfy for all n ≥ 1:

1. Monotony and contraction: for y′ < y, 0 ≤ B∗n(y)−B∗n(y′) ≤ H(0)(y − y′).

2. Let bmax
n be the maximum value of B∗n and ωn+1 the maximizer of H(ω)(ω + bmax

n ). We have

ωn+1 > 0 and bmax
n+1 = H(ωn+1)(ωn+1 + bmax

n ) (30)

The sequence bmax
n is increasing with limit bmax and the sequence ωn is decreasing with limit

ωmax where (bmax, ωmax) satisfy:

bmax = H(ωmax)(ωmax + bmax) and
H ′(ωmax)

H(ωmax)
+

1

ωmax + bmax
= 0. (31)

Define y1 = ω∗ and for any n ≥ 1, yn+1 = yn + ωn+1. B∗n(y) strictly increases for y < yn

and is constant for y ≥ yn. B∗n is differentiable at yn with a null derivative.

3. There exists y
n
< yn such that B∗n(y) = B∗n−1(y) for y ≤ y

n
and B∗n(y) > B∗n−1(y) for y > y

n
.

Moreover y
n+1

> y
n

and the sequence y
n

goes to +∞.

Note that the contraction property implies the continuity of B∗n.

Proof: 1. The monotony is straightforward by induction. Then B∗1 trivially satisfies the

contraction inequality. Let B∗n−1 satisfy it and pick y′ < y. Denote ω̂ a maximizer of H(ω)(ω +

B∗n−1(y − ω)) and ω̂′ a maximizer of the same expression with y′.

Assume ω ≤ y′. Then by definition B∗n(y′) ≥ H(ω)(ω +B∗n−1(y′ − ω)). Thus

0 ≤ B∗n(y)−B∗n(y′) ≤ H(ω)(B∗n−1(y − ω)−B∗n−1(y′ − ω)) ≤ H(0)2(y − y′)

Assume ω > y′. Using both inequalities B∗n(y′) ≥ H(y′)y′ and H(ω) ≤ H(y′), we obtain

0 ≤ B∗n(y)−B∗n(y′) ≤ H(y′)(ω +B∗n−1(y − ω)− y′).

By the contraction property of B∗n−1, B∗n−1(y − ω) ≤ H(0)(y − ω) since B∗n−1(0) = 0. This finally

gives 0 ≤ B∗n(y)−B∗n(y′) ≤ H(0)(y − y′).
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2. Consider any b ≥ 0. Under log-concavity of H, the log of H(ω)(ω + b) is concave with a

derivative equal to
H ′(ω)

H(ω)
+

1

ω + b
. (32)

It follows that the maximizer of maxω≥0H(ω)(ω + b) is unique, and positive if H′(0)
H(0) + 1

b > 0.

Defining bmax
n and ωn as in the Lemma, we prove by induction that H′(0)

H(0) + 1
bmax
n

> 0 and thus that

ωn+1 > 0 for any n.

When there is a single layer, b = 0 and the assumption is satisfied with a maximum reached at

ω∗. If the induction assumption is valid for a given level n, then ωn+1 > 0 and is characterized by:

H ′(ωn+1)

H(ωn+1)
+

1

ωn+1 + bmax
n

= 0. (33)

We want to show that H′(0)
H(0) + 1

bmax
n+1

> 0. The log concavity of H implies H′(0)
H(0) ≥

H′(ωn+1)
H(ωn+1) . Using

the first-order condition (33), we have

H ′(0)

H(0)
+

1

bmax
n+1

≥ 1

bmax
n+1

− 1

ωn+1 + bmax
n

which is positive given the definition of bmax
n+1. This proves that ωn is positive for any n and the

sequence (bmax
n , ωn) is characterized by

bmax
n+1 = H(ωn+1)(ωn+1 + bmax

n ) and
H ′(ωn+1)

H(ωn+1)
+

1

ωn+1 + bmax
n

= 0. (34)

It is trivial to show that bmax
n is increasing, ωn decreasing and they converge to (bmax, ωmax).

That B∗n+1(y) is increasing in y and constant for y larger than some threshold yn+1 is easily

shown by induction. Furthermore, Bn+1(y) = H(ω)(ω + bmax
n ) for y − ω > yn. Hence bmax

n+1 is

the maximum of B∗n+1, reached at yn+1 = yn + ωn+1 and B∗n+1 is constant for y > yn+1. By

the induction assumption B∗n is differentiable at yn. Hence the envelope theorem applies: B∗n+1 is

differentiable at yn+1 and B∗′n+1(yn+1) = H(ωn+1)B∗′n (yn) = 0.

3. At an optimal target ω ∈ Ωn(y): B∗n+1(y) = H(ω)(ω +B∗n(y − ω)). The following holds:

B∗n(y) ≤ B∗n+1(y) ≤ H(0)(ω +B∗n(y − ω)) ≤ H(0)(ω +B∗n(y)), at ω = Ωn(y)

The first inequality holds because a player with needs y playing Gn+1 can always play as in Gn
hence secure at least B∗n(y). The second inequality holds because H is non-increasing and B∗n

non-decreasing.

This implies ω ≥ B∗n(y)(1 − H(0))/H(0). For y ≥ ω∗ = y1, B∗n(y) ≥ H(ω∗)ω∗ gives a lower

bound to any target: ωmin = H(ω∗)ω∗(1−H(0))/H(0).

An intermediary playing Gn+1 with financing needs equal to y = y
n

+ ωmin thus chooses ω ≥
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ωmin, so that his target has financing needs equal to y−ω ≤ y
n
. Thus B∗n+1(y) = H(ω)(ω+B∗n(y−

ω)) = H(ω)(ω + B∗n−1(y − ω)). The intermediary would take the same decision if he were playing

Gn, which shows that y
n+1
≥ y

n
+ωmin. Thus the sequence y

n
strictly increases and goes to infinity.

B.3 Proof that in equilibrium Bn(p0, v0, y) = B∗n(y) - Lemmas

We now prove the following proposition, which says that the benefit of an intermediary with financ-

ing needs is precisely equal in equilibrium to the quantity B∗n(y) just defined.

Proposition 2. For any n ≥ 1, let intermediary I accept offer (p0, v0) in Gn and have positive

financing needs y. I’s expected benefit Bn(p0, v0, y) depends only on y and not on p0, v0 separately,

and is equal to B∗n(y).

Furthermore, let Ωn+1(y) denote a maximizer (surely strictly positive) of B∗n+1(y) = max
ω≤y

H(ω)(ω+

B∗n(y − ω)). If I accepts an offer and has y < yn+1, I’s optimal offer is uniquely characterized by

the two equations

(p− `)v = y and (ρ− p)v = r(y − Ωn+1(y)−B∗n(y − Ωn+1(y)). (35)

The proof relies on the lemmas 2 to 4. In these lemmas, intermediary I is the first player in

the game Gn+1 so I’s expects the receiver’s benefit to be given by B∗n. I faces offer (p0, v0) and has

positive financing needs y. We first show that an optimal offer never over-finances the needs.

Lemma 2. Let I accept (p0, v0) and have positive financing needs y. I makes an offer (p, v) that

has a cash value not greater than y.

Proof. By contradiction let us assume (p− `)v > y. I’s transaction value satisfies rT (y; p, v) =

ry − (ρ− p)v. Let us distinguish two cases.

In the first case, p = ρ; I’s transaction value is equal to y for offers (ρ, v′) with v′ close to v as

long as y < (ρ − `)v′ and provides the benefit H(Wn+1(ρ, v′))y to I. We know that the threshold

Wn+1(ρ, v′) is equal to the cash value (ρ − `)v′ (Point 3 of Property 1). Therefore, decreasing v

allows to increase the chances of success, hence I’s expected benefit. A contradiction.

In the second case, p < ρ. For offers (p′, v′) close to (p, v) so that the cash value still exceeds y,

y < (p′− `)v′, I’s transaction value satisfies rT (y; p′, v′) = ry− (ρ−p′)v′ and I’s expected benefit is

H(Wn+1(p′, v′))(ry − (ρ− p′)v′).

We show that the offer can be adjusted in such a way that (ρ− p′)v′ is constant and the acceptance

probability increases, that is Wn+1(p′, v′) decreases.
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By the induction assumption, the benefit of a receiver R accepting the offer and with financing

needs yR is given by B∗n(yR) independently of the offer. Recall that at the threshold of an offer

with p < ρ, financing needs are positive, yR > 0 and R’s profit is null (from Proposition ??).

Applying these properties to offers (p, v) and (p′, v′) and yR = (p − `)v − Wn+1(p, v) and y′R =

(p′ − `)v′ −Wn+1(p′, v′), we have

(ρ− p)v − ryR + rB∗n(yR) = 0 and (ρ− p′)v′ − ry′R + rB∗n(y′R) = 0.

Choose v′ < v and p′ > p so as to keep (ρ − p)v = (ρ − p′)v′ (this is possible since p < ρ);

surely (p − `)v > (p′ − `)v′ and for v′ close enough to v, (p′ − `)v′ > y; the above equalities imply

y′R−B∗n(y′R) = yR−B∗n(yR). Hence y′R = yR since, by the induction assumption, B∗n is a contraction

with a constant less than H(0) < 1. Hence (p− `)v −Wn+1(p, v) = (p′ − `)v′ −Wn+1(p′, v′). Using

(p− `)v > (p′ − `)v′, it follows that Wn+1(p, v) > Wn+1(p′, v′), the desired inequality.

Lemma 3. I’s benefit from offering (p, v) satisfies

H(Wn+1(p, v))T (y; p, v) = H(Wn+1(p, v))(Wn+1(p, v) +B∗n((p− `)v −Wn+1(p, v)) (36)

≤ H(Wn+1(p, v))(Wn+1(p, v) +B∗n(y −Wn+1(p, v)). (37)

It follows that Bn+1(p0, v0, y) ≤ B∗n+1(y).

Proof. From Lemma 2, I’s optimal offer is less than his financing needs, which yields a trans-

action value of the form

rT (y; p, v) = −(ρ− p)v + r(p− `)v = (1 + r)(p− τ)v. (38)

So R’s profit with cash ω and positive needs yR writes

Πn(p, v, yR) = −rT (y; p, v) + rω + rB∗n((p− `)v − ω). (39)

At the target, this profit is null: thus T (y; p, v) = rω+ rB∗n((p− `)v−ω) at ω = Wn+1(p, v), which

gives (36). The inequality (37) follows since (p− `)v ≤ y and B∗n is non-decreasing.

Using the definition (29) of B∗n+1(y), the term on (37) is bounded above by B∗n+1(y). Thus

the maximum of H(Wn+1(p, v))T (y; p, v) over the feasible (p, v), Bn+1(p0, v0, y), is not larger than

B∗n+1(y).

Lemma 4. I’s optimal offer exactly covers his financing needs when y ≤ yn+1.
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Proof. We show that for y small enough, (p− `)v < y is excluded. The basic intuition is easy: as-

suming the receiver accepts the offer, the transaction value that accrues to I is withdrawn from R’s

profit as can be seen from (38) and (39); by keeping this transaction value constant and increasing

R’s needs, R can draw more benefit from his partner intermediaries if his financing needs are low

enough, lower than yn; this yields the possibility for an improvement for both. At the opposite, if

R’s financing needs are larger than yn, the situation is akin to a zero-sum game, and increasing the

cash value and R’s financing needs is not beneficial. Let us prove this formally.

Step 1: an optimal offer (p, v) has (p− `)v < y only if the targeted R financing needs are above

yn: (p− `)v −Wn+1(p, v) ≥ yn.

Start with an offer (p, v) with (p − `)v < y. Increase the price and decrease the volume so as

to leave (p− τ)v constant. The transaction value is not affected. The financing needs of the target

receiver are equal to yR = (p− `)v−ωR and thus increase. If yR < yn, the receiver’s benefit B∗n(yR)

increases (see (39)). Thus the receiver at the threshold Wn+1(p, v) makes a positive profit. Since

Wn+1(p, v) > 0 (as proved in B.1) there are some receivers with lower cash who accept the new offer

and the acceptance probability is increased: (p, v) cannot be optimal.

Step 2: an optimal offer (p, v) has (p− `)v < y only if y ≥ yn+1 where yn+1 = yn + ωn+1.

From Step 1 yR = (p − `)v −Wn+1(p, v) ≥ yn. Surely p < ρ because yR > 0. We show that

Wn+1(p, v) ≥ ωn+1. This will give the result.

By contradiction assume Wn+1(p, v) < ωn+1. Consider an increase in p to p′ small enough so

that p′ < ρ and (p′ − `)v < y. The threshold increases: it satisfies

(ρ− p)v = r(yR −B∗n(yR)) where yR = (p− `)v −Wn+1(p, v))

By the contraction property, yR − B∗n(yR) is increasing in yR. Hence, an increase in p decreases

yR: the increase in (p− `)v is more than compensated by the increase in Wn+1(p, v): Wn+1(p′, v) >

Wn+1(p, v) and yR > y′R. From (36) in Lemma 3, I’s expected benefit writes

H(Wn+1(p′, v))(Wn+1(p′, v) +B∗n(y′R)).

We treat first the easy case where yR = (p− `)v −Wn+1(p, v) > yn. For a marginal increase in

p′, y′R > yn. Thus I’s expected benefit is given by H(Wn+1(p′, v))(Wn+1(p′, v) + bmax
n ). Recall the

function H(ω)(ω + bmax
n ) increases for ω < ωn+1: the increase in p increases Wn+1(p, v) hence I’s

profit, a contradiction.

Assume now yR = yn. The marginal change contemplated above makes y′R fall below yn, and

I’s expected benefit is given by H(Wn+1(p, v))(Wn+1(p, v)+B∗n(y′R)). B∗n(y′R)−B∗n(yn) is negligible

because B∗n has a null derivative at yn = yR. I’s expected benefit is thus still increasing at p if
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Wn+1(p, v) < ωn+1.

B.4 Proof that in equilibrium Bn(p0, v0, y) = B∗n(y) - Conclusion

We can now conclude the proof of Proposition 2. It is first easy to check that the Proposition is

valid for n = 1. Assume it is valid up to some n ≥ 1 and let I play Gn+1 and accept an offer (p0, v0).

We know from Lemma 3 that B∗n+1(y) is an upper bound on I’s benefit. We show that I’s

optimal offer reaches the benefit B∗n+1(y). Let Ωn+1(y) denote a maximizer (surely strictly positive)

of B∗n+1(y) = max
ω≤y

H(ω)(ω +B∗n(y − ω)).

We consider two cases. In the first case the optimal offer is unique.

Case 1 : y < yn+1. From Lemma 4, the offer has surely (p − `)v = y. To achieve B∗n+1(y)

involves choosing (p, v) that satisfies Wn+1(p, v) = Ωn+1(y). This implies that I’s optimal offer

must satisfy the two equations

(p− `)v = y and (ρ− p)v = r(y − Ωn+1(y)−B∗n(y − Ωn+1(y)). (40)

A pair (p, v) satisfying (40) is unique, has a price p < ρ and a positive value for v. To see this,

remember that z − B∗n(z) > 0 for a positive z. Applied to z = y − Ωn+1(y), this gives that both

(p− `)v and (ρ− p)v are positive, which implies p < ρ and a positive value for v.

Thus, B∗n+1(y) can be achieved by a feasible offer if (and only if) v ≤ v0. We show that it is

true if I accepts the offer. I’s expected profit π when offering (p, v) is

π = (ρ− p0)v0 − ry +H(Ωn+1(y))(ry − (ρ− p)v).

I accepts (p0, v0) only if π is non-negative. This implies (ρ − p0)v0 > (ρ − p)v: Otherwise, π ≤(
(ρ−p)v−ry

)
(1−H(Ωn+1(y)), but ry−(ρ−p)v = r(Ωn+1(y)+B∗n(y−Ωn+1(y)) is positive (the second

equality in (40)), a contradiction. So we have (ρ−p0)v0 > (ρ−p)v and (p−`)v = y = (p0−`)v0−ω0.

If v ≥ v0, the first inequality yields p0 < p and the second p0 ≥ p: a contradiction.

Case 2 : y ≥ yn+1. We have Ωn+1(y) = βn+1, and B∗n(y−Ωn+1(y)) = bn. The same argument as

in Step 1 can be used. Hence the offer (p, v) that satisfies (p−`)v = y and (ρ−p)v = r(y−βn+1−bn))

is feasible for I and yields I’s maximal benefit. The only difference with case 1 is that there are

other offers that reach the same benefit : decrease p so as to keep (p−τ)v constant and the financing

needs of R larger than yn.
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C Appendix-Other proofs

C.1 Proof of Corollary 1

We first show that Z(y) = y − Ω(y) is increasing. Take two intermediaries I and I ′ with levels of

financing needs y and y′, y′ > y. Assume I ′ chooses Ω(y′) = Ω(y) + (y′ − y), so that Z(y) = Z(y′).

We will show that I ′ has an incentive to decrease Ω(y′) (this reasoning assumes profit is concave,

which is true at least locally).

Assume y − Ω(y) > 0. From the first-order condition associated to (11) we deduce:

∂B∗(y′)

∂ω
|ω=Ω(y′) = H ′(Ω(y′))(Ω(y′) +B∗(y′ − Ω(y′))) +H(Ω(y′))(1−B∗′(y′ − Ω(y′)))

= H ′(Ω(y′))(Ω(y′) +B∗(y − Ω(y)))− H(Ω(y′))H ′(Ω(y))

H(Ω(y))
(Ω(y) +B∗(y − Ω(y)))

= H(Ω(y′))

[(
H ′(Ω(y′))

H(Ω(y′))
− H ′(Ω(y))

H(Ω(y))

)
(Ω(y) +B∗(y − Ω(y))) +

H ′(Ω(y′))

H(Ω(y′))
(y′ − y)

]
Since y′ > y and H ′(Ω(y′)) ≤ 0 the second term is negative. When H is log-concave, since

Ω(y′) = Ω(y) + y′ − y > Ω(y) we have (H ′(Ω(y′))/H(Ω(y′)))− (H ′(Ω(y))/H(Ω(y))) ≤ 0, and thus

the derivative of I ′’s profit when he chooses Ω(y′) = Ω(y)+y′−y is negative, hence the optimal Ω(y′)

needs to be smaller. Finally, if y−ω = 0, since y′−ω′ must be positive necessarily y′−ω′ ≥ y−ω.

C.2 Proof of Proposition 1

The originator’s profit if he chooses k is equal to:

ΠO(k) = ρk − C(k)− r(C(k)− `k −B∗(C(k)− `k))

The derivative of the profit is

∂ΠO

∂k
= ρ− C ′(k)− r(1−B∗′(C(k)− `k)(C ′(k)− `).

The first-order condition gives that the optimal k satisfies (21). The second derivative is negative

at the optimal k. The cross derivative ∂2ΠO
∂k∂ρ is equal to 1. The monotonicity of the optimal k with

respect to ρ follows.

p = ρ is optimal if y(k) = C(k)− `k is less than y
1
. An optimal k must necessarily be such that

C ′(k) > `, so that increasing ρ will increase the chosen k until y
1

is reached. This shows that surely

for ρ large enough the optimal k will give y(k) > y
1

and thus an offered price p < ρ.

The derivative ∂ΠO
∂k decreases with r hence the optimal investment is non-increasing with r.

Similarly, when B∗ is concave, the derivative increases with ` hence the optimal investment is

non-decreasing in `.
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C.3 Proof of Implication 4

Considering the originator’s optimal choice k, we have:

∂Π2
O

∂k∂`
= r[1−B∗′(y(k))−B∗′′(y(k))(c− `)k],

∂Π2
O

∂2k
= rB∗′′(y(k))(c− `)2

At the optimal solution the second-order condition is satisfied and thus B∗′′(y(k)) ≤ 0. This gives:

∂k

∂`
=

k

(c− `)
− 1−B∗′(y(k))

B∗′′(y(k))(c− `)2
> 0.

Thus the originated volume increases when ` is higher. Moreover,

∂y(k)

∂`
= (c− `)∂k

∂`
− k = − 1−B∗′(y(k))

B∗′′(y(k))(c− `)
> 0

This proves that k and y(k) increase when ` increases.

Let us consider now the targeted chain. Since Z(y) increases with y and is independent of `,

the financing needs of the targeted intermediaries are Z(y(k)), Z2(y(k)), Z3(y(k)) etc.. all increase.

This implies that the length of the targeted chain does not decrease. The volume sold depends on

`, so write it as V (y, `). V is increasing in y (Corollary 1) and ` (Implication 1). Thus the first

intermediary’s offered volume V (Z(y(k)), `) increases with `. The same argument applies to the

volume V (Zt(y(k)), `) at each level.

C.4 Proof of Implication 5

It is enough to show that for any ω the quantity H ′(ω)/H(ω) is increasing in q and d. We have:

H ′(ω)

H(ω)
=
−dqg(ω)(1− q + qG(ω))d−1

1− (1− q + qG(ω))d

which gives:

∂H ′(ω)/H(ω)

∂q
=

dg(ω)(1− q + qG(ω))d−2

H(ω)2
φq(G(ω))

with φq(G(ω)) = −1 + (1− q + qG(ω))d + dq(1−G(ω))

G(ω) is necessarily between 0 and 1. We have φq(1) = 0 and φq is decreasing in G(ω), so that

φq(G(ω)) is always positive, which shows that H ′(ω)/H(ω) is increasing in q. Similarly for d:

∂H ′(ω)/H(ω)

∂q
=

qg(ω)(1− q + qG(ω))d−1

H(ω)2
φd(G(ω))

with φd(G(ω)) = −1 + (1− q + qG(ω))d − d ln(1− q + qG(ω))
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We find again that φd(1) = 0 and φd is decreasing in G(ω), showing that H ′(ω)/H(ω) is increasing

in d and concluding the proof.
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