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1 Introduction

The asset management industry has experienced tremendous growth with current assets under

management comparable to global GDP. Not surprisingly, institutional investors now dominate

trading activities in all financial markets.1 While institutions assist their clients in making in-

vestment decisions, agency problems may simultaneously arise. In particular, potential moral

hazard emerges when institutions’ efforts are largely unobservable, raising the issue of optimal

contract design. Given institutions’ superior capabilities to acquire information, it is commonplace

for clients to delegate information acquisition to them and provide incentives for them through

optimal contracting. However, the joint determination of optimal contracts, information acquisition

delegation and equilibrium asset pricing has not yet been fully explored in the literature.2

This paper contributes to the literature by solving for optimal contracts characterized in a

general space and equilibrium asset prices in an economy with multiple principal-agent pairs. I

show that the optimal contracts for delegated information acquisition depend on agents’ forecasting

accuracy for asset prices and payoffs: agents receive high compensation when they produce accurate

forecasts. Moreover, I find strategic complementarities in the delegation of information acquisition:

the more principals hire agents to acquire information, the more others are willing to do so. As more

principals hire agents to acquire information, asset prices become less noisy. As a result, agents

are more willing to acquire information because they can forecast asset prices more accurately.

Thus, the agency problems are mitigated and other principals are encouraged to hire agents. Such

strategic complementarities yield multiple equilibria, and can explain many phenomena, including

asset price jumps, herding behaviour, home bias and idiosyncratic volatility comovement.

The model of this paper features delegated information acquisition, optimal contract design, and

equilibrium asset pricing, introducing a two-period economy with one risky asset and one risk-free

asset. The risky asset’s payoff has two components: the first can be learned by agents and is called

fundamental value, while the other cannot be learned and produces residual uncertainty. This

economy has a market maker, noisy traders and a mass of principal-agent pairs. The principals are

risk neutral while the agents are risk averse. Different principals cannot share agents, and different

agents cannot share principals. Before trading, the principals choose whether to hire agents to

acquire information regarding fundamental value. When deciding to hire agents, principals design

optimal contracts that provide incentives for agents to acquire costly information, after which agents

1French (2008) documents that financial institutions accounted for more than 80% ownership of equities in the
U.S. in 2007, compared to 50% in 1980. TheCityUK (2013) estimates the size of assets under management is around
$87 trillion globally, which is equal to global GDP. Meanwhile, Jones and Lipson (2004) reports that institutional
trading volume reached 96% of total equity trading volume in NYSE by 2002.

2Papers studying optimal contracts without any asset pricing implications include Bhattacharya and Pfleiderer
(1985) and Dybvig et al. (2010). Papers studying institutions’ impacts on asset pricing without asymmetric informa-
tion or information acquisition include Vayanos and Woolley (2013) and Basak and Pavlova (2013). The most relevant
papers are by Kyle, Ou-Yang and Wei (2011) and Malamud and Petrov (2014). However, they only consider restricted
contract space. More importantly, my research has new asset pricing implications, such as strategic complementarities.
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provide forecasts to their corresponding principals. The feasible contracts are general functions of

agents’ forecasts, the asset price and the payoff. I model agency problems by assuming that agents

take hidden actions when acquiring information. When the market opens, the principals submit

market orders to the market maker based on agents’ forecasts. Having received all orders from the

principals and the noisy traders, the market maker then sets the price.

The generality of this model relies on its broad interpretations. The principal-agent pairing

can be interpreted as either that between fund managers and in-house analysts, or that between

the pension fund trustees/board of directors (within funds) and fund managers. This model can

unify both, because the optimal contract problems in the two contexts are essentially equivalent

given that agents construct portfolios based on forecasts and principals can directly observe agents’

portfolios. Therefore, the assumption regarding who invests is not crucial, and the aforementioned

parsimonious model is a natural setting to study information acquisition incentives.

I show that the optimal contracts depend on the agents’ forecasting accuracy for the asset

price and the payoff. Agents can forecast the asset price and payoff accurately only if they acquire

information. Thus, the agents’ efforts are related to their forecasting accuracy, which determines

their compensation. Specifically, agents receive high compensation when they forecast accurately -

in contrast to an economy without agency problems, in which the compensation is constant. As an

incentive for accurate forecasting, the bonus decreases with price informativeness and increases with

residual uncertainty. When the price becomes more informative or residual uncertainty decreases,

it is easier for agents to use information to forecast accurately and then receive high compensation.

Consequently, agents are more willing to exert efforts and principals can accordingly provide fewer

incentives. These results predict that the bonus is larger for professionals who trade small/growth

stocks featuring greater residual uncertainty.

Furthermore, I find that the delegation of information acquisition exhibits strategic comple-

mentarities. Price informativeness has two counteractive effects: the first is to lower trading profit;

and, the second is to mitigate agency problems. Whereas the first effect leads to standard strategic

substitutability due to competition in trading, the strategic complementarities in information acqui-

sition delegation originates from the effect of price informativeness on mitigating agency problems.

When more principals hire agents to acquire information, the asset price becomes less noisy. As

a result, agents are more willing to acquire information because they can forecast the asset price

more accurately, and thus agency problems are mitigated. Clearly, strategic complementarities in

information acquisition delegation emerge when price informativeness has a larger impact on miti-

gating agency problems than that on lowering trading profits. This only occurs when the residual

uncertainty is large and compensation must consequently rely largely on agents’ forecasts for the

asset price. This mechanism causes principals to coordinate information acquisition delegation,

therefore introducing the possibility of multiple equilibria. The multiplicity of equilibria may lead

to the economy switching between low-information and high-information equilibria without any
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relation to fundamentals, leading to jumps in asset price and price informativeness.

This model, to my knowledge, is new to the literature to combine optimal contracts characterized

in a general space, equilibrium asset pricing and delegated information acquisition. Meanwhile, it

shows that the agency problem in information acquisition delegation is a new source for strategic

complementarities. In particular, my model yields closed-form solutions for both optimal contracts

and equilibrium asset pricing. Although this model is intentionally stylized to focus on information

acquisition delegation, it captures realistic institutional features. Moreover, it has a number of

implications as follows.

The first implication relates to home bias, a long-standing puzzle.3 A plausible explanation

is that investors have superior information on home assets. However, Van Nieuwerburgh and

Veldkamp (2009) argue that investors can easily acquire information about other assets, which

could eliminate the information advantage of home investors and mitigate home bias.4 Although

investors can freely acquire information, I show that agency problems lead to home bias: investors

tend to acquire more information about assets for which they have an information advantage. I

extend the model to consider two groups of principals (A and B) and two risky assets (X and Y );

group A (B) is endowed with private information only about asset X (Y ). I show that group A has

higher incentives to acquire information on asset X relative to asset Y , and vice versa. Group A can

use the endowed information to monitor agents, and thus group A’s agency problems are less severe

when hiring agents to acquire information about asset X relative to asset Y .5 Consequently, group

A is encouraged to hire agents to acquire information and trade more on asset X. This result is in

direct contrast to that of the economy without agency problems, in which the decreasing marginal

benefit of information discourages group A from acquiring information about asset X. Interpreting

group A as home investors on asset X implies that agency problems can explain home bias.

The mechanism above for home bias can also explain industry bias: investors trade more on

the assets within their expertise. This prediction is consistent with Massa and Simonov (2006),

who document that Swedish investors buy assets highly correlated with their non-financial income.

Moreover, because endowed information is more valuable in monitoring agents when the assets have

greater residual uncertainty, the home/industry bias is stronger for these assets. This prediction is

consistent with Kang and Stulz (1997) and Coval and Moskowitz (1999), who find that the home

bias of U.S. fund managers is stronger when they trade small stocks.

The next implication relates to herding, defined as any behavioral similarity caused by inter-

3Home bias is well documented by Fama and Poterba (1991), Coval and Moskowitz (1999) and Grinblatt and
Keloharju (2001). Despite large benefits from international diversification, Fama and Poterba (1991) find that
households invest nearly all of their wealth in domestic assets. For example, they find that U.S households invest
around 94% of their equity portfolio in the domestic market, while this number is 82% in the UK.

4Constraint on international capital flow may explain home bias. However, it is not a major concern currently. In
particular, the recent studies (Seasholes and Zhu, 2010 and Coval and Moskowitz, 1999) find that households/fund
managers also have a strong home bias in the U.S. market, which suggests this explanation is not satisfactory.

5Normally, the principals can use their private information in the subjective evaluation of agents. Even if the
private information is not verifiable, some mechanisms, such as reputation concern, could reveal these information.
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actions amongst individuals (Hirshleifer and Teoh, 2003). I extend the model to assume that each

principal can choose to hire his agent to acquire either an exclusive signal or a common signal: the

former is only accessible to his agent and is conditionally independent of others, while the latter is

accessible to any agent. Under agency problems, I show that principals herd to acquire the common

signal when the residual uncertainty is sufficiently large. Herding makes the price sensitive to the

common signal itself. Thus, agents are willing to obtain the common signal because this allows

them to easily forecast the asset price. In particular, when the residual uncertainty is large, herding

emerges because its impact on mitigating agency problems is larger than that on lowering trading

profit. This result is in clear contrast to that of the economy without agency problems, in which

principals prefer the exclusive signals due to the substitute effect.

Moreover, my model has additional applications. For example, I show that idiosyncratic

volatility comovement occurs in a multi-asset extension, in which principals incentivize agents

to acquire information on each asset through their forecasting accuracy for the prices of assets with

correlated fundamentals. An increase on one asset’s idiosyncratic volatility, perhaps due to more

noisy traders, discourages information acquisition and consequently leads to higher idiosyncratic

volatilities on other correlated assets.

This paper is related to several strands of the literature. First, it is related to literature regarding

the optimal contracting in delegated portfolio management, such as Bhattacharya and Pfleiderer

(1985), Stoughton (1993), Dybvig, Farnsworth and Carpenter (2010) and Ou-Yang (2003). However,

the asset prices play no roles in the aforementioned contracting work. My work on the contracting

is most related to Dybvig et al. (2010). They study the optimal contract problem in a complete

market, in which the asset price has no informational role; they find that the optimal compensation

involves a benchmark. In contrast to their work, I consider the optimal contracts in general

equilibrium and the asset prices play informational roles. I find that the compensation depends on

agents’ forecasting accuracy for the asset prices and the payoffs.

My paper is also related to recent studies on the institutional investors, such as Basak, Shaprio

and Tepla (2006), Basak, Pavlova and Shaprio (2007, 2008), Basak and Makarov (2014), Basak

and Pavlova (2013), Dasgupta and Prat (2006, 2008), Dasgupta, Prat and Verardo (2011), Dow

and Gorton (1997), He and Krishnamurthy (2012, 2013), Garcia and Vande (2009), Kaniel and

Kondor (2013), Buffa, Vayanos and Woolley (2013), Kyle, Ou-Yang and Wei (2011) and Malamud

and Petrov (2014). In particular, Buffa, Vayanos and Woolley (2013) study the joint equilibrium

determination of optimal contracts and asset prices in a dynamic and multi-asset model. They focus

on how the inefficiency of benchmarking arises endogenously and amplifies stock market volatility.

However, these authors do not model moral hazard problems in information acquisition. The most

relevant works are by Kyle, Ou-Yang and Wei (2011) and Malamud and Petrov (2014). Kyle,

Ou-Yang and Wei (2011) consider a moral hazard problem between one principal and one agent in

the Kyle (1985) model. They restrict the contract space and solely consider the linear contracts.
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Furthermore, Malamud and Petrov (2014) also focus on the restricted contract form, which consists

of one proportional fee and one option-like incentive fee. My model differs from these papers in

the following regard. First, I place no restrictions on the contract space. Second, I find that the

agency problems generate strategic complementarities in information acquisition delegation, which

is new to this literature.

Last, my paper is related to recent studies on the strategic complementarities, including Dow,

Goldstein and Guembel (2011), Froot, Scharfstein and Stein (1992), Garcia and Strobl (2011)

and Veldkamp (2006b). Froot et al. (1992) find that short-term investors herd to acquire similar

information. Because they must liquidate assets before payoffs are realized, the short-term investors

can profit on their information only if their information is reflected in future prices by the trades

of similarly informed investors. Garcia and Strobl (2011) find that relative wealth concern can

generate complementarities. Because the investors’ utilities are negatively affected by others, they

tend to hedge others’ impacts by following others’ information acquisition decision. Dow et al.

(2011) show that information acquisition complementarities emerge when the asset prices affect

the firms’ investments. Veldkamp (2006b) finds that when the information production has a scale

effect, the selling price of information decreases as more investors buy information. In contrast

to their work, the strategic complementarities in my model originates from the effect of price

informativeness on mitigating agency problems in delegated information acquisition.

The paper is organized as follows. I introduce the model in Section 2 and solve the optimal

contracts in Section 3. Section 4 shows the strategic complementarities and multiple equilibria.

Section 5 studies three applications. Section 6 discusses the robustness. In particular, I solve a

fully-fledged model with non-linear REE to show that the main results are robust in Section 6.

Section 7 concludes.

2 Model

2.1 Economy

My model is built on Kyle (1985), in which investors submit market orders and a market maker

sets the price according to the total order. My model deviates from Kyle (1985) in the following

features: there are a mass of investors and each one has trading constraints.6 Investors in my model

trade in a competitive market, and no single individual investor has any price impact.

My economy has a mass of principal-agent pairs. The principals trade the risky asset and

have incentives to acquire information for profits. However, these principals are unable to acquire

information alone, perhaps because of large information acquisition or opportunity costs. Before

trading, principals choose whether to hire agents to acquire information. Because agents’ efforts

6The assumptions of a mass of investors in which each one has trading constraints is not new (see Dow, Goldstein
and Guembel, 2011, Goldstein, Ozdenoren and Yuan, 2013 and Malamud and Petrov, 2014).
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are unobservable, a moral hazard problem arises within each pair. When deciding to hire agents,

principals design optimal contracts that provide incentives for agents to acquire information. In

particular, the population of principals who hire agents is endogenous in my model. My analysis

of optimal contracting is similar to that of Dybvig et al. (2010). In particular, I solve optimal

contracts without any restriction on the contract space. The optimal contracts will induce agents

to make costly efforts and truthfully report signals.

Timeline and Assets. My economy has three periods t = 0, 1, 2 and two assets. The first

asset is risk-free and the second is risky. The risk-free asset is in zero supply and pays off one unit

of consumption good without uncertainty at time t = 2. The payoff of the risky asset is denoted

by D with two components: V and ε. V and ε are independent. I call V the fundamental value

and ε the residual uncertainty. I assume that V depends on equally likely states, h and l, realized

at time t = 2. V takes Vω (where ω ∈ {h, l}). Without a loss of generality, I assume that Vh = θ

and Vl = −θ, where θ > 0. The residual uncertainty ε is uniformly distributed on [−M,M ], where

M > 0.7 At time t = 0, principals choose whether to delegate information acquisition to agents.

When deciding to hire agents, principals write contracts with their agents. The contract is denoted

by π. Otherwise, the principal does nothing at time t = 0. At time t = 1, the market opens and

the principals submit market orders.8 After receiving the total orders, a competitive market maker

sets the price. I denote the risky asset’s price by P .

Players. There are four types of players. The first type is principals, who choose whether to

hire agents, design optimal contracts at t = 0, and trade the risky asset at t = 1. The second type

is agents, who decide whether to accept the contracts and exert costly effort to acquire information

about the fundamental value V . The third type is noisy traders, and the last type is a risk-neutral

competitive market maker.

There are a mass of principal-agent pairs. Each pair is indexed by i ∈ [0,∞). Within each pair

i, I denote its principal by principal i and denote its agent by agent i. To simplify the analysis, I

assume that different principals can not share agents, and vice versa. Each pair can be interpreted

as one mutual/hedge fund. There can be many interpretations of principal-agent pairs, such as

principals as board directors of funds and agents as fund managers/in-house analysts. Moreover,

I assume that the total demand from noisy traders is n, which follows a uniform distribution on

[−N,N ], where N > 0.

Agency Problem. Agent i’s effort is denoted by ei ∈ {0, 1}. When agent i exerts effort, ei = 1;

otherwise, ei = 0. After exerting effort, agent i generates a private signal si ∈ {h, l} regarding the

7The assumptions about θ and ε are made only to obtain an analytical solution and make the mechanism clear. I
will show numerically that the mechanism is robust when θ and ε follow more general distributions.

8The assumption about market orders is to obtain closed-form solution without losses of any economic insights.
In the extension, I allow principals to learn information from the price and then submit limit orders. The numerical
results show that the main results are robust.
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risky asset’s fundamental value V . I denote the probability with which a signal is correct by

pei +
1

2
(1− ei) = prob(si = h|V = θ)

= prob(si = l|V = −θ),

where si is conditionally independent across agents and p > 1
2 . If agent i shirks, his signal is

pure noise. If agent i exerts effort, his signal is informative. If I let prob(si) be the unconditional

probability of signal si, I obtain prob(si = h) = prob(si = l) = 1
2 . Let probI(V |si) be the probability

of V conditional on signal si if agent i exerts effort, and let probU (V |si) be the probability of V

conditional on signal si if he shirks. I then have the following:

probI(V = θ|si = h) = probI(V = −θ|si = l) = p, (2.1)

probU (V = θ|si = h) = probU (V = −θ|si = l) =
1

2
. (2.2)

To acquire information, each agent bears a utility loss. I assume that all agents have the same

CARA utility function − exp(−γaπ + γaC), where π is compensation, C is information acquisition

cost and γa is risk aversion.9 All agents have zero initial wealth. Due to hidden actions, there are

moral hazard problems followed by truth telling problems between principals and agents.

Information Acquisition and Trading. At time t = 0, some principals hire agents to acquire

information. The population of these principals is denoted by λ, where λ is endogenous. I call these

principals informed principals; others are referred to as uninformed principals. While deciding to

hire agents, informed principal i writes a contract πi with agent i. At time t = 1, all contracts

and λ become public information. Upon receiving report si from his agent, informed principal i

submits a market order Xi conditional on the report to maximize his utility over final wealth Wi,1,

where Wi,1 = W0 + Xi(D − P ) − πi, and Xi ∈ [−1, 1]. This limited position is due to frictions,

such as leverage constraint or limited wealth. Then, uninformed principals submit market order

XU , where XU = 0 due to symmetric distributions of the asset payoff or price. Given the contracts

beforehand, the informed principal i’s optimization problem in trading is the following:

max
Xi

E(W0 +Xi(D − P )− πi|si). (2.3)

The total orders received by the competitive risk-neutral market maker are

X =

∫ λ

i=0
Xidi+ n. (2.4)

9 When I model agents’ utility nesting cost as − exp−γaπ −C, the results do not change. In particular, when I
consider general HARA utility function for agents, the main results are robust as shown later.
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The market maker sets a price equal to the risky asset’s expected payoff conditional on X:

P = E(D|X). (2.5)

Contracting Problem. With agency problems, principals design optimal contracts π that

provide incentives for agents to acquire information at time t = 0. In accordance with Dybvig et al.

(2010), this type of contract induce agents to exert effort and report the true signals. Because

Dybvig et al. (2010) assume that the market is complete, there is no informational role of the price.

However, the market is not complete in my model. Moreover, the asset price plays an informational

role in monitoring agents because it aggregates information from all principals. The contracts in

my model are general functions of agents’ reports, the asset price and payoff. The agents either

accept or reject the contracts. If agents accept the contracts, they exert costly efforts in information

acquisition. After acquiring information, they report their signals to the corresponding principals.

The specific contract provided by principal i is a general function πi(s
R(si), P,D), where sR(si) is

agent i’s report conditional on his realized signal si.

To formalize my analysis, I consider two problems: the first-best and the agency problem.

The first-best problem assumes that each agent’s costly effort and signal can be observed by his

principal. This problem may not be realistic, but is useful for further comparison. In the agency

problem, agents’ efforts and signals are unobservable. There is a moral hazard problem followed by

a truth telling problem. The revelation principle guarantees that I can focus solely on the contracts

that induce agents to truthfully report signals after exerting efforts. The detailed analysis of the

two problems follows:

First-best. Principal i chooses πi(s
R(si), P,D) at time t = 0 and submits demand Xi at time

t = 1 to maximize his expected utility:

max
πi(si,P,D),Xi(si,πi)

∑
si={h,l}

prob(si)

∫ ∫
[W0 +Xi(D − P )− πi(si, P,D)]f I(P,D|si)dPdD, (2.6)

where f I(P, V |si) is the conditional joint probability density function when agent i acquires in-

formation. In the first-best problem, principals design contracts subject to agents’ participation

constraint,

∑
si={h,l}

prob(si)

∫ ∫
[− exp−γaπi(si,P,D)+γaC ]f I(P,D|si)dPdD = − exp(−γaWa), (2.7)

where LHS of Equation (2.7) is agent i’s expected utility given the premise that he exerts costly

effort and reports the true signal. Moreover, Wa is the reserve wealth of agents, which can be

interpreted as the agents’ outside options.

Agency Problem. In the agency problem, the contract satisfies two type of ICs, including
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the Ex Ante IC, which is the incentive-compatibility of effort exerting

∑
si={h,l}

prob(si)
∫ ∫

[− exp−γaπi(si,P,D)+γaC ]f I(P,D|si)dPdD

≥
∑

si={h,l}
prob(si)

∫ ∫
[− exp−γaπi(s

R(si),P,D)]fU (P,D|si)dPdD,
(2.8)

and the Ex Post IC, which is the incentive-compatibility of truth reporting(∀si and sR(si) : s→ s)∫ ∫
[− exp−γaπi(si,P,D)]f I(P,D|si)dPdD ≥

∫ ∫
[− exp−γaπi(s

R(si),P,D)]f I(P,D|si)dPdD, (2.9)

where fU (P, V |si) is the conditional joint probability density function when agent i shirks. The

RHS of Equation (2.8) is agent i’s expected utility when he shirks. Then, fU (P, V |si) = f(P, V ),

which is the unconditional joint probability density function. Equation (2.9) induces agents to

truthfully report their signals. For any realized signal si, the LHS of Equation (2.9) is agent i’s

utility if he reports the truth signal, whereas RHS of Equation (2.9) is the agents i’s utility if he

misreports.

Principal i’s choice variables are contingent fees πi(si, P,D) and a demand schedule Xi(si).

Each principal i maximizes his utility through simultaneous decisions over trading and optimal

contracting. The trading decisions and optimal contracts depend on the population of informed

principals. In the equilibrium, the population of informed principals λ renders the expected utility

of informed and uninformed principals equal; the difference in utilities between the two types of

principals is the expected net benefit of information. I denote the expected net benefit of information

by B, where B is the difference between the maximum value of optimization problem in Equation

(2.6) and the initial wealth W0. It is clear that B is difference between the trading profit for

informed principals and the expected compensation to agents.

2.2 Discussion

Before proceeding, I discuss the assumptions of my model. First, I assume that the principals

trade by alone and only agents acquire information. Although this assumption is stylized, my

model has broad interpretations. The most direct interpretation is that the principals are fund

managers and the agents are in-house analysts. The in-house analysts collect information and

report forecasts to fund managers, who trade based on the forecasts. However, the assumption

about who invests is not crucial, as is evident if I assume that agents trade instead of principals

and that principals can observe or infer agents’ contractible portfolios. Because agents construct

portfolios based on forecasts, the contracts written upon agents’ portfolios, the asset price and

the payoff can be transformed into the contracts directly written on agents’ forecasts, the asset

price and the payoff. In practice, the pension fund trustees/board directors of funds can observe

the fund managers’ portfolios. Therefore, an alternative interpretation is that the pension fund
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trustees/board directors of funds, who maximize the households’ interests, hire fund managers

to simultaneously collect and trade on information. Another interpretation is that the principals

are households and the agents are fund managers. Because mutual/hedge funds must disclose

their holdings regularly, households could infer the beliefs of fund managers through holding data,

although they are noisy(see Kacperczyk, Sialm and Zheng, 2007, Cohen, Polk, Silli, 2010 and

Shumway, Szefler and Yuan, 2011). Although households can not choose the management fee, they

can use fund flow to provide incentives for fund managers. The fund flow can be viewed as a form

of implicit contract.

Furthermore, in accordance with the literature, I assume that the principals are risk-neutral.

This assumption simplifies my analysis, while capturing the features of the practice. In practice,

principals, such as households or mutual/hedge funds can diversify risks alone. For example,

households can allocate money to different assets to diversify risk. In particular, if principals are

risk averse, the contracts include a risk-sharing component. However, this risk-sharing component

does not overturn my mechanism: an increase in the population of informed principals makes the

price more informative and mitigates the agency problems.

The third assumption is that the principals submit market orders and do not learn information

from the asset prices. This assumption is not crucial in my model. Introducing learning enables

uninformed principals to free ride informed principals by learning information from the price;

this affects principals’ incentive to acquire information. However, this free-riding problem only

affects the strength of the driving force, and will not overturn my mechanism. In particular,

this assumption captures my idea in a more complicated dynamic framework, in which there are

multiple rounds of trading and principals solely observe current and past prices. It is obvious that

such settings will only complicate the model, leading to a loss of tractability, without adding much

economic insight. In particular, the numerical results in one extension show that the strategic

complementarities are robust when principals can learn information from the asset price.

3 Equilibrium

3.1 Equilibrium Definition

I formally introduce the equilibrium concept in this section. I focus on symmetric equilibrium with

identical contracts. Before trading, principals choose whether to hire agents to acquire information

and the population of these principals is endogenous. These principals design optimal contracts

that provide incentives for their agents to acquire information and report truthfully. Given these

contracts, all principals submit optimal demands when the market opens and a risk-neutral market

maker sets the price after receiving the total orders.

Definition 3.1. A symmetric equilibrium is defined as a collection: a price function P set by
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a risk-neutral competitive market maker, P (X) : R→ R; an optimal demand schedule for each

principal i, Xi(si) : R→ R; an optimal contract designed by each principal i, πi(si, P,D) : R3→ R;

and an equilibrium population of principals hiring agents to acquire information, λ. This collection

satisfies the following:

(1) Given the price function solved in Equation (2.5) and the demand schedule solved in Equation

(2.3), principal i designs optimal contract πi(si, P,D) and the optimal contract problem is equivalent

to the problem in Equation (2.6) subject to constraints (2.7), (2.8), and(2.9),

(2) Given contract πi(si, P,D), agent i decides whether to accept or reject this contract,

(3) Given the price function in Equation (2.5) and the optimal contract πi(si, P,D), principal

i submits demand Xi to solve Equation (2.3),

(4) A risk-neutral competitive market maker sets the price as the risky asset’s expected payoff

conditional on total orders. The pricing function is solved in Equation (2.5),

(5) If there exists a positive solution to B(λ) = 0, an equilibrium with information acquisition

is obtained. Otherwise, an equilibrium of no information acquisition is obtained (λ = 0).

(6) All contracts are identical in this economy.

3.2 Equilibrium Characterization

I characterize the equilibrium as one featuring trading strategies and optimal contracting by

principals, and a pricing rule by the market maker. I follow a step-by-step approach to illustrate

this idea.

Step 1. I first solve for the principals’ trading decisions and the market maker’s pricing

rule given the contracts designed beforehand and the population of informed principals. When the

market opens at t = 1, the informed principal i submits Xi to maximize W0+Xi(D−P )−πi, which

is his final wealth. Furthermore, uninformed principals submit XU = 0. Because the principals are

risk-neutral, there is no hedging demand, and the informed principal i submits Xi = 1 after agent

i reports si = h and submits Xi = −1 after agent i reports si = l. Following the large number

theorem, when fundamental value V = θ, the total number of buy orders from informed principals is

λp and the total number of sell orders is λ(1−p). Thus the total order received by the market maker

is X = λ(2p−1)+n. Similarly, the total order received by the market maker is X = −λ(2p−1)+n

when V = −θ. Therefore, the total order X is distributed on [−λ(2p− 1)−N,λ(2p− 1) +N ].

Receiving total orders X, the risk-neutral market maker updates his beliefs and sets the price as

the risky asset’s expected payoff: P = E(D|X). If −λ(2p−1)+N < λ(2p−1)−N , the total orders

can fully reveal information regarding V and I have P = V , which leads to zero trading profits for

informed principals. This is impossible because the principals need to pay costs for information.

Thus I have the formal lemma regarding the population of informed principals.
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Lemma 3.1. The population of informed principals satisfies the following:

λ <
N

2p− 1
. (3.1)

This lemma is helpful for further analysis. Then, I have the following lemma regarding price:

Lemma 3.2. Given λ and contract π(s, P,D), the price follows the rule:

P (X) =


θ if N − λ(2p− 1) < X ≤ N + λ(2p− 1) ,

0 if −N + λ(2p− 1) ≤ X ≤ N − λ(2p− 1) ,

−θ if −N − λ(2p− 1) ≤ X < −N + λ(2p− 1) .

(3.2)

Lemma 3.2 shows that the price increases with the total orders X due to the correlation between

the total orders and the fundamental value V . However, with noisy traders, the total orders do not

fully reveal V . In particular, the probability that the price equals V is the following:

prob(P = V |V ) =
λ(2p− 1)

N
. (3.3)

This probability measures price informativeness. This probability increases with the population of

informed principals and the precision of signals, and decreases with the variance of noisy traders’

demand.

Step 2. I solve the informed principals’ optimal contracts at t = 0. As Lemma 3.2 implies,

the asset price is informative regarding V . Thus principals will use the price to monitor agents.

The contracting problem is reduced to the optimization problem in Equation (2.6) subject to

constraints (2.7), (2.8), and (2.9). Due to risk-neutrality, the principals’ trading decisions and

contracting problems are independent. Then, the contracting problem can be transferred to the

following:

max
πi(si,P,D)

∑
si={h,l}

prob(si)

∫ ∫
[−πi(si, P,D)]f I(P,D|si)dPdD, (3.4)

Equation 3.4 shows that principals minimize expected compensation subject to participant

constraint and incentive compatibility. However, if the residual uncertainty is sufficiently small,

the asset payoff D is perfectly informative about V and thus there is no role of asset price in the

contracting, which is not interesting. To avoid this case, I make the following assumption regarding

M :

Assumption 3.1. M satisfies: M ≥ θ.

From Dybvig et al. (2010), the joint conditional pdf or conditional probability of P and D play

important roles in optimal contracts. Thus I characterize the joint conditional pdf or the conditional

probability of P and D before I solve the optimal contracts. If agent i exerts effort, signal si is
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informative about V and this indicates that probI(V = θ|si = h) = probI(V = −θ|si = l) = p.

Then, I have the following lemma:

Lemma 3.3. When si is informative about V , the conditional pdf is as follows:

(1) conditional on si = h,

f I(P = θ,D|si = h) =


p

2M
λ(2p−1)

N if −M + θ ≤ D ≤M + θ

0 if −M − θ ≤ D < −M + θ
(3.5)

f I(P = 0, D|si = h) =


p

2M
N−λ(2p−1)

N if M − θ ≤ D ≤M + θ

1
2M

N−λ(2p−1)
N if −M + θ ≤ D < M − θ

1−p
2M

N−λ(2p−1)
N if −M − θ ≤ D < −M + θ

(3.6)

f I(P = −θ,D|si = h) =

0 if M − θ < D ≤M + θ

(1−p)
2M

λ(2p−1)
N if −M − θ ≤ D ≤M − θ

(3.7)

(2) conditional on si = l,

f I(P = θ,D|si = l) =


(1−p)
2M

λ(2p−1)
N if −M + θ ≤ D ≤M + θ

0 if −M − θ ≤ D < −M + θ
(3.8)

f I(P = 0, D|si = l) =


1−p
2M

N−λ(2p−1)
N if M − θ ≤ D ≤M + θ

1
2M

N−λ(2p−1)
N if −M + θ ≤ D < M − θ

p
2M

N−λ(2p−1)
N if −M − θ ≤ D < −M + θ

(3.9)

f I(P = −θ,D|si = l) =

0 if M − θ < D ≤M + θ

p
2M

λ(2p−1)
N if −M − θ ≤ D ≤M − θ

(3.10)

If agent i shirks, signal si is uninformative regarding V and this indicates that probU (V = θ|si =

h) = probU (V = −θ|si = l) = 1
2 . Then, I have the following lemma:

Lemma 3.4. When si is uninformative about V , the conditional pdf is as follows:

fU (P = θ,D) =


1

4M
λ(2p−1)

N if −M + θ ≤ D ≤M + θ

0 if −M − θ ≤ D < −M + θ
(3.11)

fU (P = 0, D) =


1

4M
N−λ(2p−1)

N if M − θ ≤ D ≤M + θ

1
2M

N−λ(2p−1)
N if −M + θ ≤ D < M − θ

1
4M

N−λ(2p−1)
N if −M − θ ≤ D < −M + θ

(3.12)

fU (P = −θ,D) =

0 if M − θ < D ≤M + θ

1
4M

λ(2p−1)
N if −M − θ ≤ D ≤M − θ

(3.13)
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Lemma 3.3 shows that si is correlated with the asset price or the payoff when it is informative.

Lemma 3.4 shows that si is uncorrelated with the asset price or payoff when it is pure noise. Thus

agents’ efforts are tied to the accuracy of their forecasts for the asset price and the payoff.

To simplify the optimization problems, in accordance with Grossman and Hart (1983) and

Dybvig et al. (2010), I transfer the choice variables. I let:

v(si, P,D) = exp[−γaπ(si, P,D]. (3.14)

I can rewrite the contracting problem in a similar form, in which choice variable becomes v(si, P,D).

Then principal i’s contracting problem becomes:

max
vi(si,P,D)

∑
si={h,l}

prob(si)

∫ ∫
1

γa
log[vi(si, P,D)]f I(P,D|si)dPdD, (3.15)

subject to constraints (2.7), (2.8), and (2.9). Then, I use the first-order approach to solve the

optimal contracts in both the first-best and the agency problem.

Proposition 3.1. (First-Best) The optimal contract in the first-best problem is: πi(si, P,D) =

Wa + C .

Proposition 3.1 shows that agents’ compensation is constant in the first-best problem. This is

slightly different from the previous literature, which assumes that investors are risk-averse and finds

that compensation is a proportional fee for risk-sharing purpose. However, I assume that principals

are risk-neutral. Therefore, principals do not care about risk and there is no role for risk-sharing.

In fact, the compensation is equal to agents’ reserve wealth and information acquisition cost. This

case is used later for comparative purposes with the agency problem.

Assumption 3.2. C satisfies: C < − log 2+log(1−p)
γa

.

Assumption 3.2 is important because it guarantees that the optimal contract is implementable

in the agency problem. I conduct the analysis with agency problems under Assumption 3.2.

Proposition 3.2. (Agency Problem) Given λ, there exists one unique optimal contract in the

economy with agency problems. There are two cases regarding optimal contract as follows:

(1) when p = 1, the first-best can be achieved. The optimal contract is the following:

πi(si, P,D) =



−∞ if si = h and P = −θ

−∞ if si = h and D < −M + θ

−∞ if si = l and P = θ

−∞ if si = l and D > M − θ

Wa + C otherwise

(3.16)
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(2) when p < 1, the optimal contract is the following:

πi(si = h, P = θ,D) = πi(si = l, P = −θ,D) =
log x

γa
(3.17)

πi(si = h, P = −θ,D) = πi(si = l, P = θ,D) =
log y

γa
(3.18)

πi(si = h, P = 0, D) =


log x
γa

if M − θ < D ≤M + θ

log[px+(1−p)y]
γa

if −M + θ ≤ D ≤M − θ
log y
γa

if −M − θ ≤ D < −M + θ

(3.19)

πi(si = l, P = 0, D) =


log y
γa

if M − θ < D ≤M + θ

log[px+(1−p)y]
γa

if −M + θ ≤ D ≤M − θ
log x
γa

if −M − θ ≤ D < −M + θ

(3.20)

where x and y are defined in the Appendix. In particular, x > y.

Proposition 3.2 has several interesting features. First, when the signals acquired by agents are

perfectly informative (p = 1), the first-best can be achieved through an infinite penalty for incorrect

forecasts. Given the finite support of the asset price or the asset payoff, if the asset price or payoff

deviates to a large extent from the forecasts, the principals know that the agents are shirking.

For example, when agent i acquires information and then reports si = h, it is impossible that the

price is −θ. This infinite penalty achieves the first best.10 Second, when the signals acquired by

agents are not perfectly informative (p < 1), the optimal compensation depends on the agents’

forecasting accuracy for the asset price and the payoff. For example, when agents report si = h,

agents receive high compensation when the price or payoff is high and low compensation when the

price or payoff is low. Agents can forecast the asset price and the payoff accurately if they acquire

information. Thus, the forecasting accuracy is related to agents’ efforts. This compensation will

encourage agents to exert effort and tell the truth. When p = 1, the first-best can be achieved,

which is not analytically interesting. Thus I focus on the case in which p < 1 in the following

analysis. I formally state the assumption regarding p as follows:

Assumption 3.3. p satisfies: p < 1.

10In this basic model, I assume that agents have CARA utilities and do not have limited liability. Thus the infinite
penalty can be interpreted as infinite disutilities. For example, if agents have log utilities, π = 0 provides an infinite
penalty for agents. I discuss more general utilities for agents in the following sections.
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3.3 Characteristics of Optimal Contract

I show the characteristics of the optimal contract in this section. I focus on how the price

informativeness or residual uncertainty affects the compensation.

The bonus, defined by the difference between agents’ compensations when they forecast correctly

and incorrectly, provides incentives for agents to exert effort. It is given as follows:

Definition 3.2. The bonus is defined as Sf : Sf = log x−log y
γa

.

Because λ measures the price informativeness and M measures the residual uncertainty in the

asset’s payoff, I show their effects on bonuses as follows:

Proposition 3.3. Bonus Sf decreases with λ, but increases with M .

Proposition 3.3 shows that Sf decreases with price informativeness and increases with residual

uncertainty. In fact, when the price becomes more informative, agents can forecast the asset price

more accurately with information. Agents are therefore more willing to exert efforts. As a result,

principals can provide less incentive, which is characterized as a decreased bonus. Similarly, the

bonus increases with residual uncertainty. In particular, because both the asset price and the payoff

are used in the incentive provision, their effects depend on each other. I then have the following

result:

Corollary 3.1. When θ = M , λ has no effect on Sf , that is
∂Sf
∂λ = 0 if θ = M .

When θ = M , the asset payoff is perfectly informative about the fundamental value. Thus,

principals solely use the asset payoff in the contracts.

4 Agency Problem and Information Acquisition Complementarity

In this section, I show how agency problems in delegated information acquisition affect the financial

market. I show that agency problems generate complementarities and multiple equilibria.

4.1 First-Best Case

Informed principal i’s final wealth W1,i has two components: the first is trading profit, which is

Xi(D − P ); the second is agents’ compensation πi. Informed principals’ expected trading profit

is denoted as Ep, where Ep = E[Xi(D − P )]. Thus the expected net benefit from information is

B = E[Xi(D − P )− πi]. Informed principals’ expected trading profit is shown as follows:

Lemma 4.1. Informed principals’ expected trading profit: Ep = θ(2p− 1)N−λ(2p−1)N .

Lemma 4.1 shows that informed principals’ trading profits decrease with the population of

informed principals because of competition in trading. This effect is called the strategic substitute
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effect. Because compensation is constant in the first-best problem, the net benefit from information

decreases with the population of informed principals. The result is shown as follows:

Proposition 4.1. (First-Best) Information acquisition is a strategic substitute in the first-best

problem, that is ∂B
∂λ < 0.

4.2 Agency Problem

With agency problems, the compensation depends on the accuracy of agents’ forecasts for the asset

price and payoff. In particular, the bonus decreases with the population of informed principals,

which leads to decreased compensation, and is the source of the strategic complementarity effect.

When the residual uncertainty is large, there is a strategic complementarity effect in the information

acquisition delegation; otherwise, there is only a strategic substitute effect. When the residual

uncertainty is large, the principals rely largely on agents’ forecasts for the asset price to incentive

them. Thus, price informativeness has a larger impact on mitigating agency problems than lowering

trading profit, which generates strategic complementarities. When the residual uncertainty is small,

only the substitute effect exists because price informativeness has little impact on mitigating agency

problems. The result of information acquisition delegation is shown as follows:

Proposition 4.2. (Agency Problem) In an economy with agency problems, I have the following:

(1) for a sufficiently small M , the information acquisition delegation is a strategic substitute. That

is, ∂B
∂λ < 0.

(2) for a sufficiently high M , there exists λc satisfying the following: when λ < λc, the information

acquisition delegation is a strategic complement. That is ∂B
∂λ > 0.

4.3 Multiplicity of Equilibria

As shown in Grossman and Stiglitz (1980) and Hellwig (1980), one unique equilibrium in information

acquisition exists with a strategic substitute effect. However, the strategic complementarities

may generate multiple equilibria (Dow, Goldstein and Guembel, 2011, Garcia and Strobl, 2011,

Goldstein, Li and Yang, 2013 and Veldkamp, 2006a). Proposition 4.2 shows that agency problems

produce strategic complementarities when the residual uncertainty is large. Thus, multiple equi-

libria may emerge in this case. This result is important because it may explain asset price jumps

and excess volatilities in the financial market. The equilibrium populations of informed principals

in the first-best and agency problem are denoted by λfb and λsb, respectively. Because there is a

substitute effect in the first-best problem or in the agency problem with low residual uncertainty,

tone unique equilibrium exists in both cases, which is shown as follows:

Lemma 4.2. There exists one unique equilibrium λfb regarding information acquisition delegation

in the first-best problem.
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Lemma 4.3. When M is sufficiently small, there exists one unique equilibrium λfb regarding

information acquisition delegation in the economy with agency problems.

Because the contract is very complex, I do not characterize all equilibria in the agency problem

with large residual uncertainty. However, my goal is to demonstrate the existence of multiple

equilibria. In particular, no information acquisition delegation may emerge as one of the equilibria.

Proposition 4.3. (Agency Problem) When M is sufficiently large, there are three cases regarding

information acquisition delegation in the economy with agency problems,

(1) when θ(2p− 1) + log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ] > 0, all equilibria are with positive popu-

lation of informed principals, and at at least one equilibrium exists.

(2) when θ(2p−1)+log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ] < 0 and maxλ<λfb Bap(λ) > 0, there exists

at least three equilibria, one of which is λsb = 0.

(3) when maxλ<λfb Bap(λ) < 0, the unique equilibrium is no information acquisition delegation.

That is λsb = 0.

Proposition 4.3 shows that agency problems may generate multiple equilibria. When the

information acquisition cost is low (first case), agency problems are not severe and principals have

incentives to hire agents. In fact, when the information acquisition cost is high (third case), agency

problems are severe and thus no principals have incentives to hire agents. In the second interesting

case when information acquisition is neither too high nor too low, agency problems produce multiple

equilibria, and non-information is one of these equilibria. When residual uncertainty is high,

principals must rely heavily on the asset price in the incentive provision. However, when no

principals hire agents to acquire information, the price does not incorporate any information, and

the incentive provision from asset price fails. Consequently, agency problems are severe, which

deters principals from hiring agents. All results are shown in Figure 4.1.11

This proposition has implications for asset price jumps or excess volatilities. With multiple

equilibria regarding information acquisition, the economy may switch between non-information

equilibrium and high-information equilibria without any relation to fundamentals, leading to jumps

in the asset price and informativeness. Because a jump is an extreme form of excess volatilities,

the same mechanism can also cause excess volatilities in asset price and informativeness. This

result implies that the price informativenesses and institutional ownership are more volatile for

small/growth stocks or during recessions, which are usually associated with large residual uncer-

tainties. This result also implies that price jumps and excess volatilities are more likely to occur for

small/growth stocks or during recessions, which is consistent with Bennet, Sias and Starks (2003),

Campbell, Lettau, Malkiel and Xu (2001), Xu and Malkiel (2003), Ang, Hodrick and Zhang (2006,

2009) and Bekaert, Hodrick and Zhang (2012).

11 I set θ = 2, N = 2, p = 0.6, Wa = 0, C = 0.07. I also set M = 5, M = 20 and M = 200 for low residual
uncertainty, median residual uncertainty and high residual uncertainty cases, respectively.
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Figure 4.1: Information Acquisition Benefit

I also examine how agency problems affect asset pricing behavior. I focus on the analysis of price

informativeness and return volatility. For price informativeness, because the equilibrium is not a

linear function of fundamental value or noisy traders’ demand, the conditional variance V ar(D|P )

in the conventional literature is not appropriate for my analysis because this measure depends on

the price P . In accordance with Malamud and Petrov (2014), I use the price’s expected error as

price informativeness. When the price is more informative, this expected error is lower:

E(|V − P ||V ) =
θ[N − λ(2p− 1)]

N
. (4.1)

For volatility, I calculate the asset return’s volatility V ar(V − P ) as follows:

V ar(V − P ) =
M2

3
+
θ2[N − λ(2p− 1)]

N
. (4.2)

When the population of informed principals increases, both the expected error of the price and

the volatility decrease. Before proceeding, I know that agency problems negatively affect the net

benefit from information, which decreases the prices informativeness. Then, price becomes more

sensitive to noisy traders’ demand, leading to increased volatility. I denote Bap as the net benefit of

information in an economy with agency problems, and denote Bfb as the net benefit in the first-best
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Figure 4.2: Population of Informed Principal and Agents’ Risk Aversion

problem. I find the following result:

Lemma 4.4. Given λ, the net benefit in the agency problem is lower than the first-best problem.

That is Bap < Bfb.

I then have the formal result regarding price informativeness and volatility.

Proposition 4.4. Both price’s expected error and volatility are higher in an economy with agency

problems than the first-best problem.

I examine how different parameters affect the population of informed principals. I focus on the

case in which M is small because a unique equilibrium exists in this case. When the agents’ risk

aversion increases, the agency problem becomes more severe and the principals need to provide

higher compensation to agents. Thus, I expect that the equilibrium population of informed

principals decreases with agents’ risk aversion. Furthermore, when M increases, it is more difficult

for principals to monitor agents and the agency problem is exacerbated. Thus, the equilibrium

population of informed principals decreases with residual uncertainty. These results are shown in

the following figures. I note that agents’ risk aversion or residual uncertainty does not have any

impact on the population of informed principals due to the assumption regarding principals’ risk-

neutrality. These two figures show that price informativeness is low during recessions, which are

associated with large uncertainty.12

12 I set θ = 2, N = 2, p = 0.6, Wa = 0, γa = 1, C = 0.05 and M = 20 for analysis of agents’ risk aversion. I set
θ = 2, N = 2, p = 0.6, Wa = 0, γa = 1, and C = 0.075 for analysis of residual uncertainty M .
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Figure 4.3: Population of Informed Principals and Residual Uncertainty

5 Implications

In this section, I extend the basic model in three directions to study its asset pricing implication.

First, I show that the agency problems induce principals to herd in terms of acquiring similar

information. This may explain investors’ herding behavior in trading. Second, I show that the

agency problems encourage principals to acquire disproportionately more information on assets

about which they already have an information advantage. This may explain the home/industry

bias. Moreover, I shows that the agency problems provide a new and rational explanation for the

well-known idiosyncratic volatility comovment.

5.1 Herding

In this section, I show that the agency problems induce principals to herd in terms of acquiring

similar information. I assume that each principal can choose to hire his agent to acquire either

an exclusive signal, which is conditionally independent and can only be acquire by his agent, or

a common signal, which can be acquired by any agent. The exclusive signal is si ∈ {h, l}. The

common signal is sc ∈ {h, l}. I assume the probabilities with which these signals are correct are

the same (p > 1
2):

p = prob(si = h|V = θ) = prob(si = l|V = −θ)
= prob(sc = h|V = θ) = prob(sc = l|V = −θ) .

(5.1)

Then, I have the conditional probability of V as follows:

probI(V = θ|si = h) = probI(V = −θ|si = l) = p, (5.2)
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probI(V = θ|sc = h) = probI(V = −θ|sc = l) = p, (5.3)

Following the basic model, I assume that if agent i does not exert costly effort, his signal is a

pure noise. I denote probU (V |si) as probability of V conditional on signal si if si is a pure noise.

Furthermore, the information acquisition costs are the same for all signals, which are denoted by

C.

I assume that the population of principals who hire agents to acquire sc is λ, and the population

of principals who hire agents to acquire si is µ. I follow Garcia and Strobl (2011) to define herding

equilibrium as follows:

Definition 5.1. Herding Equilibrium: one equilibrium is herding equilibrium if µ = 0 and λ > 0

This definition is following Hirshleifer and Teoh (2003), who define herding as any behavior

similarity caused by individuals’ interaction. Herding equilibrium occurs only if all informed

principals hire agents to acquire the common signal. As argued by Garcia and Strobl (2011),

the common signal is less valuable for principals than the exclusive signal because of competition.

Thus, without agency problems, herding equilibrium never occur. However, I show that herding

equilibrium may emerge in an economy with agency problems through the following mechanism.

There are two groups of informed principals: the first group acquires sc; the second group

acquires si. Each principal in the first group is indexed by principal i, where i ∈ [0, λ]. And each

principal in the second group is indexed by principal j, where j ∈ [0, µ]. I denote Ecp and EIp as

expected trading profits for principals in the first and second group respectively. I denote Bc
fb and

BI
fb as net benefits of information for different groups in the economy without agency problem.

Moreover, I denote Bc
ap and BI

ap as net benefit of information for different groups respectively in

the economy with agency problems.

For the first group, principal i submits Xi = 1 if sc = h, and submits Xi = −1 if sc = l. For

the second group, principal j submits Xj = 1 if sj = h, and submits Xj = −1 if sj = l. To simplify

the analysis, I only focus on the herding equilibrium. On the herding equilibrium, µ = 0. In this

case, if sc = h, the total orders is X = λ+ n. If sc = l, the total orders is X = −λ+ n. Thus, the

total orders X is distributed on [−λ −M,λ + M ]. Receiving total orders, the market maker sets

the price as follows:

Lemma 5.1. Given λ > 0 and µ = 0, the price follows the rule:

P (X) =


(2p− 1)θ if N − λ < X ≤ N + λ

0 if −N + λ ≤ X ≤ N − λ

−(2p− 1)θ if −N − λ ≤ X < −N + λ

(5.4)

To show the existence of a herding equilibrium, I need to calculate expected trading profits

for these two groups. Although there is no second group in the herding equilibrium, I also can
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calculate the expected trading profit for this group assuming one principal j is the marginal principal

acquiring an exclusive signal. Then I have the following results:

Lemma 5.2. The expected trading profit of principals with the common signal is given by:

Ecp = (2p− 1)θ
N − λ
N

. (5.5)

Lemma 5.3. The expected trading profit of principals with an exclusive signal is given by:

EIp = (2p− 1)θ
N − (2p− 1)2λ

N
. (5.6)

Lemma 5.2 and Lemma 5.3 shows that the expected trading profit of principals for the second

group is higher than the first group. There is a large price impact when principals trade similarly

because of having the same information, which makes the total orders more informative about

the common signal and decreases the first group’s information advantage. Thus, principals have

higher incentives to acquire the exclusive signal than the common signal in the economy without

agency problems. However, when the residual uncertainty is sufficiently large, principals herd to

the common signals in the economy with agency problems. Herding makes the price sensitive to

the common signal. Consequently, agents have strong incentives to acquire the common signal

as they can easily forecast the asset price with this signal, which mitigates agency problems in

acquiring it. Although the exclusive signals can generate more trading profits, agents could not

easily forecast asset price with these signals because of their idiosyncratic noises, which worsens the

agency problems in acquiring these signals. This mechanism generates the herding equilibrium. I

show the formal result as follows:

Proposition 5.1. Comparing the economy with and without agency problems, I have

(1) no herding equilibrium occurs in the first-best;

92) when M is small enough, no herding equilibrium occurs in the economy with agency problems;

(2) when − log 4p(1−p)
γa

< C < (2p− 1)θ −Wa and M is large enough, the herding equilibrium exists

in the economy with agency problems.

Proposition 5.1 shows that the herding equilibrium occurs when the residual uncertainty is

large. This result implies that herding is stronger in small/growth stocks, which have considerable

uncertainty. It is consistent with Lakonishok, Shleifer and Vishny (1992) and Wermers (1999), who

find that institutional investors have stronger herding behavior in small/growth stocks. Although

my model is static, it implies that institutional investors tend to follow the lead of others. When

more fund managers trade in one specific stock, others observe this and tend to follow their lead

because these followers anticipate that the price will become more informative and the agency

problems will be mitigated.
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5.2 Home/Industry Bias

In this section, I explore the model’s implication for the home/industry bias, which is a long-

standing puzzle. As documented by Fama and Poterba (1991), Coval and Moskowitz (1999),

Grinblatt and Keloharju (2001), Huberman (2001) and Seasholes and Zhu (2010), both households

and institutions prefer to trade the assets which are located around their hometowns or home

countries. Though it is possible that some behavior biases drive home bias in households, home

bias among institutional investors is still puzzling because they are sophisticated investors. Another

plausible explanation is that investors have superior information on home assets, Van Nieuwerburgh

and Veldkamp (2009) argue that investors can easily acquire information about other assets,

which could eliminate home investors’ information advantage and mitigate home bias. Even if

investors can freely acquire information, I show that home bias still exists with agency problems in

information acquisition.

I extend the basic model to consider two groups of principals: the first group has some

opportunity to get free information; the second group has no information. The first group is

interpreted as home principals based on the conventional belief that investors have an information

advantage on home assets. The population of home principals is denoted by ω. Each principal in

this group is indexed by i, where i ∈ [0, ω]. The second group is called foreign principals. Each

principal in this group is indexed by j. Any principals can hire agents to acquire information.

Furthermore, I assume that principal i in the first group is endowed by a private signal sh,i, which

takes the form:

sh,i = {V, ∅}. (5.7)

The feature of this signal is that sh,i is a pure noise when sh,i = ∅, and it is perfectly informative

if sh,i = V . The possibility that sh,i is perfectly informative is denoted by ph:

prob(sh,i = V ) = ph, (5.8)

where 0 < ph < p. There are two differences between home and foreign principals: the first

is that home principals can use their endowed signals in trading; the second difference is that

home principals can use their endowed signals in the contracting.13 Moreover, I assume that the

population of home principals hiring agents is λ, and the population of foreign principals hiring

agents is µ. Although home principals may know the fundamental value exactly, they also have

incentives to acquire information because they have chances to become uninformed. If the endowed

signals are informative, home principals only rely on their endowed signals in trading. Otherwise,

13If these signals are not verifiable, there exist some mechanisms inducing principals to reveal their private
information, such as imposing an infinite penalty when asset payoff deviates considerably from principals’ reports.
The infinite penalty can be interpreted as reputation concern. One interpretation of these contracts is the subjective
evaluation. Or this type of contract can be interpreted as an implicit contract.

24



they have to rely on signals from agents. Thus, the total orders is X = phω+ (1− ph)(2p− 1)λω+

(2p− 1)µ+ n if V = θ. And the total orders is X = −phω − (1− ph)(2p− 1)λω − (2p− 1)µ+ n if

V = −θ. To simplify the analysis, I let η = phω+(1−ph)(2p−1)λω+(2p−1)µ. Before proceeding,

I define two home bias equilibria as follows:

Definition 5.2. Weak Home Bias Equilibrium: one equilibrium is weak home bias equilibrium if

λ > 0 and µ > 0.

Definition 5.3. Strong Home Bias Equilibrium: one equilibrium is strong home bias equilibrium

if λ > 0 and µ = 0.

Receiving total orders, the market maker sets the price as follows:

P (X) =


θ if N − η < X ≤ N + η

0 if −N + η ≤ X ≤ N − η

−θ if −N − η ≤ X < −N + η

(5.9)

I calculate the expected trading profits for different groups. I denote E1
h,p, E

2
h,p and Ef,p as

expected trading profits for home principals who hire agents, home principals who do not hire, and

informed foreign principals respectively. They are shown as follows:

Ef,p = (2p− 1)θ
N − η
N

, (5.10)

E1
h,p = [ph + (1− ph)(2p− 1)]θ

N − η
N

, (5.11)

E2
h,p = phθ

N − η
N

. (5.12)

It is clear that the gain from information for home principals is (1− ph)(2p− 1)θN−ηN , which is

lower than the trading profits of informed foreign principals. This is due to the decreasing marginal

benefits of information. Thus, without agency problems, home principals have lower incentive than

foreign principals to hire agents to acquire information. However, with agency problems, this is

not the case. Home principals can use their endowed information in incentive provision, agency

problems are not severe for home principals and home principals may have higher incentive to

acquire information than foreign principals. The formal results regarding home bias are as follows:

Proposition 5.2. Comparing the economy with and without agency problems, I have

(1) neither weak home bias equilibrium nor strong home bias equilibrium occurs in the first-best;

(2) when M is small enough, neither weak home bias equilibrium nor strong home bias equilibrium

occurs in the economy with agency problem;

(3) when both M and N are large enough, a strong herding equilibrium exists in the economy with
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agency problem when θ1 < θ < θ2.

where θ1 and θ2 are defined in the Appendix.

Proposition 5.2 shows that home bias occurs when the residual uncertainty is large. This

result implies that home bias is stronger when investors trade small/growth stocks. It is consistent

with Kang and Stulz (1997) and Coval and Moskowitz (1999). For example, Coval and Moskowitz

(1999) find that U.S. fund managers have a stronger home bias when they trade small stocks. It also

implies that investors tend to learn more about the assets within their expertise. This prediction

is consistent with Massa and Simonov (2006), who find that Swedish investors buy assets highly

correlated with their non-financial income.

5.3 Idiosyncratic Volatility Comovement

In this section, I explore the model’s implication for idiosyncratic volatility comovement, which

is documented by recent studies (see Bekaert, Hodrick and Zhang, 2012, Kelly, Lustig and Van

Nieuwerburgh, 2013 and Herskovic, Kelly, Lustig and Van Nieuwerburgh, 2013). More importantly,

because recent studies (Bansal, Kiku, Shaliastovich and Yaron, 2014, Campbell, Giglio, Polk,

Turley, 2014 and Herskovic, Kelly, Lustig and Van Nieuwerburgh, 2013) find that the common

factor in idiosyncratic volatilities has significant effects on asset prices, it is important to understand

the driving force. In particular, the common factor in idiosyncratic volatilities is not related to the

conventional risk factors, and the driving force is still puzzling.

I extend the basic model to consider two risky assets. Each asset is indexed by k, where k = 1, 2.

Asset k’s payoff is denoted by Dk, which has a fundamental value Vk and a residual uncertainty

εk. I assume εk is uniformly distributed on [−Mk,Mk], where Mk > 0. Vk takes θk and −θk with

equal probability, where θk > 0. In particular, I assume that two assets’ residual uncertainties are

independent of each other, and also are independent of the two fundamentals. There is a correlation

between the two fundamentals as shown:

prob(V2 = θ2|V1 = θ1) = prob(V2 = −θ2|V1 = −θ1) = q, (5.13)

prob(V1 = θ1|V2 = θ2) = prob(V1 = −θ1|V2 = −θ2) = q. (5.14)

The noisy traders’ demand in asset k is denoted by nk following a uniform distribution on [−Nk, Nk],

where Nk > 0. Noisy traders’ demands are independent of other random variables. I assume that

each market has one risk-neutral market maker, who sets the price independently from each other.

The price of asset k is denoted by Pk. Furthermore, there are two groups of principals: group

k can only trade the risky asset k, perhaps due to market segmentation or trading constraints.

The population of informed principals in asset k is λk. To simplify the analysis, I assume that λ1

is exogenous, and λ2 is endogenous. This assumption is reasonable in many circumstances. For
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example, there are some insiders or home investors, who are endowed with information. The above

assumptions are helpful to make the mechanism in my model clear. If the principals can trade

both assets, it is possible that there exist other possible effects, which may mitigate or exacerbate

my mechanism (see Vayanos and Woolley, 2013 and Cespa and Foucault, 2014). Each informed

principal’s signal is denoted by sk,i. Information structures are the same as the basic model with

one risky asset. Then, I have:

probI(Vk = θk|sk,i = h) = probI(Vk = −θk|sk,i = l) = p, (5.15)

To avoid the price of asset 1 being fully informative about the fundamental, I have λ1 <
N1

2p−1 .

Although the principals in group 2 can not trade the risky asset 1, they still can write contracts on

the prices and payoffs of two assets. Specifically, informed principal i in group 2 design contract

π2,i(s
R(s2,i), P1, P2, D1, D2), where s2,i is his agent’s signal and sR(s2,i) is the report. The reason

why principals in asset 2 write this type of contracts is that two assets’ fundamentals are correlated

and agents’ forecasting accuracy for the price of asset 1 is also related to their effort. I follow the

procedure in the basic model to solve the equilibrium prices, optimal contracts, and population of

informed principals in group 2. I carry out the numerical studies to show how the agency problems

generate the idiosyncratic volatility comovement. Figure 5.1 shows that the population of informed

principals in asset 2 decreases with the noisy trades’ demand in asset market 1 (N1) in the economy

with agency problems. Because P1 is also informative to V1, informed principals in group 2 use the

price of asset 1 to monitor their agents. When the noisy traders’ demand becomes more volatile

in asset 1, P1 becomes noisier and is more difficult for agents on asset 2 to predict. Consequently,

the agents on the asset 2 are less willing to exert effort, which worsen the agency problems and

decreases principals’ incentives to hire agents on asset 2. This induces the price of asset 2 to become

less informative and more sensitive to its noisy traders’ demand, leading to increased idiosyncratic

volatility (shown in Figure 5.2). Following the same mechanism, when the population of informed

principals in group 1 increases, asset 1’s price becomes more informative and the principals in group

2 have higher incentives to hire agents (see Figure 5.3). This result is interesting and is related to

herding on the industry level(Choi and Sias, 2009).14

6 Generalization

My model assumes: (1) agents have CARA utilities; (2) the fundamental value V takes binary

values; (3) principals do not learn information from the asset price. This section relaxes these

assumptions and shows that the strategic complementarities are robust.

14In Figure 6.1 and Figure 6.2, I set θ1 = θ2 = 2, M1 = M2 = 5, N2 = 2, p = 0.6, q = 0.8, C = 0.75, Wa = 0,
λ1 = 2. In Figure 6.3, θ1 = θ2 = 2, M1 = M2 = 5, N1 = N2 = 2, p = 0.6, q = 0.8, C = 0.75, Wa = 0
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Figure 5.1: Noisy Traders in Asset 1 and Population of Informed Principals in Asset 2

Figure 5.2: Idiosyncratic Volatility Comovement
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Figure 5.3: Population of Informed Principals both Asset Markets

6.1 General Utility Function of Agents

This section shows that my results are robust when agents have a general hyperbolic absolute

risk aversion (HARA) class of utility functions. The HARA utility function is shown as follows:

U(W ) =
γ

1− γ
[
AW

γ
+K]1−γ , K ≥ 0 (6.1)

where the utility function is only defined over AW
γ + K > 0. I know the absolute risk aversion

coefficient is given by:

− U
′′

U ′
=

Aγ

AW +Kγ
(6.2)

When γ < 0, this HARA utility function has an increasing absolute risk aversion, which is

implausible. Thus, I only consider the case where γ > 0. Particularly, this general HARA utility

function has several examples which are largely used in finance or economy, such as power utility,

negative exponential utility or logarithmic utility.

Assumption 6.1. γ satisfies: γ > 0.

To simplify the analysis, I assume that agents need to incur a utility loss if they exert effort.

This utility lose is denoted by C. Thus, the participant constraint and incentive constraints are

shown as follows:

∑
si={h,l}

prob(si)

∫ ∫
{U [πi(si, P,D)]− C}f I(P,D|si)dPdD = U [Wa], (6.3)
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where LHS of Equation (6.3) is agent i’s expected utility when he exerts costly effort.

Meanwhile, Wa is the reserve wealth of agents.

Ex Ante IC which is the incentive-compatibility of effort constraint

∑
si={h,l}

prob(si)
∫ ∫
{U [πi(si, P,D)]− C}f I(P,D|si)dPdD

≥
∑

si={h,l}
prob(si)

∫ ∫
[U [πi(s

R(si), P,D)]]fU (P,D|si)dPdD
(6.4)

Ex Post IC which is incentive-compatibility of truth reporting(∀si and sR(si) : s→ s)

∑
si={h,l}

prob(si)
∫ ∫
{U [πi(si, P,D)]}f I(P,D|si)dPdD

≥
∑

si={h,l}
prob(si)

∫ ∫
[U [πi(s

R(si), P,D)]]f I(P,D|si)dPdD
(6.5)

Assumption 6.2. I have different cases regarding the information acquisition cost

Case 1: If γ < 1, U(Wa)− C
2p−1 > 0;

Case 2: If γ > 1, U(Wa) + C
2p−1 < 0;

Case 3: if γ = 1 and K = 0.

This assumption could ensure that the optimal contracts can be implemented and there is

interior solution to the contracting for different γ. I show that strategic complementarity effect is

robust in the following proposition.

Proposition 6.1. Under Assumption 6.1 and Assumption 6.2, when the agents have HARA utility

in the economy with agency problems, I have the following results:

(1)for small enough M , information acquisition delegation is a strategic substitute. That is , ∂B
∂λ <

0.

(2) for large enough M , there exists λgc satisfying: when λ < λgc, information acquisition delegation

is a strategic complement. That is ∂B
∂λ > 0.

6.2 More General Distribution of V

In this section, I assume that V takes three values in θ, 0 or −θ. In particular, the distribution of

V is symmetric. The probability that V = 0 is denoted as pm. The probability of V = θ or V = −θ
is given by:

prob(V = θ) = prob(V = −θ) = (1− pm)/2, (6.6)

After exerting effort, agent i generates a private signal si ∈ {h, 0, l} about the risky asset’s
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fundamental value V . The probability with which a signal is correct by

prob(si = h|V = θ) = prob(si = 0|V = 0) = prob(si = l|V = −θ) = p, (6.7)

and

prob(si = 0|V = θ) = prob(si = 0|V = −θ) = (1− p)q, (6.8)

and

prob(si = l|V = θ) = prob(si = h|V = −θ) = (1− p)(1− q), (6.9)

and

prob(si = h|V = 0) = prob(si = l|V = −θ) = (1− p)/2, (6.10)

where si is independent across agents and p ≥ 1
3 , while q ≥ 1

2 . Principal i submits Xi = 1 when he

receives report si = h, does nothing when he receives report si = 0, and submits Xi = −1 when he

receives report si = l. Then the market maker sets the price as follows:

P (X) =



θ if N < X ≤ N + λ(p− (1− p)(1− q))

θ 1−pm1+pm
if N − λ(p− (1− p)(1− q)) < X ≤ N

0 if −N + λ(p− (1− p)(1− q)) ≤ X

≤ N − λ(p− (1− p)(1− q))

−θ 1−pm1+pm
if −N ≤ X < −N + λ(p− (1− p)(1− q))

−θ if −N − λ(p− (1− p)(1− q)) ≤ X < −N

(6.11)

It is clear that the price increases with the total orders X. It differs from the binary-state case

on the feature that the price takes five values. This difference also shows that the problem will

become extremely complicate when I consider more a general distribution of V . I carry out the

numerical studies to show that information acquisition complementarities is robust in Figure 6.1,

as is the relation between residual uncertainty/agents’ risk aversion and price informativeness in

Figure 6.2 and Figure 6.3.15

6.3 Learning

This section shows that my results are robust when principals learn information from the asset

price. To obtain analytical solution in the non-linear REE, I modify the information structure and

the distribution of residual uncertainty. I assume that the residual uncertainty ε follows normal

15 I set θ = 2, N = 2, p = 0.6, pm = 0.5, q = 0.6, Wa = 0, C = 0.07. I also set M = 5, M = 20 and M = 200
for low residual uncertainty, median residual uncertainty and high residual uncertainty cases respectively in Figure
6.1. Then set θ = 2, N = 2, p = 0.6, pm = 0.5, q = 0.6, Wa = 0, gammaa = 1, C = 0.05 and M = 20 for analysis
of agents’ risk aversion in Figure 6.2. I set θ = 2, N = 2, p = 0.6, pm = 0.5, q = 0.6, Wa = 0, gammaa = 1, and
C = 0.075 for analysis of residual uncertainty M in Figure 6.3.
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Figure 6.1: Information Acquisition Benefit: Triple-State Case

Figure 6.2: Population of Informed Principal and Agents’ Risk Aversion: Triple-State Case
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Figure 6.3: Population of Informed Principal and Residual Uncertainty: Triple-State Case

distribution N(0, σ2M ). The private signal acquired by agent i is denoted by si. Through the costly

effort ei ∈ {0, e}, the joint distributions of his signal si and the fundamental value V is a mixture

distribution as follows:

(b+ ei)f
I(si, V ) + (1− b− ei)fU (si, V ), (6.12)

where e > 0 and b + e < 1. Here, f I is an ”informed” distribution and fU in an ”uninformed”

distribution. I assume that si and V are independent in the uninformed distribution. Moreover,

I assume that the probability density of si is: f(si) = 1
2

1√
2πσ

exp−
(si−θ)

2

2σ2 +1
2

1√
2πσ

exp−
(si+θ)

2

2σ2 .

Meanwhile, ”informed” joint distribution f I(si, V ) = 1
2

1√
2πσ

exp−
(si−V )2

2σ2 , while ”uninformed” joint

distribution fU (si, V ) = 1
2f(si).

One interpretation of the mixture model is that the signals observed by the agents may be

informative or not and the agents cannot tell which occurs. In particular, when agents exert

efforts, the probabilities that the signals are informative increase. Meanwhile, the mixture model

is a simple sufficient condition when I implement the first-order approach to solve the optimal

contracts in a general space. Without a loss of generality, I only consider moral hazard problems

in information acquisition. This implies that principals could observe the realized signals acquired

by agents, but they could not observe whether the agents exert efforts. Moral hazard problems in

information acquisitions can be interpreted in many realistic circumstances, such as data collection.

Thus, principal i’s objective function is as follows:

max
πi(si,P,D),Xi(si,πi,P )

∫
f(si)

∫ ∫
[W0 +Xi(D − P )− πi(si, P,D)]f I(P,D|si)dPdDdsi, (6.13)

where Xi(si, πi, P ) is principal i’s demand function conditional on the price P and the signal si
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reported by his agent. He maximizes his utility function subject to his agent’s participant constraint

and incentive compatibility as follows:

PC: ∫
f(si)

∫ ∫
[− exp−γaπi(si,P,D)+γaC ]f I(P,D|si)dPdDdsi = − exp(−γaWa), (6.14)

IC: ∫
f(si)

∫ ∫
[− exp−γaπi(si,P,D)+γaC ]f I(P,D|si)dPdDdsi

≥
∫
f(si)

∫ ∫
[− exp−γaπi(si,P,D)+γaC ]fU (P,D|si)dPdDdsi,

(6.15)

where f I(P,D|si) is the conditional probability density given that the agent i exerts effort, and

fU (P,D|si) is the conditional probability density given that the agent i shirks.

Now, I assume that there is one continuum of principals and the population of prin-

cipals hiring agents to acquire information is λ. For the informed principal i, the

probability density of si conditional on V = θ is denoted by ηI,i,h, where ηI,i,h =

1+b+e
2

1√
2πσ

exp−
(s−θ)2

2σ2 +1−e−b
2

1√
2πσ

exp−
(s+θ)2

2σ2 ; the probability density of si conditional on V = −θ

is denoted by ηI,i,l, where ηI,i,l = 1+b+e
2

1√
2πσ

exp−
(s+θ)2

2σ2 +1−e−b
2

1√
2πσ

exp−
(s−θ)2

2σ2 . For the unin-

formed principal i,the probability density of si conditional on V = θ is denoted byηU,i,h, where

ηU,i,h = 1+b
2

1√
2πσ

exp−
(s−θ)2

2σ2 +1−b
2

1√
2πσ

exp−
(s+θ)2

2σ2 ; the probability density of si conditional on

V = −θ is denoted byηU,i,l, where ηU,i,l = 1+b
2

1√
2πσ

exp−
(s+θ)2

2σ2 +1−b
2

1√
2πσ

exp−
(s−θ)2

2σ2 .

Due to the assumption about risk-neutral principals, the optimal contracts and asset pricing

can be solved separately as our basic model. I solve the model following step-by-step: (1) in the

first step, I solve the asset pricing; (2) in the second step, I solve the optimal contract given the

population of informed principals; (3)in the third step, I calculate the net benefit of information

acquisition to show the strategic complementaries.

Asset Pricing In order to maximize the final wealth, it is necessary to compute the conditional

expectation of V for different groups. According to the Bayes’s rule, the posterior probability

pK(si, P ) of state h for principal i of type K after observing si and P is given by:

pK(si, P ) =
fh(P )ηK,i,h

fh(P )ηK,i,h + fl(P )ηK,i,l
(6.16)

where fω(P ), ω = h, l is the probability density of the equilibrium price conditional on the

corresponding state of the world. Given the posterior probabilities, principals’ demand schedules

are shown in the following lemma.

Lemma 6.1. For any K = I, U , there exists a threshold XK(P ) such that the demand schedule for
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principal i of type K is given by:

XK,i =

1 if si ≥ XK(P ) ,

−1 if si < XK(P ) ,
(6.17)

where the threshold XK(P ) is uniquely determined by the condition:

pK(XK(P ), P ) =
P + θ

2θ
. (6.18)

Having showing the demand schedules, the aggregate demand can be calculated as follows.

Conditional on V = θ, the aggregate demand is given by

D(P, θ) = λ[1− (1 + b+ e)Φ(XI(P )− θ)− (1− b− e)Φ(XI(P ) + θ)] (6.19)

+(1− λ)[1− (1 + b)Φ(XU (P )− θ)− (1− b)Φ(XU (P ) + θ)]; (6.20)

conditional on V = −θ, the aggregate demand is given by

D(P,−θ) = λ[1− (1 + b+ e)Φ(XI(P ) + θ)− (1− b− e)Φ(XI(P )− θ)] (6.21)

+(1− λ)[1− (1 + b)Φ(XU (P ) + θ)− (1− b)Φ(XU (P )− θ)], (6.22)

where Φ is the cumulative distribution function for normal distribution N(0, σ2). Consequently,

given realized demand from noisy traders, the market clearing condition takes the form as follows:

D(P, V ) = n (6.23)

Thus, the probability density of price P conditional on the value V is denoted as fi(P ). They are

calculated as follows:

fh(P ) = λ
2N [(1 + b+ e)φ(XI(P )− θ) + (1− b− e)φ(XI(P ) + θ)]X

′
I(P )

+ (1−λ)
2N [(1 + b)φ(XU (P )− θ) + (1− b)φ(XU (P ) + θ)]X

′
U (P )

(6.24)

fl(P ) = λ
2N [(1 + b+ e)φ(XI(P ) + θ) + (1− b− e)φ(XI(P )− θ)]X ′I(P )

+ (1−λ)
2N [(1 + b)φ(XU (P ) + θ) + (1− b)φ(XU (P )− θ)]X ′U (P )

(6.25)

where φ is the probability density function for the normal distribution N(0, σ2). The key to solve

the asset pricing is to solve the thresholds XI and XU . I follow Malamud and Petrov (2014) to

solve both. I denote the likelihood ratio by:

LK(X) = ηK,i,h/ηK,i,l. (6.26)
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From the Lemma 6.1, I have the following condition:

LI(XI(P )) = LU (XU (P )). (6.27)

Thus, the relation between XU (P ) and XI(P ) is: XU (P ) = L−1U (LI(XI(P ))). It indicates that the

solution of XI can characterize the asset pricing. I have the following result regarding XI , XU and

the probability density of price P :

Proposition 6.2. There exists a monotone increasing, absoluately continuous solution XI(P ),

P ∈ (−θ, θ) to

2 logLK(XI(P )) = log
P + θ

θ − P
.

Meanwhile, XI(P ), XU (P ) = L−1U (LK(XI(P ))) and

fh(P ) = λ
2N [(1 + b+ e)φ(XI(P )− θ) + (1− b− e)φ(XI(P ) + θ)]X

′
I(P )

+ (1−λ)
2N [(1 + b)φ(XU (P )− θ) + (1− b)φ(XU (P ) + θ)]X

′
U (P )

, (6.28)

and

fl(P ) = λ
2N [(1 + b+ e)φ(XI(P ) + θ) + (1− b− e)φ(XI(P )− θ)]X ′I(P )

+ (1−λ)
2N [(1 + b)φ(XU (P ) + θ) + (1− b)φ(XU (P )− θ)]X ′U (P )

(6.29)

form a rational expectations equilibrium.

Contracting I use the first-order approach to solve the optimal contracts. First, I let l1 and l2

be the Lagrange multipliers on the PC and IC. I can get the expression for optimal compensation

as follows:

π(si, P,D) =
log(l1 + l2 − l2 exp

−γaC fU (P,D|si)
fI(P,D|si)

) + log(γa)

γa
(6.30)

Net Benefit of Information Now I calculate the net benefit of information. Conditional

on the fundamental value V and asset price P , the expected trading profit of principal i of type

K = I, U is calculated by:

EK,h,P = prob(si < XK(P )|V = θ, P )(P − θ) + prob(si ≥ XK(P )|V = θ, P )(θ − P )

= 1+b+e
2 Φ(XK − θ)(P − θ) + 1−b−e

2 Φ(XK + θ)(P − θ)
+1+b+e

2 [1− Φ(XK − θ)](θ − P ) + 1−b−e
2 [1− Φ(XK + θ)](θ − P ),

(6.31)

EK,l,P = prob(si < XK(P )|V = −θ, P )(P + θ) + prob(si ≥ XK(P )|V = −θ, P )(−θ − P )

= 1+b+e
2 Φ(XK + θ)(P + θ) + 1−b−e

2 Φ(XK − θ)(P + θ)

+1+b+e
2 [1− Φ(XK + θ)](−θ − P ) + 1−b−e

2 [1− Φ(XK − θ)](−θ − P ).

(6.32)

36



Figure 6.4: Information Acquisition Benefit: Learning Case

Then, the expected trading profit for different groups of principals is as follows:

EK =
1

2

∫
EK,h,P fh(P )dP +

1

2

∫
EK,l,P fl(P )dP. (6.33)

Consequently, the net benefit from information is: B = EI −EU −E(π). Now, I numerically show

that the strategic complementarities are robust when the residual uncertainty has large variance in

the following figure.16

7 Conclusion

I show that optimal contracts depend on the accuracy of agents’ forecasts for the asset prices

and payoffs. Agents receive high compensation when they produce an accurate forecast. The

bonus, as a reward for an accurate forecast, decreases with price informativeness and increases

with residual uncertainty of the asset payoffs. When the price becomes more informative or

the residual uncertainty decreases, agents can forecast the asset prices or payoffs more accurately

with information. Consequently, agents are more willing to exert efforts in acquiring information.

Thus, the principals can decrease the bonus. These results predict that the bonus is larger for

professionals, who trade or cover small/growth stocks with larger residual uncertainty or assets

with lower institutional ownership.

More importantly, I show that agency problems in delegated information acquisition play impor-

tant roles in shaping institutional investors’ behavior and asset pricing. The novelty of my model is

that agency problems generate a strategic complementarities in information acquisition delegation.

16 I set θ = 0.5, σ = 1, Wa = 0, C = 0.1, N = 10 σM = 50
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When more principals hire agents to acquire information, the price becomes less noisy, which make

it easier for agents to forecast. Therefore, agents are more willing to exert effort, thereby mitigating

agency problems. In turn, other principals are more willing to hire agents. These strategic comple-

mentarities lead to multiple equilibria, which have implications for jumps and excess volatilities in

asset prices or price informativeness. In particular, multiple equilibria occur when the asset payoff’s

residual uncertainty is large. This can provide a potential explanation for observed excess volatilities

in small/growth stocks or during recessions. My results also predict that price informativeness or

institutional ownership tend to have jumps for small/growth stocks. The extensions of this model

demonstrate that the agency problems could provide explanations for some phenomena, including

idiosyncratic volatility comovement, herding behavior and home/industry bias. Moreover, my

model predicts that the herding or home/industry bias is stronger for small/growth stocks.

The driving force for my results is as follows: the price becomes more informative when more

principals hire agents to acquire information, which mitigates agency problems. Thus, it is clear

that the assumptions about risk-averse principals will not overturn the main mechanisms. However,

relaxing these assumptions is interesting. If principals are risk-averse, I expect that the optimal

contract will consist of two components: the first is agents’ forecasting accuracy, and the second is

proportional fee attributable to risk sharing. I leave this extension for further study.
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8 Appendix

8.1 Proofs

This appendix provides all proofs omitted above.

Proof of Lemma 3.1. If λ ≥ N
2p−1 , market maker will know that V = θ if X > −N + λ(2p− 1)

and V = −θ if X < N − λ(2p− 1). Then market makers will always set P = V . If this is the case,

informed investors’ trading will always equals to zero because Xi(V −P ) = 0. If the trading profit

is zero, investors have no incentive to acquire information. Thus I can conclude that the population

of informed investors can not be larger than N
2p−1 .

Proof of Lemma 3.2. On the support [−λ(2p− 1)−N,λ(2p− 1) +N ], the conditional pdf of X

follows

f(X|V = θ) =

1 if −N + λ(2p− 1) ≤ X ≤ N + λ(2p− 1)

0 if X < −N + λ(2p− 1)
(8.1)

f(X|V = −θ) =

0 if X > N − λ(2p− 1)

1 if −N − λ(2p− 1) ≤ X ≤ N − λ(2p− 1)
(8.2)

Using Bayesian updating, prob(V = θ|X) =
1
2
f(X|V=θ)

1
2
f(X|V=θ)+ 1

2
f(X|V=−θ) . Thus conditional on X, market

maker’s belief about probability of V = θ follows:

prob(V = θ|X) =


1 if N − λ(2p− 1) < X ≤ N + λ(2p− 1)

1
2 if −N + λ(2p− 1) ≤ X ≤ N − λ(2p− 1)

1 if −N − λ(2p− 1) ≤ X ≤ −N + λ(2p− 1)

(8.3)

Then because P = prob(V = θ|X)θ − [1− prob(V = θ|X)]θ, I can get the price function.

Proof of Lemma 3.3 and Lemma 3.4. Step 1 f I(P = θ,D, si = h) = f I(P = θ,D|si =

h)× prob(si = h).Then

f I(P = θ,D, si = h) = prob(P = θ, si = h)× f I(D|P = θ, si = h)

= prob(V = θ, si = h)× prob(N − λ(2p− 1) ≤ n ≤ N + λ(2p− 1))× f I(D|P = θ, si = h)

=


1

2M
p
2
λ(2p−1)

N if −M + θ ≤ D ≤M + θ

0 if −M − θ ≤ D < −M + θ

(8.4)
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Since prob(si = h) = 1
2 , I can get t f I(P = θ,D|si = h) in the Lemma.

Step 2 f I(P = −θ,D, si = h) = f I(P = −θ,D|si = h)× prob(si = h). Then

f I(P = −θ,D, si = h) = prob(P = −θ, si = h)× f I(D|P = −θ, si = h)

= prob(V = −θ, si = h)× prob(N − λ(2p− 1) ≤ n ≤ −N + λ(2p− 1))× f I(D|P = −θ, si = h)

=

0 if M − θ < D ≤M + θ

1
2M

1−p
2

λ(2p−1)
N if −M − θ ≤ D ≤M − θ

(8.5)

Since prob(si = h) = 1
2 , I can get f I(P = −θ,D|si = h) in the Lemma.

Step 3 f I(P = 0, D, si = h) = f I(P = 0, D|si = h)× prob(si = h). Then

f I(P = 0, D, si = h) = prob(P = 0, si = h)× f I(D|P = 0, si = h)

= prob(V = θ, si = h)× prob(−N + λ(2p− 1) ≤ n ≤ N − λ(2p− 1))× f I(D|P = θ, si = h)

+prob(V = −θ, si = h)× prob(−N + λ(2p− 1) ≤ n ≤ N − λ(2p− 1))× f I(D|P = −θ, si = h)

=


p

4M
N−λ(2p−1)

N if M − θ ≤ D ≤M + θ

1
4M

N−λ(2p−1)
N if −M + θ ≤ D < M − θ

1−p
4M

N−λ(2p−1)
N if −M − θ ≤ D < −M + θ

(8.6)

Step 4: Then Lemma 3.3 and Lemma 3.4 can be derived following the same process above.

Proof of Proposition 3.1. I prove this proposition in two steps.

Step 1 (proof of existence and uniquess)

max
vi(si,P,D)

∑
si={h,l}

∑
P={−θ,0,θ}

1

2

∫ ∫
1

γa
log[vi(si, P,D)]f I(P,D|si)dD, (8.7)

subject to participation constraint:

∑
si={h,l}

∑
P={−θ,0,θ}

1

2
vi(si, P,D)f I(P,D|si)dD = exp−γaWa−γaC (8.8)

Then I let f =
∑

si={h,l}
∑

P={−θ,0,θ}
1
2

∫ ∫
log[vi(si, P,D)]f I(P,D|si)dD and then

D1= {−
∑

si={h,l}

∑
P={−θ,0,θ}

1

2
vi(si, P,D)f I(P,D|si)dD ≥ − exp−γaWa−γaC} (8.9)

It is obvious that f is a strictly concave function and D1 is convex. Then I can conclude that

the local maximum of f over D1 is a global solution to this optimization. This implies that the

solution in the first-order approach is the global solution to this problem.
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Step 2: (Solution). I denote Lagrange multiplier of by λ1. Then I can get vi(si, P,D) = 1
γa

1
λ1

and 1
γaλ1

= exp−γaWa−γaC . Then I can conclude that πi(si, P,D) = Wa + C.

Proof of Proposition 3.2. Step 1 (proof of existence and uniquess in the second-best) The

second-best case is proposed by Dybvig et al. (2010) where the principals are able to observe

agents’ signals, but are not able to observe agents’ hidden actions. Thus, there is not misreporting

problem. Then I will show that the agency problem in my study is equivalent to this second-

best case since the signals or fundamental value V take binary states. Particularly, the IC in the

second-best case is:

∑
si={h,l}

1

2

∫ ∫
vi(si, P,D)[f I(P,D|si)− exp−γaC fU (P,D|si)]dPdD ≤ 0 (8.10)

Then I let f =
∑

si={h,l}
∑

P={−θ,0,θ}
1
2

∫ ∫
log[vi(si, P,D)]f I(P,D|si)dD and then

D2= {−
∑

si={h,l}
∑

P={−θ,0,θ}
1
2vi(si, P,D)f I(P,D|si)dD ≥ − exp−γaWa−γaC ;∑

si={h,l}

1
2

∫ ∫
vi(si, P,D)[f I(P,D|si)− exp−γaC fU (P,D|si)]dPdD ≤ 0}

vi(si, P,D) ≥ 0

(8.11)

It is obvious that f is a strictly concave function over D2, while D2 is convex. Then I can

conclude that the local maximum of f over D2 is a global solution to this optimization. This

implies that the solution in the first-order approach is the global solution to this problem.

Step 2 (case when p = 1). The first order condition should be:

1 = [λ1 + λ2 − λ2
exp−γaC f(P,D)

f I(P,D|si)
]γavi(si, P,D) (8.12)

When p = 1, if λ2 > 0 I have following cases:

when si = h and P = −θ: λ1 + λ2 − λ2
exp−γaC f(P,D)

f I(P,D|si)
= −∞ (8.13)

when si = h , P = 0 and −M − θ ≤ D < −M + θ: λ1 + λ2 − λ2
exp−γaC f(P,D)

f I(P,D|si)
= −∞ (8.14)

when si = l and P = θ: λ1 + λ2 − λ2
exp−γaC f(P,D)

f I(P,D|si)
= −∞ (8.15)

when si = l , P = 0 and M − θ ≤ D ≤M + θ: λ1 + λ2 − λ2
exp−γaC f(P,D)

f I(P,D|si)
= −∞ (8.16)

First-order approach will fail here and this indicates that λ2 = 0. When λ2 = 0, I can conclude

that IC will not be binding. I substitute 1 = λ1γavi(si, P,D) into PC and get 1
λ1γa

= exp−γaWa−γaC .
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Then I can get result shown in the proposition.

Step 3: (case when p < 1). I denote Lagrange multiplier of PC by λ
′
1 and Lagrange multiplier

of IC by λ
′
2 . Then I can get

1 = [λ
′
1 + λ

′
2 − λ

′
2

exp−γaC f(P,D)

f I(P,D|si)
]γavi(si, P,D) (8.17)

Then I let: λ1 = λ
′
1γa, λ2 = λ

′
2γa and q = exp−γaC (where q < 1)

From Lemma 3.3 and Lemma 3.4, I know that:

(1) When si = h,

1

vi(si = h, P = θ,D)
= λ1 + λ2 − λ2

q

2p
(8.18)

1

vi(si = h, P = −θ,D)
= λ1 + λ2 − λ2

q

2(1− p)
(8.19)

1

vi(si = h, P = 0, D)
=


λ1 + λ2 − λ2 q

2p if M − θ ≤ D ≤M + θ

λ1 + λ2 − λ2q if −M + θ ≤ D < M − θ

λ1 + λ2 − λ2 q
2(1−p) if −M − θ ≤ D < −M + θ

(8.20)

(2) When si = l,

1

vi(si = l, P = θ,D)
= λ1 + λ2 − λ2

q

2(1− p)
(8.21)

1

vi(si = l, P = −θ,D)
= λ1 + λ2 − λ2

q

2p
(8.22)

1

vi(si = l, P = 0, D)
=


λ1 + λ2 − λ2 q

2(1−p) if M − θ ≤ D ≤M + θ

λ1 + λ2 − λ2q if −M + θ ≤ D < M − θ

λ1 + λ2 − λ2 q
2p if −M − θ ≤ D < −M + θ

(8.23)

To simplify the analysis, I let x = λ1 + λ2 − λ2 q
2p and y = λ1 + λ2 − λ2 q

2(1−p) . Then it is clear

that I have λ1 + λ2 − λ2q = px+ (1− p)y. I substitute vi(si = l, P = 0, D) into PC and IC.

Step 4 (case when p < 1). After rearrangment, I have:
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1
xp

λ(2p−1)
N + 1

x
pθ
M

N−λ(2p−1)
N + 1

px+(1−p)y
M−θ
M

N−λ(2p−1)
N

+ 1
y
(1−p)θ
M

N−λ(2p−1)
N + 1

y (1− p)λ(2p−1)N = exp−γaWa−γaC
(8.24)

1

y
=

1

x
+

exp−γaWa(1− exp−γaC)

(p− 1
2)(λ(2p−1)N + θ

M
N−λ(2p−1)

N )
(8.25)

I let a1 = λ(2p−1)
N + θ

M
N−λ(2p−1)

N , a2 = exp−γaWa (1−exp−γaC)
p−0.5 , then I have y = a1x

a1+a2x
. From the

above two equations, I have:

a1
x

+
1− a1

px+ (1− p) a1x
a1+a2x

= exp−γaWa −exp−γaWa(1− exp−γaC)

2p− 1
(8.26)

I let g(x) = a1
x + 1−a1

px+(1−p) a1x
a1+a2x

. It is obvious that g(x) is a decreasing function of x when

x > 0. This concludes that there exists unique solution. Let b = exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 .

It is obvious that there is one unique positive solution when b > 0. I have:

x =
−[ba1+(1−p)a1a2−a2]+

√
[ba1+(1−p)a1a2−a2]2+4bpa2a1
2bpa2

and y = a1x
a1+a2x

Step 5: Now I prove that this second-best is equivalent to the agency problem in my model.

I need to prove that agents’ utility in truth telling is higher than that when they misreport after

receiving informative signals, while agents’ utility in truth telling in information acquisition is

higher than that when they randomly reports without any information. This is to prove that :

1
xp

λ(2p−1)
N + 1

x
pθ
M

N−λ(2p−1)
N + 1

px+(1−p)y
M−θ
M

N−λ(2p−1)
N

+ 1
y
(1−p)θ
M

N−λ(2p−1)
N + 1

y (1− p)λ(2p−1)N

≤ 1
yp

λ(2p−1)
N + 1

y
pθ
M

N−λ(2p−1)
N + 1

px+(1−p)y
M−θ
M

N−λ(2p−1)
N

+ 1
x
(1−p)θ
M

N−λ(2p−1)
N + 1

x(1− p)λ(2p−1)N

(8.27)

Since 1
y >

1
x and p > 1

2 , it is easy to show the above inequality always holds.

Proof of Corollary 3.1 and Proof of Proposition 3.3 . First, because y = a1x
a1+a2x

, it is

obvious that Sf = 1
γa

log(1 + exp−γaWa (1−exp−γaC)
p−0.5

x
λ(2p−1)

N
+ θ
M

N−λ(2p−1)
N

). I let z = x
λ(2p−1)

N
+ θ
M

N−λ(2p−1)
N

.

For Sf , the signs of
∂Sf
∂λ and

∂Sf
∂M depend on ∂z

∂λ and ∂z
∂M respectively. For the equation a1

x +

1−a1
px+(1−p) a1x

a1+a2x

= b, the LHS is decreasing with z and decrease with a1. Because RHS is constant

with a1, then I know that ∂z
∂a1

< 0. Then I have

∂z

∂λ
=

∂z

∂a1
(1− θ

M
)
(2p− 1)

N
< 0 (8.28)
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∂z

∂M
= − ∂z

∂a1

θ

M2

N − λ(2p− 1)

N
> 0 (8.29)

From equation, it is clear that when θ = M , I have ∂z
∂λ = 0.

Proof of Lemma 4.1 and Proposition 4.1. When si = h, I know that Xi = 1; When si = l,

Xi = −1. So I can calculate expected trading profit as follows:

Ep = prob(si = h)E(D − P |si = h) + prob(si = l)E(P − P |si = l) (8.30)

= θ(2p− 1)
N − λ(2p− 1)

N
(8.31)

Then it is obvious that ∂B
∂λ < 0.

Proof of Proposition 4.2. Let K = 1
2a1 log(x) + 1

2a1 log(y) + (1 − a1) log[px + (1 − p)y], I can

get B = θ(2p− 1)N−λ(2p−1)N −K. Then∂B∂λ = − θ(2p−1)2
N − ∂K

∂a1
∂a1
∂λ = − θ(2p−1)2

N − ∂K
∂a1

(1− θ
M ) θ(2p−1)N .

Step 1 (M is small enough) I know that for M > θ, limM→θ
∂B
∂λ = − θ(2p−1)2

N < 0. Because ∂B
∂λ

is a continuous function, this implies that there exists a cutoff M c satisfying M < M c, ∂B
∂λ < 0.

Step 2 (M is large enough) I know that for M = +∞, limλ→0
∂B
∂λ = − θ(2p−1)2

N −
lima1→0

∂K
∂a1

θ(2p−1)
N

lima1→0
∂K
∂a1

= lima1→0{12 log(x) + 1
2 log(y)− log[px+ (1− p)y]

+1
2a1

1
x
∂x
∂a1

+ 1
2a1

1
y
∂y
∂a1

+ (1− a1) 1
px+(1−p)y [p ∂x∂a1 + (1− p) ∂y∂a1 ]}

(8.32)

Because y = a1x
a1+a2x

, I know that lima1→0 x = 1
bp , lima1→0 y = 0, lima1→0

∂x
∂a1

= finite

lima1→0
∂y
∂a1

= lima1→0(
x

a1+a2x
− a1x

(a1+a2x)2
+ a1

a1+a2x
∂x
∂a1
− a1x

(a1+a2x)2
∂x
∂a1

) = finite.

Thus I can obtain lima1→0
∂K
∂a1

= −∞. Then I can conclude that when M is large enough and

λ small enough, ∂B
∂λ > 0. This concludes my proof.

Proof of Proposition 4.3. Step 1. When λ = 0, I know that Bap(0) = θ(2p− 1) + log b.

Step 2. If Bap(0) < 0 and maxλ<λfb B(λ) < 0, the unique equilibrium is no information

acquisition equilibrium.

Step 3. If Bap(0) < 0 and maxλ<λfb Bap(λ) > 0, I prove that there exist three equilibria. The

first one is non-information acquisition equilibrium becasue Bap(0) < 0 and
∂Bap(0)
∂λ > 0. I let λ∗

be the solution to maxλ<λfb B(λ). Then there exists one solution in (0, λ∗). Moreover, because

Bap < Bfb, I know that B(λfb) < 0, thus exists one solution in (λ∗, λfb). Step 4. If Bap(0) > 0,

because Bap(λfb) < 0, then there exists at least one positive solution in (0, λfb)

Proof of Proposition 4.4. This result is direct because I know that Bap < Bfb.
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Proof of Lemma 5.1. I know that E(V |X) = θp(V = θ|X) − θp(V = −θ|X). Then because

p(V = θ|X) = p(V=θ,X)
P (X) ,then I have:

p(V = θ,X) =


p
2 if N − λ < X ≤ N + λ

1
2 if −N + λ ≤ X ≤ N − λ
1−p
2 if −N − λ ≤ X < −N + λ

(8.33)

p(V = −θ,X) =


1−p
2 if N − λ < X ≤ N + λ

1
2 if −N + λ ≤ X ≤ N − λ
p
2 if −N − λ ≤ X < −N + λ

(8.34)

Then I have:

p(V = θ|X) =


p if N − λ < X ≤ N + λ

1
2 if −N + λ ≤ X ≤ N − λ

1− p if −N − λ ≤ X < −N + λ

(8.35)

Thus, I conclude the proof.

Proof of Lemma 5.2. The proof is shown as follows:

Ecp = p(sc = h)E(V − P |sc = h) + p(sc = l)E(P − V |sc = l)

= (2p− 1)θN−λN

(8.36)

Proof of Lemma 5.3. Because

E(P |sj = h) = (2p− 1)θ ∗ prob(sc = h|sj = h) λN

−(2p− 1)θ ∗ prob(sc = l|sj = h) λN

= θ λN (2p− 1)3

(8.37)

Following the same logic, I can get E(P |sj = l) = −θ λN (2p − 1)3. Then I calculate expected

trading profit of investors who acquire private signal as:

EIp = (2p− 1)θN−(2p−1)
2λ

N
(8.38)

Proof of Proposition 5.1. Step 1. I prove that no herding equilibrium occurs in the economy

without agency problem. Following the analaysis of optimal contract, I know that the payments
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π = Wa + C. Then when λ > 0 and µ = 0 in the herding equilibriu, I will have Ecp −Wa − C =

0 > EIp −Wa − C. Because this is impossible, I conclude that herding equilibrium will not occur.

Step 2. I calculate the optimal payment scheme provided by principals who acquire sc in the

herding equilibrium. Because f I(P = −(2p − 1)θ,D|sc = h) = f I(P = (2p − 1)θ,D|sc = l) = 0,

the optimal scheme following the proof of Proposition 2.2, I know that

π(P = −(2p− 1)θ, sc = h,D) = π(P = (2p− 1)θ, sc = l,D) = −∞ (8.39)

Otherweise, π = Wa + C.

Step 3. I calculate the optimal payment scheme provided by principals who acquire si in the

herding equilibrium in this step. Before calculation of optimal payment scheme, I calculate pdf

of P and D conditional on si. To simply the analysis, I only consider the case when M goes to

infinity. When M goes to infinity, I know that pdf of P and D conditional on si is equivalent to

pdf of P conditional on si. Then I have the following cases if agents acquire information:

probI(P |si = h) =


λ[p2+(1−p)2]

N if P = (2p− 1)θ

N−λ
N if P = 0

2λp(1−p)
N if P = −(2p− 1)θ

(8.40)

probI(P |si = l) =


2λp(1−p)

N if P = (2p− 1)θ

N−λ
N if P = 0

λ[p2+(1−p)2]
N if P = −(2p− 1)θ

(8.41)

Then I have the following cases if agents do not acquire information:

probU (P ) =


λ
2N if P = (2p− 1)θ

N−λ
N if P = 0

λ
2N if P = −(2p− 1)θ

(8.42)

Following the first-order approach in above proof, I know that

1

v(si = h, P = (2p− 1)θ)
=

1

v(si = l, P = −(2p− 1)θ)
= λ1 + λ2 − λ2

exp(−γaC)

2[p2 + (1− p)2]
(8.43)

1

v(si = h, P = −(2p− 1)θ)
=

1

v(si = l, P = (2p− 1)θ)
= λ1 + λ2 − λ2

exp(−γaC)

4p(1− p)
(8.44)
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1

v(si = h, P = 0)
=

1

v(si = l, P = 0)
= λ1 + λ2 − λ2 exp(−γaC) (8.45)

I let p1 = p2 + (1 − p)2, x1 = λ1 + λ2 − λ2 exp(−γaC)
2p1

, y1 = λ1 + λ2 − λ2 exp(−γaC)
2(1−p1) , a11 = λ

N ,

a21 = exp(−γaWa)(1−exp−γaC)
p1−0.5 and b1 = exp−γaWa − exp(−γaWa)(1−exp−γaC)

2p1−1 . When b1 < 0, the solution

to solve the optimal contract does not exists.

Step 4. If exp−γaWa − exp(−γaWa)(1−exp−γaC)
2p1−1 < 0 and Ecp = (2p− 1)θN−λN −Wa−C > 0 for some

positive λ, I can get the results in the proposition.

Proof of Proposition 5.2. Step 1. In the first-best case, it is clear that the optimal payment

scheme is constant. That is π = Wa +C. Because the net befit of information acquisition for home

investors is (1−ph)(2p−1)θN−ηN −Wa−C and the net benefit of information acquisition for foreign

investors is (2p− 1)θN−ηN −Wa − C. If λ > 0, this indicates that

(1− ph)(2p− 1)θ
N − η
N

−Wa − C = 0 (8.46)

Moreover, this indicates that (2p − 1)θN−ηN −Wa − C > 0. Thus, it implies that µ should be

infinity. This is impossible because price will be fully revealing when µ goes to infinity. Then trading

profit will become zero and this violate the assumption that (1− ph)(2p− 1)θN−ηN −Wa − C = 0.

Therefore, I can conclude that λ = 0. This implies that neither weak herding equilibrium not

strong herding equilibrium occur in the first-best case.

Step 2. I only prove that strong herding equilibrium occurs under some condition in the economy

with agency problem. Particularly, I try to find the condition under which λ = 1 and µ = 0. For the

foreign investors, the approach to solve the optimal contract is simila to the proof of Proposition

3.2. I only replace λ(2p − 1) with η in the proof. When both of M and N go to infinity, I

know that net benefit of information acquisition for foreign investors is Bf,ap(0) = (2p − 1)θ +

log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ].

Step 3. I take the following steps to solve the optimal contract for the home investors. The

conditional pdf of sh,i when si is informative is shown as follows:

probI(sh,i|si = h) =


php if sh,i = θ

1− ph if sh,i = ∅

ph(1− p) if sh,i = −θ

(8.47)
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probI(sh,i|si = l) =


ph(1− p) if sh,i = θ

1− ph if sh,i = ∅

php if sh,i = −θ

(8.48)

The conditional pdf of sh,i when si is uninformative is shown as follows:

probU (sh,i) =


ph
2 if sh,i = θ

1
2 if sh,i = ∅
ph
2 if sh,i = −θ

(8.49)

Following the first-order approach in proof of Proposition, I know that

1

v(si = h, sh,i = θ)
=

1

v(si = l, sh,i = −θ)
= λ1 + λ2 − λ2

exp(−γaC)

2p
(8.50)

1

v(si = h, sh,i = −θ)
=

1

v(si = l, sh,i = θ)
= λ1 + λ2 − λ2

exp(−γaC)

2(1− p)
(8.51)

1

v(si = h, sh,i = ∅)
=

1

v(si = l, sh,i = ∅)
= λ1 + λ2 − λ2 exp(−γaC) (8.52)

This is similar to the proof of Proposition 3.2, I let x = λ1 + λ2 − λ2 exp(−γaC)
2p , y = λ1 + λ2 −

λ2
exp(−γaC)
2(1−p) , a12 = ph, a22 = exp(−γaWa)(1−exp−γaC)

p−0.5 and b2 = exp−γaWa − exp(−γaWa)(1−exp−γaC)
2p−1 .

Following proof of Proposition 4.2, I know that the net benefit of informaiton acquisition for

home investors is Bh,ap(ph) = (1 − ph)(2p − 1)θ − K (where K = 1
2ph log(x) + 1

2ph log(y) + (1 −
ph) log[px+ (1− p)y] ).

When ph = 0, I know that Bh,ap(0) = (2p − 1)θ + log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ]. Then I

denote the derivative of Bh,ap(ph) with ph by
∂Bh,ap
∂ph

. Then I know that for very small positive ε, I

know that Bh,ap(ε) = (2p− 1)θ+ log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ] + ε ∗ ∂Bh,ap∂ph

. Because
∂Bh,ap(0)

∂ph

is infinity and θ is not in the function Bh,ap, there exists small enough θ satisfying (2p − 1)θ +

log[exp−γaWa − exp−γaWa (1−exp−γaC)
2p−1 ] = −ε. In this case, I know that Bh,ap(ε) > 0 and Bh,ap(0) < 0.

I let θ1 =
− log[exp−γaWa − exp−γaWa (1−exp−γaC )

2p−1
]−ε

2p−1 and θ2 =
− log[exp−γaWa − exp−γaWa (1−exp−γaC )

2p−1
]

2p−1 . This

implies foreign investors never have incentive to acquire information, but home investors have

incentive to acquire informtion under the condition:θ1 < θ < θ2.

Proof of Proposition 6.1. Following the similar process in the proof of Proposition 3.2 and

Proposition 4.2, I know that

πi(si = h, P = θ,D) = πi(si = l, P = −θ,D) = π1 (8.53)
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πi(si = h, P = −θ,D) = πi(si = l, P = θ,D) = π3 (8.54)

πi(si = h, P = 0, D) =


π1 if M − θ ≤ D ≤M + θ

π2 if −M + θ ≤ D < M − θ

π3 if −M − θ ≤ D < −M + θ

(8.55)

πi(si = l, P = 0, D) =


π3 if M − θ ≤ D ≤M + θ

π2 if −M + θ ≤ D < M − θ

π1 if −M − θ ≤ D < −M + θ

(8.56)

As I know thatπ1 > π2 > π3 if all PC and IC in the second-best are binding as shown below.

Then it is similar as proof of Proposition 3.2, I know that this contract can satisfies ex ante IC

and ex post IC. Then I let U1 = U(π1),U2 = U(π2) and U3 = U(π3). Particularly, the PC and IC

follows:

a1pU1 + (1− a1)U2 + a1(1− p)U3 = U(Wa) + C (8.57)

U1 = U3 +
C

a1(p− 0.5)
(8.58)

It is clear that U2 = U(Wa)− C
2p−1 −

a1
1−a1U3.

Now I prove information acquisition complementarity is robust when M is infinite and λ is

small enough for different γ as follows.

Now the principals’ optimization problem becomes to minimize

min
π1,π2,π3

a1pπ1 + (1− a1)π2 + a1(1− p)π3 (8.59)

This problem can be transferred to:

min
U3

G(U3) (8.60)

where G(U3) = a1pU
−1(U3+ C

a1(p−0.5))+(1−a1)U−1(U(Wa)− C
2p−1−

a1
1−a1U3)+a1(1−p)U−1(U3).

Since a1 is a linear function of λ. The first-order condition with λ is equivalent to the first-order

condition with a1, I have ∂G(U3)
∂U3

= 0. It is easy to check that Assumption ass:crra can ensure there

exists interior solution to the contracting problem. Particularly, I have the following three cases:

Case 1: If 0 < γ < 1, I know that I U3 should satisfy: U3 > 0 and U(Wa)− C
2p−1 −

a1
1−a1U3 > 0.
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Case 2: If γ > 1, I know that U3 should satisfy: U3 + C
a1(p−0.5) < 0,U3 < 0 and

U(Wa)− C
2p−1

1−a1 −
a1

1−a1U3 < 0.

Case 3: If γ = 1 and K = 0, then I know that U(W ) u ln(W ) (where u represents liner

transformation).

It is obvious that U−(x) = [(1−γγ x)
1

1−γ −K] γA . I let the solution to this problem to be U∗3 . Then

the minimum value of G(U3) is G(a1, U
∗
3 ). Now I have effect of a1 on G(a1, U

∗
3 ) is:

∂G(a1,U∗3 )
∂a1

= pU−1(U3 + C
a1(p−0.5))− U

−1(U(Wa)− C
2p−1 −

a1
1−a1U3) + (1− p)U−1(U3)

+
∂G(a1,U∗3 )

∂U∗3

∂G(U∗3 )
∂a1

− a1p
∂[U−1(U3+

C
a1(p−0.5)

)]

∂(U3+
C

a1(p−0.5)
)

C
a21(p−0.5)

+(1− a1)
∂[U−1(

U(Wa)− C
2p−1

1−a1
− a1

1−a1
U3)]

∂(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)

(− 1
(1−a1)2U3)

(8.61)

For any cases, I know that
∂G(a1,U∗3 )

∂U∗3

∂G(U∗3 )
∂a1

= 0. I show information acquisition is complementary

case by case.

Case 1( γ < 1): I know that: (1−a1)
∂[U−1(

U(Wa)− C
2p−1

1−a1
− a1

1−a1
U3)]

∂(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)

(− 1
(1−a1)2U3) < 0 because U3 < 0

and −U−1(U(Wa)− C
2p−1 −

a1
1−a1U3) + (1− p)U−1(U3) < 0

and then pU−1(U3 + C
a1(p−0.5)) − p

∂[U−1(U3+
C

a1(p−0.5)
)]

∂(U3+
C

a1(p−0.5)
)

C
a1(p−0.5) = p γA(1−γγ )

1
1−γ (U3 +

C
a1(p−0.5))

1
1−γ−1[U3− γ

1−γ
C

a1(p−0.5) ]− p
γ
AK < p γA(1−γγ )

1
1−γ ( C

a1(p−0.5))
1

1−γ−1[U3− γ
1−γ

C
a1(p−0.5) ]− p

γ
AK

Because U3 > 0 and U3 < U(Wa)+C, I know that lima1→0
∂G(a1,U∗3 )

∂a1
= −∞. For the net benefit

of information acquisition B, I have lima1→0
∂B
∂a1

=∞ for large enough M and small enough λ.

Case 2 ( γ > 1) From the proof of , I know that p(Aπ1γ +K)γ+ (1−p)(Aπ3γ +K)γ = (Aπ2γ +K)γ .

Let π
′
i = (Aπ1γ +K)γ , I know that πi = [(π

′
i)

1
γ −K] γA , which is a concave function of π

′
i. Then

I can have

pU−1(U3+ C
a1(p−0.5))−U

−1(U(Wa)− C
2p−1−

a1
1−a1U3)+(1−p)U−1(U3) = p π1+(1−p)π3−π2 < 0

Becasue U−(x) = [(1−γγ x)
1

1−γ −K] γA , I know that ∂[U−1(x)]
∂x = 1

A(1−γγ x)
1

1−γ−1 and ∂2[U−1(x)]
∂x2

> 0

Then from FOC ∂G(U3)
∂a1

= 0, I know that

a1p
∂[U−1(U3 + C

a1(p−0.5))]

∂(U3 + C
a1(p−0.5))

+ (1− a1)
∂[U−1(U(Wa)− C

2p−1 −
a1

1−a1U3)]

∂(U(Wa)− C
2p−1 −

a1
1−a1U3)

+ a1(1− p)
∂[U−1(U3)]

∂(U3)
= 0

(8.62)

Thus, I have

p
∂[U−1(U3+

C
a1(p−0.5)

)]

∂(U3+
C

a1(p−0.5)
)

C
a1(p−0.5) +

∂[U−1(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)]

∂(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)

1
1−a1U3 = p

∂[U−1(U3+
C

a1(p−0.5)
)]

∂(U3+
C

a1(p−0.5)
)

[ C
a1(p−0.5) −

a1U3
(1−a1)2 ]− a1U3

(1−a1)2 (1− p)∂[U
−1(U3)]
∂(U3)
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Because [U(Wa)− C
2p−1 ]1−a1a1

< U3 < − C
a1(p−0.5) , I know that lima1→0

C
a1(p−0.5) −

a1U3
(1−a1)2 =∞.

For ∂[U−1(x)]
∂x = 1

A(1−γγ x)
1

1−γ−1, I know that lima1→0
∂[U−1(U3)]
∂(U3)

= 0 because U3 → −∞.

Because U3 + C
a1(p−0.5) > U(Wa) + C, I have

∂[U−1(U3+
C

a1(p−0.5)
)]

∂(U3+
C

a1(p−0.5)
)

> ∂[U−1(x)]
∂x |x=U(Wa)+C

Thus, I can conclude that

lima1→0 p
∂[U−1(U3+

C
a1(p−0.5)

)]

∂(U3+
C

a1(p−0.5)
)

C
a1(p−0.5) +

∂[U−1(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)]

∂(
U(Wa)− C

2p−1
1−a1

− a1
1−a1

U3)

1
1−a1U3 =∞

Therefore, it is easy to show that lima1→0
∂G(a1,U∗3 )

∂a1
= −∞ and I conclude that lima1→0

∂B
∂a1

=∞
for large enough M and small enough λ.

Case 3 forU(W ) = ln(W ), I directly calculate
∂G(U3)
∂a1

= a1p exp(U3 + C
a1(p−0.5)) + a1(1− p) exp(U3)− a1 exp[

U(Wa)− C
2p−1

1−a1 − a1
1−a1U3] = 0

Thus exp( 1
1−a1U3)[p exp( C

a1(p−0.5)) + (1− p)] = exp[
U(Wa)− C

2p−1

1−a1 ]

I have U3 = U(Wa)− C
2p−1 − (1− a1) log[p exp( C

a1(p−0.5)) + (1− p)]
Then

G(a1,U∗3 )
∂a1

= exp{U(Wa)− C
2p−1 + a1 log[p exp( C

a1(p−0.5)) + (1− p)]}
Then I let g(a1) = a1 log[p exp( C

a1(p−0.5)) + (1− p)]

I know that lima1→0 g(a1) =
a21
1

p exp( C
a1(p−0.5)

)

p exp( C
a1(p−0.5)

)+(1−p)
C

a21(p−0.5)
= C

(p−0.5)

Then I know that ∂g
∂a1

= 1
a1

[a1 log[p exp( C
a1(p−0.5)) + (1− p)]− C

(p−0.5) ]

Thus I have lima1→0
∂g
∂a1

= −∞
Then I can conclude that lima1→0

∂G(a1,U∗3 )
∂a1

= −∞. For the net benefit of information acquisition

B, I have lima1→0
∂B
∂a1

=∞ for large enough M and small enough λ.

Proof of Lemma 6.1. For principal i, his expected trading profit when he submits 1 is

(2pK(si, P )−1)θ−P , while his expected trading profit when he submits -1 is P −(2pK(si, P )−1)θ.

Because pK(si, P ) is increasing with si, principal i is indifferent between submitting 1 and -1 when

(2pK(si, P )− 1)θ − P = 0. This concludes the proof.

Proof of Proposition 6.2. First, we have the condition as follows:

pI(XI , P ) = pU (XU , P ) =
P + θ

2θ
=

1

1 + fl
fh

1
LI

. (8.63)

Then we have log(P+θ
θ−P ) = log(fhfl ) + log(LI). Denote B(P ) =

∂L−1
U (LI(XI))
∂P . From the expressions
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of fh and fl, we have

log(fhfl ) = log(
λ(1+b+e)φ(XI−θ)X

′
I+λ(1−b−e)φ(XI+θ)X

′
I+(1−λ)(1+b)φ(XU−θ)BX

′
I+(1−λ)(1−b)φ(XU+θ)BX

′
I

λ(1+b+e)φ(XI+θ)X
′
I+λ(1−b−e)φ(XI−θ)X

′
I+(1−λ)(1+b)φ(XU+θ)BX

′
I+(1−λ)(1−b)φ(XU−θ)BX

′
I

)

= log(
[(1+b+e)φ(XI−θ)+(1−b−e)φ(XI+θ)][λX

′
I+

(1−λ)(1+b)φ(XU−θ)B+(1−λ)(1−b)φ(XU+θ)

(1+b+e)φ(XI−θ)+(1−b−e)φ(XI+θ)
BX
′
I ]

[(1+b+e)φ(XI+θ)+(1−b−e)φ(XI−θ)[λX
′
I+

(1−λ)(1+b)φ(XU+θ)B+(1−λ)(1−b)φ(XU−θ)
(1+b+e)φ(XI+θ)+(1−b−e)φ(XI−θ)

BX
′
I

)

(8.64)

Because LI(XI) = LU (XU ), we have

(1−λ)(1+b)φ(XU−θ)B+(1−λ)(1−b)φ(XU+θ)
(1+b+e)φ(XI−θ)+(1−b−e)φ(XI+θ)

= (1−λ)(1+b)φ(XU+θ)B+(1−λ)(1−b)φ(XU−θ)
(1+b+e)φ(XI+θ)+(1−b−e)φ(XI−θ)

(8.65)

Thus, log(fhfl ) = log(LI)
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