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Abstract

This paper investigates, in a general equilibrium models with a continuum of

traders, the hypothesis that markets favor traders with more accurate beliefs. Contrary

to the known results for economies populated by finitely many traders, I find that risk

attitudes have an effect on survival and that there are cases in which the market se-

lects against traders with correct beliefs. Remarkably, even in these cases, asymptotic

equilibrium prices reflect accurate beliefs. Thus, unlike the other known violations of

the market selection hypothesis, my result corroborates Freedman’s conjecture that the

selection forces in the market support the adoption of rational expectation equilibria.
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1 Introduction

According to the market selection hypothesis, henceforth MSH, the market selects for

the traders with the most accurate beliefs. This hypothesis, first articulated by Alchian

(1950) and Friedman (1953), is one of the key arguments for the adoption of rational

expectations equilibria: as the consumption-share of traders with correct beliefs con-

verges to one, financial markets can be understood, to a large extent, using models

with a representative trader with correct beliefs.

The validity of the MSH has been studied extensively in various, general settings.

Existing results (De Long et al (1990, 1991), Shleifer-Summers (1990) and Blume-

Easley (1992)) have shown that the MSH can fail in partial equilibrium models or if

the market contains some inefficiencies. Conversely, in general equilibrium models with

finitely many traders, small economies henceforth, it has been shown that the MSH

holds true (Sandroni (2000) and Blume-Easley (2006)), albeit mild assumptions on

preferences (Kogan et al. (2006)) and on the aggregate endowment process (Kogan et

al. (2011), Yan (2008)).

My paper enquires whether this fundamental result also applies to general equilib-

rium models that satisfy the regularity conditions of Sandroni (2000) and Blume-Easley

(2006) but are populated by a continuum of traders, henceforth large economies. There

are three main reasons to focus on large economies. First, a well-developed market typ-

ically contains a large number of traders with similar investment strategies and similar

returns. Assuming a continuum of traders provide a good approximation of the case in

which the number of trading period is not large enough to discriminate between similar

investment strategies. Second, the large economy setting allows for the derivation of

results that are probabilistically sharp (traders live forever), maintaining the afore-

mentioned property that the most accurate trader cannot be uniquely identified after

finitely many trading periods. Third, to justify the assumption that traders are price

takers (i.e. the competitiveness of walrasian equilibrium Aumann (1965)). It is often

argued that price taking behavior is not at odd with the small economy setting because

of the equivalence between a small economy with n traders and a large economy with

n groups of identical traders. Nevertheless, this level of homogeneity is hardly, if ever,
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met in financial markets. The large economy setting does not impose this restriction.

I find that large economies are qualitatively different from small economies. In

small economies, the survival chances of a trader exclusively depend on his discount

factor and on the accuracy of his beliefs. Whereas, in a large economy, the survival

chances of a group of traders depends on the discount factor, on the accuracy of the

beliefs of the most accurate trader in the group and, also, on the effect of risk attitudes

on the aggregate investment strategies. Thus, only in large economies, risk attitudes

can have an effect on survival (Section 4) and there are cases in which the market

selects against traders with correct beliefs (Section 3), i.e. the MSH can fail. Risk

attitudes have an effect on the survival chances of groups of traders because they

affect the optimal aggregate saving rate. In the CRRA utility specification, the same

parameter captures both traders attitudes toward risk and their attitudes toward inter-

temporal consumption. Risk attitudes have an effect on survival because, given two

groups of traders with equivalent heterogeneous beliefs, the two groups have equivalent

aggregate investment decisions but the group whose traders are less risk averse have

stronger speculative incentives to invest, thus save more and come to dominate (see the

example in Section 4). The same phenomenon is also present in small economies (see

the example in Section 4.2), nevertheless in this setting, the best trader in the economy

is selected faster and beliefs heterogeneity effectively disappear in finitely many periods

eliminating the speculative incentives. Thus, in small economies, risk attitudes affect

the asymptotic consumption-share distribution but their effect is not strong enough to

drive the consumption-share of a trader all the way to 0 (1) and be captured by the

standard, coarse notion, of trader survival.

The failure of the MSH I identify shows that there are market conditions under

which to know the true distribution is not enough to survive. But who survive then?

And what happens to equilibrium prices? My analysis shows that, if the MSH fails,

it is impossible to know ex-ante which one of the remaining traders will survive. In

other words, the only way for a trader to survive is to get lucky. This high degree of

indeterminacy on traders’ fate is compensated by a positive result about equilibrium

price: irrespectively from who survives, asymptotic equilibrium prices reflect accurate

3



beliefs. Thus, unlike the other known violations of the market selection hypothesis,

my result corroborates Freedman’s conjecture that the selection forces in the market

support the adoption of rational expectation equilibria.

This seemingly counterintuitive result depends on the fact that a trader with incor-

rect beliefs can come to dominate only if his beliefs are, on the realized sequence, as

good as the correct one. Specifically, the failure of the MSH I identify occurs if i) the

true probability is such that the maximum likelihood parameter is a random variable

with continuum support; ii) there is always a (positive mass) of traders whose believes

are, by luck, arbitrarily close to the empirical maximum likelihood parameter and iii)

traders with incorrect beliefs are investing aggressively enough for luck to pay off. The

first condition is met, for example, if the true data generating process is a mixture of

iid processes (aka, exchangeable process, see Appendix A). These processes are a nat-

ural generalization of iid processes and model the realistic situations in which the true

probability is an iid process whose parameters are, ex-ante, unknown (See Appendix A

for discussion). In Kreps (1988) words: “...exchangeability is the same as “independent

and identically distributed with a prior unknown distribution function”...”. The last

two conditions simply require that there is a trader that gets lucky and that the money

in the market move fast enough for luck to pay off.

The paper proceeds as follows. Section 2 describes the setting and the assumptions.

Section 3 studies economies in which all traders have identical utilities. This setting

is already reach enough illustrate the role played by risk attitudes on survival (Section

3.1); to show a case in which the MSH fails (Section 3.2); to highlight that, if the

MSH fails, to be lucky is the only way for a trader to survive (Section 3.3) and that

asymptotic equilibrium prices reflect accurate beliefs even if the MSH fails (Section 3.4).

Section 4 extends my finding to economies with different risk attitudes, characterize

equilibrium prices and provide a general sufficient condition for a group of traders to

vanish that covers both the small and the large economy setting. In Section 4.2, I

discuss the relation between the small and the large setting.
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2 The model

2.1 The probabilistic environment and beliefs accuracy

The model is an infinite horizon Arrow-Debreu exchange economy with complete mar-

kets with a unique perishable consumption good. Time is discrete and begins at date

0. At each date there is a finite set of states S ≡ {1, ..., S} with cardinality |S|=S. The

set of all infinite sequences of states is S∞ with representative sequence of realizations

σ = (σ1, ...). Let σt = (σ1, ..., σt) denote the partial history through date t of path

σ, St be the set containing all of the different sequences of length t and Σt be the

algebra that consists of all the finite unions of sequences of length t. Σ is the smallest

σ-algebra on ∪∞t=1Σt. The true probability measure on Σ is P . For any probability

measure p on Σ, p(σt) is the marginal probability of the partial history σt; that is,

p(σt) = p({σ1 × ...× σt}× S × S × ...). In the next Sections I will introduce a series of

economic variable that depends on σt. All of them are assumed to be Σt measurable.

Each trader has a subjective probabilistic view pi on Σ. Following the tradition in

the market selection literature, I assume that pi is dogmatic: each trader “agree to

disagree” with the other traders in the market and trades for speculative reasons.

I rank beliefs’ accuracy according to a standard statistical criterion: the likelihood

ratio test.

Definition 1. Given a true probability measure P, trader i’s beliefs, pi, are more

accurate than trader j’s if pj(σt)
pi(σt)

→P -a.s. 0.

This definition, unlike the one adopted by Sandroni (2000) and Blume-Easley

(2006), does not use any approximation of the likelihoods of traders’ beliefs. There

are two reasons for this departure. First, as already observed in Blume-Easley (2006),

Sandroni’s definition (average accuracy), is to coarse to discriminate between differ-

ent learning rates1. Second, Blume-Easley’s definition cannot be applied because, as

showed in Massari (2013), it can lead to incorrect results.

1The averaging factor, 1
t , in the measure Sandroni adopts renders the k

2 log t dimensionality component

of the BIC approximation mute (see Section 3).

5



2.2 The traders in the economy

The measure space of traders is (A,A, i) where A is the unit interval, A its Borel

subsets, and i is the Lebesgue measure. The economy is characterized by the aggregate

preferences, �γj , and by the aggregate time 0 consumption Cγj0 of N sets of traders Aγj ,

j = 1, ..., N . �γj and Cγj0 are constructed, respectively, by aggregating the preferences

and the initial consumptions of groups of individual traders, i, with believes pi, utilities

ui and infinitesimal time 0 consumption ci0. With an abuse of notation, Aγj represents,

at the same time, a set of traders, Aγj = {i ∈ Aγj} and a set of probabilities, Aγj =

{pi : i ∈ Aγj} i.e. the beliefs of the traders in Aγj . With this in mind, I can introduce

the fundamental notion of cluster:

Definition 2. A cluster,Aγj , is a measurable open subset of A such that:

• cluster Aγj has strictly positive time 0 consumption: Cγj0 =
∫
Aγj

ci0di > 0

• probabilities in Aγj belong to the same, regular, probabilistic model MAγj

• traders in Aγj have identical CRRA utility function u(c) = c1−γj
1−γj and identical

discount factor βj.

The definition of cluster groups traders to ensure tractable aggregate preferences for

sets of traders with positive aggregate time 0 consumption.2 Clearly, a small economy

with n traders is formally equivalent to a large economy with n clusters of traders with

identical beliefs. The notation adopted, (ci0, pi instead of c0(i),p(.|i)), is intended to

ease the comparison between the two settings (i.e.
∑

i∈A c
i
0p
i(σt) =

∫
A c

i
0p
i(σt)di).

Regularity of MAγj
, formally defined in Appendix B, is a technical assumption

to ensure that cluster’s investment strategies can be asymptotically approximated.

This assumption is not probabilistically restrictive as most of the commonly adopted

parametric models are regular (all of the members of the iid exponential family and

2The assumptions in the next Section ensure that the second welfare theorem applies to my setting.

Thus I am entitled to make direct assumptions on the initial consumption shares. This is done with the

understanding that, the assumptions are made on the pareto weight distribution of the social planner problem

in the background of the competitive equilibrium. For the same reason I will not discuss the endowment

processes.
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most of its non-iid members). Requiring that all of the beliefs in cluster Aγj belong to

the same probabilistic model class is also not restrictive: if it were not the case, Aγj

could be divided into two sub-clusters that satisfy the requirement.

Let Cγj (σt) =
∫
Aγj

ci(σt)di be cluster Aγj ’s consumption at time/event σt. In

the tradition of the selection literature, the asymptotic fate of a cluster is coarsely

characterize by the distinction between those clusters who disappear and those who do

not.

Definition 3. A cluster Aγj vanishes on σt if its aggregate consumption-share con-

verges to 0: limt→∞C
γj (σt) = 0. A cluster Aγj survives on σt if : lim supt→∞Cγj (σt) >

0. A cluster Aγj dominates on σt if : limt→∞C
γj (σt) = 1.

2.3 The assumptions

Throughout the paper I refer to these assumptions.

A1: All traders have CRRA utility functions ui(c) = c1−γi
1−γi with γi ∈ (0,∞).

A2: The aggregate endowment is bounded above and below.

A3: For all traders i, all dates t and all paths σ, pi(σt) > 0⇔ P (σt) > 0.

A4: The competitive equilibrium exists.

A5: In each cluster Aγj , c
i
0 = c0(i), is a continuous, strictly positive, bounded, inte-

grable function of i.

A6: All traders have identical discount factor β.

Assumptions A1-A3 and A6 are standard in the selection literature. If the traders

in the economy can be organized in finitely many clusters with identical beliefs, the

economy is formally equivalent to a small economy and Assumptions A1-A3 and A6

are implied by Sandroni (2000)’s Blume-Easley (2006)’s one. As usual, a competitive

equilibrium is a sequence of prices {q(σt)}∞t=1 and, for each cluster Aγj , a sequence of

consumption choices {Cγj (σt)}∞t=0 that is affordable, preference maximal on the budget

set and mutually feasible. Assumption A4 is made for simplicity. If the economy is

equivalent to a small economy, A1-A3 are sufficient for Peleg-Yaari’s (1970) existence

theorem; while, in properly large economies, it can be shown that the existence of the

competitive equilibrium follows from the other assumptions as an implication of Ol-
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sroy’s (1984) existence theorem. The prove is omitted because notationally intensive

and tangent to the main contribution of the paper. Assumption A5 is a smoothness

assumption needed for Theorem 1, which can be made WLOG because the second

welfare theorem applies to this setting.

3 Homogeneous risk attitudes

This Section covers the case of large economies in which all traders have the same

CRRA utility function and identical inter-temporal discount factor (A6). Let start by

introducing a simple economy to use as intuitive reference for the results that follows.

The economy is a discrete time Arrow-Debreu exchange economy with complete

markets, constant aggregate endowment and two states S = {W,R}. There is a unit

mass of unskilled traders , cluster AU , with iid beliefs whose union covers the simplex

(AU={∪i∈Upi(R)}={p ∈ (0, 1)}) and a unit mass of identical skilled traders, cluster

AB, whose beliefs, pB, coincide which the probabilities obtained via Bayes’ rule from a

uniform prior overAU . Each trader has the same CRRA utility function with parameter

γ, identical inter-temporal discount factor β and aims to solve:

U i(c) = Epi

∞∑
t=0

βtui(ct(σ))

s.t.
∑
t=0

∑
σt∈St

q(σt)
(
cit(σ)− eit(σ))

)
≤ 0.

The true probability, P , is, for now, left unspecified.

In equilibrium, traders maximize their subjective expected discounted utility subject

to the budget constraints and markets clear. Traders’ first order conditions of the

maximization problem imply that, in every path σt,
(
ci(σt)

)γ = (ci0)γ β
tpi(σt)
q(σt) , which,

rearranging and (Riemann) summing over traders of the same cluster, gives

∫
AB

ci(σt)di = β
t 1
γ

∫
AB

pB(σt)
1
γ ci0di

q(σt) 1
γ

and

∫
AU

ci(σt)di = β
t 1
γ

∫
AU

pi(σt)
1
γ ci0di

q(σt) 1
γ

.

Taking the ratio of the aggregate consumptions of the two clusters, prices simplify out
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and we obtain ∫
AB

ci(σt)di∫
AU

ci(σt)di
=

∫
AB

pB(σt)
1
γ ci0di∫

AU
pi(σt)

1
γ ci0di

. (1)

The following Lemma uses standard arguments in the selection literature to shows

that Equation 1 is the fundamental quantity to determine which cluster vanishes.

Lemma 1. Under A1-A6, if all traders have the same utility, cluster Aγj vanishes on

σ if exists a cluster Aγk such that:

R
Aγj

ci0p
i(σt)

1
γ diR

Aγk
ci0p

i(σt)
1
γ di
→ 0

Proof. By A2,
∫
Aγk

ci0p
i(σt)

1
γ di <∞. Thus, by Equation 1

∫
Aγj

ci(σt)di∫
Aγk

ci(σt)di
=

∫
Aγj

ci0p
i(σt)

1
γ di∫

Aγk
ci0p

i(σt)
1
γ di
→ 0⇔

∫
Aγj

ci(σt)di→ 0

Lemma 1 suggests that instead of focusing on aggregate beliefs accuracy, we should

focus on risk adjusted aggregate beliefs. The main technical contribution I make is

to provide an accurate approximation of risk adjusted aggregate beliefs and show

that this distinction, which plays no role in small economies, is relevant in large

economies. This approximation is done by generalizing a fundamental result about

Bayesian accuracy: the BIC approximation (Schwarz (1978), Clarke-Barron (1990),

Phillips-Ploberger(2003), Grünwald (2007)).

BIC approximation. LetM be a regular parametric model and pB(σt) be the bayesian

likelihood obtained from a prior distribution, g, that is continuous and strictly positive

on a k-dimensional non-empty open strict subset, A0, of the parameter space A, then,

∀σt ∈ Σ, pB(σt) :=
∫
A
pi(σt)gidi ≈ eln pî(σ

t)(σt)− k
2

ln t.

Where pî(σ
t) is the parameter choice in A0 with the highest likelihood on σt.

Moreover, if P ∈ A, then pî(σ
t) →P -a.s. P.
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The BIC approximation shows that the accuracy of the probabilities obtained via

Bayes rule depends on the dimensionality of the prior support (k). It formalizes the

intuition that there is an accuracy cost in using models with redundant parameters

because some of the information of the sample is “wasted” to learn that their true

value is 0.3 It is important to stress the generality of the result. The first line, does

not depends on the true probability P. It tells us that the Bayesian likelihood is, in

every sequence, well approximated by the likelihood of the best model in the (interior

of the) prior support corrected by a dimensionality term. The second line tells us that,

if the true probability is in the prior support, then the maximum likelihood model in

A converges P -a.s. to the true probability.

Lemma 2 obtains a similar approximation for risk adjusted aggregate probabilities.

The approximation shows that risk attitudes do not interact with the dimensionality

component of the BIC.

Lemma 2. Under A1-A5, for any sequence σt : pî(σ)
γj ∈ Aγj , cluster Aγj ’s risk adjusted

aggregate beliefs satisfies:

∀σt ∈ Σ,
∫
Aγj

pi(σt)
1
γj ci0di ≈ e

1
γj

ln pî(σ
t)(σt)−

kj
2

ln t

Where pî(σ
t)

γj is the parameter choice in Aγj with the highest likelihood on σt and kj is

the dimensionality of Aγj .

Moreover, if P ∈ Aγj , then pî(σ
t) →P -a.s. P.

Proof. See Appendix

3A classical example is the following.

Suppose the true probability is Bernoulli with parameter P . There are two Bayesians traders (B1, B2); B1

has a smooth prior on the Bernoulli family (1 parameter: k1 = 1) and B2 has a smooth prior on the Markov

(1) family (2 parameters: k2 = 2). Since every iid model is also Markov 1, the next period forecasts of both

traders converge to the true probability. Nevertheless, application of the BIC approximation reveals that

the beliefs of B1 are more accurate than the beliefs of B2.
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3.1 Risk attitudes and survival

In our reference economy, all skilled traders have identical beliefs, thus pB(σt)
1
γ can be

taken out of the integral and Equation 1 becomes:∫
AB

ci(σt)di∫
AU

ci(σt)di
=
pB(σt)

1
γ
∫
AB

ci0di∫
AU

ci0p
i(σt)

1
γ di

. (2)

Applying the BIC and Lemma 2 to Equation 2, 4

lim
t→∞

∫
AB

ci(σt)di∫
AU

ci(σt)di
= lim

t→∞

pB(σt)
1
γ
∫
AB

ci0di∫
AU

ci0p
i(σt)

1
γ di

= lim
t→∞

e
1
γ

“
ln pî(σ

t)− 1
2

ln t
”

e
1
γ

ln pî(σ
t)− 1

2
ln t

we see that, the risk adjusted aggregate likelihood of skilled traders has dimensionality

term 1
γ2 ln t, while the risk adjusted aggregate likelihood of unskilledtraders has dimen-

sionality term 1
2 ln t, thus risk attitudes have an effect on survival. More generally, the

following Proposition holds:

Proposition 1. Under A1-A6, if all traders have the same utility and the economy

only contains a cluster of traders (AU ) with heterogeneous iid beliefs and a cluster of

Bayesian traders, AB with identical, continuous, strictly positive prior on AU , then

i) γ ∈ (0, 1)⇔ cluster AB vanishes, ∀σt

ii) γ = 1⇔ cluster AB survives but does not dominate, ∀σt

iii) γ > 1⇔ cluster AB dominats, ∀σt.

Proof. Application of Theorem 1

The economic intuition goes as follow. The aggregate beliefs of the two clusters

are equivalent, thus the two clusters have equivalent aggregate investment strategies.

Nevertheless, at an individual level, every unskilled trader has a dogmatic believe that

the data generating process is iid with parameter pi. Therefore, most of them believe

that prices are incorrect and trade for speculative reasons. 5 In the CRRA utility

specification, the γ parameter captures both traders’ attitudes toward risk and their

4k=1 because for the Bernoulli model, we only need to estimate one parameter
5The speculative reasons exists also for skilled traders but are weaker because they share the same beliefs

and this beliefs is close to equilibrium prices.
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attitudes toward inter-temporal consumption. If γ < (>)1 all of the unskilled traders

optimally decide to postpone more (less) consumption than skilled traders to take

advantage of the speculative opportunity. Thus, on aggregate, unskilled traders have

an equivalent investment strategy but higher (lower) saving rate than skilled traders

and dominate (vanish) in every path.

It is interesting to note that, if all traders have log utility (γ = 1), risk attitudes

have no effect on aggregation. This is consistent with Rubinstein’s (1974) finding that,

if all traders have log utility, an heterogeneous beliefs economy can be equivalently

represented as an economy with a representative trader whose beliefs are the wealth-

weighted average of traders beliefs. In our case, AU = AB, thus the representative

agents of the two clusters have equally accurate beliefs and both survives.

3.2 The role of the true probability

In Proposition 1, I make a comparison between a group of Bayesian’s traders and a

group of iid traders. The result holds in every path, thus it holds independent from the

true probability distribution P. Depending on the assumptions we make on the true

probability, Proposition 1 assumes different interpretations.

3.2.1 Do you learn fast enough?

If we assume that the true probability is iid, then there is one member of the unskilled

cluster with correct beliefs and infinitesimal consumption. Proposition 1 can be inter-

pret as describing the situation in which there is a “race” between the rate at which

the Bayesian traders learn, which is independent from risk attitudes, and the rate at

which the market moves consumption-shares to “reward” the members of the iid clus-

ter whose beliefs are more accurate than the Bayesians at t, which it does depend on

risk attitudes.

Proposition 1’. Under the assumptions of Proposition 1, if the true probability is iid
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,

i) γ ∈ (0, 1)⇔ cluster AB does not learn fast enough and vanish, ∀σt

ii) γ = 1⇔ cluster AB learns fast enough to survive, not enough to dominate, ∀σt

iii) γ > 1⇔ cluster AB learns fast enough to dominate, ∀σt.

Note that, for γ > 1, the skilled cluster dominates even if the unskilled cluster con-

tains a trader with the correct iid beliefs. Nevertheless, this result does not constitute

an argument against the MSH because the consumption-share of this trader is 0 and

his presence has no effect in the economy.

3.2.2 If you’re so rich, why aren’t you smart?

A proper violation of the MSH would require a case in which there is a cluster of traders

with correct beliefs who vanishes against a cluster of traders with incorrect beliefs. This

can be done by assuming that the true probability in our reference economy coincides

with skilled traders’ beliefs. In this case, the interpretation is that the “race” is between

the rate at which the market reward the correct beliefs of skilled traders and the rate

at which the lucky traders among the unskilled cluster accumulate wealth.

Proposition 1”. Under the assumptions of Proposition 1, if the true probability P =

pB and γ ∈ (0, 1), skilled traders vanishes in every path: the MSH fails.

To assume that the true probability coincides with the beliefs of a Bayesian learner

may seem odd. Nevertheless this type of probabilities are well defined (Exchangeable

processes) and, by De-Finetti’s theorem, constitute a natural generalization of iid pro-

cesses (see Appendix A).

For a concrete case in which P = pB consider the following example:

In our reference economy, let the true probability P evolves according to this (Polya

urn) process: the process starts with an urn containing one White ball (W ) and one

Red ball (R). At each discrete time (trial), we randomly select a ball from the urn

to determine the state of the economy. The selected ball is then returned to the urn

along with one new ball of the same color. It can be easily verified that:
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• the composition of the urn changes over time6 according to the iterative formula:

P (Rt+1|σt) = 1+
Pt
τ=1 Iστ=R

t+2

• no unskilled trader has correct beliefs (because P is not iid)

• skilled traders have correct beliefs: skilled traders are Bayesian with uniform prior

on (0,1), a routine application of Bayes’ rule verifies that their beliefs coincide

in every path with the composition of the urn: pB(Rt+1|σt) = 1+
Pt
τ=1 Iστ=R

t+2 =

P (Rt+1|σt).

Nevertheless, this economy satisfies the assumptions of Proposition 1, thus, for γ < 1,

skilled traders vanishes and the MSH fails.

The interested reader can find a direct proof of this result that only uses basic

algebra in Appendix C.

3.3 If the MSH fails, the market selects for luck

Proposition 3.2.2 shows that there are cases in which a cluster whose members have

correct beliefs is driven out of the market by a cluster whose members have incorrect

beliefs. Here I discuss the consumption-share distribution between the traders in the

cluster that dominates. It turns out that, among the group of unskilled traders, the

market selects for those traders whose beliefs falls, by luck, into a shrinking interval

around the empirical maximum likelihood. Luck is defined as follows.

Definition 4. Trader i is lucky if these conditions hold:

- the maximum likelihood parameters of the true probability are a random variables

- he believes them to be deterministic constants

- their realized value coincides with trader i’s beliefs.

The definition of luck is stringent but unambiguous. It requires the true maximum

likelihood parameter to be a RV, instead of a constant. The reason is that if the

maximum likelihood parameters are random variables, it is impossible for a trader to

6For example, if the first ball extracted is Red the composition of the urn before the second extraction

becomes 2 R and 1 W: P (R|R) = 2
3 . If the second ball is again Red, then P (R|R,R) = 3

4 . If then we have

a White ball: P (R|W,R,R) = 3
5 ; iteratively P (Rt+1|σt) = 1+

Pt
τ=1 Iστ=R

t+2 .
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know their value before making investment decisions. Thus ruling out the possible

confusion between a trader that knows the true parameter because of his skills and a

trader that, as a result of a random devise, adopts the true parameters by chance.

Proposition 2. In a large economy that satisfies A1-A6 in which the MSH fails, to be

lucky is the only way to survive.

Proof. See Appendix

In the reference economy of Section 3.2.2, the intuition goes as follows. Given an

exchangeable process such as the Polya urn described the empirical maximum likelihood

parameter is the realized frequency. If γ < 1 skilled traders vanish, thus a trader with

correct beliefs vanish for sure. Among the unskilled traders, the market selects for

traders with high empirical likelihood, which is to say for the traders whose beliefs are

in a shrinking interval around the empirical frequency. Since the empirical frequency

is a random variable (the composition of the urn changes stochastically), these traders

cannot have any particular merit beside the fact the they made, by luck, the correct

guess. Thus, to be lucky is the only way a trader can survive.

3.4 Asymptotic equilibrium prices reflect accurate beliefs

If the MSH holds, convergence to rational expectation equilibria follows from standard

economic arguments, but what happens when the market does not select for the traders

with correct beliefs? Here I show that, contrary to the other failure of the MSH identi-

fied in the literature, the convergence occurs even when the MSH fails: by selecting for

lucky traders, the market brings equilibrium prices to reflect beliefs that are, ex post,

as accurate as the beliefs of the most accurate trader in the economy.

Proposition 3. In a large economy that satisfies A1-A6, asymptotic prices reflect the

most accurate beliefs among traders

Proof. If the MSH holds, the result follows from standard arguments. If it does not

hold, by Proposition 2 , consumption-shares concentrates on traders whose beliefs are,
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in every σt, close to the belief with maximal empirical likelihood: pî(σ
t). Thus, by

standard arguments, prices reflects beliefs that becomes arbitrarily close to pî(σ
t).

In our reference economy, the result can be interpreted as follows:

The Polya urn process can be equivalently thought of as representing the case in which

Nature randomizes at time 0 to decide which iid model to use (i.e. the asymptotic

frequency p̂). Ex-ante, skilled traders’ beliefs are correct because they know that

Nature is choosing the parameter at random; while each unskilled traders incorrectly

believe that there is a unique possible parameter. Ex-post, the market selects for the

lucky iid traders whose beliefs are close to the realized parameter, i.e for the traders

that have rational expectations, conditionally on the realized value of p̂. Therefore,

even if the MSH fails, equilibrium prices are in the long run correct and convergence

to rational expectations occurs.

4 Heterogeneous utilities and discount factors

The main difficulty to extend the results of the previous sections to the case of different

risk attitudes is that, at this level of generality, I need to be able to approximate not only

aggregate risk adjusted beliefs but also asymptotic equilibrium prices. In this Section

I precisely characterize equilibrium prices and provide a general sufficient condition for

a cluster to vanish. My condition shows that the fate of a cluster depends on three

components: clusters’ inter-temporal discount factors, the accuracy of its most accurate

member and the interaction between cluster’s dimensionality and risk attitudes.

Let’s start with an Example:

Consider an Arrow-Debreu exchange economy with two states S = {W,R}. The econ-

omy contains a cluster of traders Aγ whose traders’ iid beliefs cover the simplex:

Aγ = {p ∈ (0, 1)}, and a cluster of traders Aη whose traders’ iid beliefs cover the

same simplex: Aη = Aγ . all traders have identical discount factor β.

Rearranging the FOC and aggregating over clusters as in Section 3,∫
Aη
ci(σt)di∫

Aγ
ci(σt)di

=
βt
∫
Aη
ci0p

i(σt)
1
η di

βt
∫
Aγ
ci0p

i(σt)
1
γ di

q(σt)
1
γ
− 1
η . (3)
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Equation 3 generalizes Equation 1 to the case of different risk attitudes. It shows

that if two clusters have different risk parameter, their asymptotic fate depends on

the ratio of their inter-temporal discount factors, the ratio of their risk adjusted ag-

gregate probability, and also on risk adjusted equilibrium prices, which, in this model

are an endogenous quantity. Proposition 4, gives us a characterization of asymptotic

equilibrium prices that is precise enough to serve to our purposes.

Proposition 4. In an large economy that satisfy A1-A6, with n clusters, equilibrium

prices satisfies:

q(σt) ≈ max
j∈n

et lnβj+ln p̂j(σt)−
γjkj

2
ln t

Where, p̂γj (σ
t), kj and γj are, respectively, the beliefs of the most accurate trader in

cluster Aγj , the dimensionality of Aγj and the IES parameter of cluster Aγj .

Proof. See Appendix

Application of Proposition 4 and Lemma 2 to Equation 3 gives us∫
Aη
ci(σt)di∫

Aγ
ci(σt)di

=

∫
Aη
ci0p

i(σt)
1
η di∫

Aγ
ci0p

i(σt)
1
γ di

q(σt)
1
γ
− 1
η

≈ e
1
η

ln p̂(σt)− 1
2

ln t

e
1
γ

ln p̂(σt)− 1
2

ln t
e

“
1
γ
− 1
η

”
(ln p̂(σt)− γ2 ln t)

≈ e−
1
2
(1− γ

η
) ln t →for γ<η 0

and, in line with the interpretation of the other results, the more risk averse cluster

vanishes in every sequence. More generally:

Proposition 5. In a large economy that satisfy A1-A6 with n clusters with identical

aggregate beliefs, the least risk averse cluster dominates in every sequence.

Proof. Application of Theorem 1

4.1 A sufficient condition for a cluster to vanish

The intuition of the example can be used to construct a general sufficient condition to

vanish that applies to both small and large economies:
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Theorem 1. In a large economy that satisfy A1-A5, cluster j vanishes P-a.s. if there

is a cluster k such that:

(t lnβj − t lnβk) +
(
ln p̂γj (σ

t)− ln p̂γk(σt)
)

+
(
−γjkj

2
ln t+

γkkk
2

ln t
)
→P -a.s. −∞

Where, for n = i, k, p̂γn(σt), kn and γn are, respectively, the beliefs of the most accurate

trader in cluster Aγn, the dimensionality of Aγn and the IES parameter of cluster Aγn.

Proof. By the FOC: Cγj =
βtj
R
Aγj

ci0p
i(σt)

1
γj di

q(σt)
1
γj

. The result follows using Lemma 2 and

Proposition 4 to approximate risk adjusted beliefs and equilibrium prices.

Theorem 1 highlights that the survival of a cluster depends on three exogenous

components. The first two components are standard in the selection literature as they

do not depends on the dimensionality of cluster’s beliefs. The last one is new and only

appears in the large setting. The interpretation of these components is straightforward.

The first component captures the role of inter-temporal discount factors, the second

component captures the accuracy of the most accurate trader in the cluster and the

last components capture the interaction between the heterogeneity of opinions and risk

attitudes: if, within a cluster, traders invest aggressively, the wealth-shares concentrate

fast around the most accurate trader in the cluster and the aggregate strategy of the

cluster becomes accurate fast, thus the cluster is hard to beat.

Keeping the other two components equal, differences in the first components indicate

that the least patient cluster vanishes P -a.s.; differences in the second components

indicate that a cluster vanishes P -a.s. if its most accurate trader is less accurate than

the most accurate trader of another cluster; and differences in the last component

indicate that a cluster vanishes P -a.s. if there is another cluster which invest more

aggressively (i.e. with lower risk adjusted dimensionality ratio).

The example of Section 3 illustrates the way the second and the third components

can interact and compensate each other. The accuracy components are respectively:

ln p̂B(σt) = ln pî(σ
t)(σt) − 1

2 ln t (because of the BIC approximation) and ln pî(σ
t)(σt)

(the most accurate unskilled trader has iid beliefs whose probability coincides with

the empirical frequency), while the risk/dimensionality components are respectively, 0
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(because all skilled traders have the same beliefs), and γ
2 ln t (By Lemma 2). Thus, as

shown, Theorem 1 implies that for γ < 1 skilled traders vanish.

4.2 Small economies

A large economy with finitely many clusters of identical traders is formally equivalent

to a small economy, thus the condition of Theorem 1 also applies to this setting. In

this case, the beliefs of the most accurate trader in the cluster coincides with trader’s

beliefs and the risk/dimensionality component becomes mute (k=0). For this reason,

risk attitudes do not play a significant role on aggregation and do not have an effect

on survival. This result is consistent with Sandroni (2000) and Blume-Easley (2006)

finding and is summarized in the following corollary:

Corollary 1. In a small economy that satisfy A1,A2,A3 and A6 the market selects for

the most accurate traders P -a.s..

The qualitative difference between large and small economies can be puzzling. My

assumptions are implied by Sandroni’s (2000) and Blume-Easley’s (2006), and the only

difference between the two setting is on the cardinality of the set of traders. Their re-

sults apply to economies with an arbitrarily large number of traders and yet here I

show that are not valid in large economies. It turns out that this discontinuity is only

apparent, as it is generated by the dichotomic definition of survival, not by a qualitative

difference between the two settings. If instead of focusing on 0 Vs positive asymptotic

consumption we were focusing on the size of the asymptotic consumption-shares, we

would have found no discontinuity between the two settings: in small economies, risk

attitudes have an effect on asymptotic consumption-shares that has the same direction

as the one found in large economies. The following “small economy adaptation” of

Section 3’s setting can serve as an illustrative example.7

7The example also shows that uncountably many traders are already enough for an economy to behave

like a large economy, albeit complications due to the way set of beliefs Aγj and the prior support of the

Bayesian traders are constructed.
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The economy is a discrete time Arrow-Debreu exchange economy with complete

markets, constant aggregate endowment and two states S = {W,R}. Traders 1,...,n

have heterogeneous iid beliefs pi, cluster AU , and traders n+1,...,2n are Bayesian

traders, clusterAB, whose beliefs pb are derived from a uniform prior onAU = {∪ni=1p
i}:

pb(σt) :=
∑n

i=1
1
np

i(σt). All trader have the same CRRA utility function with param-

eter γ and identical inter-temporal discount factor β. For the sake of the argument,

assume that ∀i, ci0 = 1
2n and that p1 is the most accurate trader8.

Rearranging the FOC,

∑
b∈AB c

b(σt)∑
i∈AU c

i(σt)
=
∑2n

i=n+1
1
2n

(∑n
i=1

1
np

i(σt)
) 1
γ∑n

i=1
1
2np

i(σt)
1
γ

=
1
2

(
1
n + 1

n

∑n
i=2

pj(σt)
p1(σt)

) 1
γ

1
2n + 1

2n

∑n
i=2

(
pj(σt)
p1(σt)

) 1
γ

→P -a.s. n

n
1
γ

.9

Which shows that i) risk attitudes have an effect on the asymptotic consumption

share of the Bayesian trader and ii) for γ > 0 and n < ∞, this effect is not strong

enough to be detected by the definition of survival.

The reason is intuitive: the consumption-share of the trader with correct beliefs

initially grow faster than the consumption-share of the Bayesian traders because the

beliefs of the Bayesian traders are initially incorrect. Nevertheless, as the beliefs of

the Bayesian concentrate around the true probability, this difference disappears. Risk

attitudes have an effect on asymptotic consumption-shares because determine how

fast consumption-shares move: the lower the gamma, the fastest consumption-shares

move and the lower will be the asymptotic consumption-shares of the Bayesians. The

cardinality of I has an effect on survival because it determine both the convergence rate

of Bayesian posterior (for pB) and the convergence rate of wealth-shares: if |I| < |R|,

both convergence rates are exponential, thus, in finitely many periods, the Bayesian

learns the true probability and heterogeneity disappears from the market. While, if

|I| = |R|, both convergence rates are slower than exponential (they are respectively

O( 1

t
k
2

) and O( 1

t
k
γ2

)); in this case the market tolerates a mild form of long run beliefs

heterogeneity and the posterior never exactly concentrates on the true probability.

8According to the definition of cluster, AU fails to be clusters: c0 is not continuous. Traders are groped

in this fashion to maintain the parallel with the approach followed in Section 3.
9The convergence occurs because p1 is assumed to be the most accurate trader.
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5 Conclusions

This paper extends the project started by Sandroni (2000) and Blume-Easley (2006) on

market selection in general equilibrium complete markets to the large economy setting.

I show that large economies are qualitatively different from small economies in that

risk attitudes do play a role on survival. It follows that contrary to the standard result,

markets can fail do identify the traders with correct beliefs. This failure of the MSH is

qualitatively different from all of the other cases found in the literature in that it does

not invalidate Freedman’s conjecture that the selection forces in the market support

the adoption of rational expectation equilibria. It turns out that equilibrium prices

can be asymptotically correct even if the market selects against traders with correct

beliefs. My result shows that risk attitudes and aggregation affect investment decisions

in a non trivial way even when traders optimize on saving decisions and allocations

decisions at the same time. Moreover, my setting allows to discuss the role played by

luck in financial markets and its relation with risk attitudes. In particular I find cases

in which to be lucky is the only way to survive.

A Exchangeability and De Finetti’s theorem

In this Section, I introduce the notion of exchangeable sequences and De Finetti’s

Theorem. The scope of this Section is to illustrate that it is not only possible, but also

natural to think about situations in which P is exchangeable but not iid.

Informally, a sequence of random variables is exchangeable if the probability of the

sequence does not depends on the order of the realizations:

Definition 5. An infinite sequence of realization σ∞ is exchangeable if, for every finite

t, P (σ1, ..., σt) = P (σπ(1), ..., σπ(t)) for any permutation π of the indices

It follows from the definition that, every sequence of iid random variables, condi-

tional on some underlying distributional form, is exchangeable. De Finetti’s Theorem

ensures that the converse statement is also true, for infinite sequences, and that every

infinite exchangeable sequence can be characterized as a mixture of iid sequences. For
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illustrative purposes, I make a small departure from the standard formulation of De-

Finetti’s theorem, which is normally stated with respect to exchangeable sequences,

and I formulate it with respect to P : the distribution according to which the sequence

is exchangeable.

De Finetti’s Theorem. A probability distribution P on Σ is exchangeable if and

only if P is a mixture of iid distributions (Q): P (A) =
∫
Q∞(A)µ(dQ), for some

probability distribution µ on the space of all probability distributions on S.

For an intuition of the relationship between exchangeable and iid processes consider

these examples of Polya urn processes. Suppose we have an urn that contains N balls

with a certain composition of Black balls and White balls. (i) Sampling from the urn

with replacement is an iid, hence exchangeable process. (ii) Sampling from the urn,

replacing each ball extracted with (n¿1) balls of the same color is exchangeable, not

iid, because the probability of an outcome depends on the previous outcomes, and, by

De Finetti’s Theorem, there is a mixture of iid distribution that coincides with this

model. (iii) Sampling from the urn without replacement is an exchangeable process

that is not iid, but De Finetti’s Theorem does not apply because the process cannot

generate infinite sequences.

The importance of De-Finetti’s theorem becomes evident in light of the following

observation: Suppose we are Bayesian and we want to estimate the probability of Head

on a possibly biased coin. The building block of our learning method is the Bayesian

prior distribution, which is to say a probabilistic assessment on the possible values of

the true probability of Head. Nevertheless, if we believe that the sequence of coin tosses

is iid, we incur into a logical contradiction: on one hand we are assuming that there is a

deterministic mathematical parameter describing the series of realizations, while on the

other hand we are modeling this parameter as if it were a random variable. De-Finetti’s

Theorem provides an elegant solution to this conundrum introducing the notion of

exchangeability. The Bayesian paradigm becomes free of logical contradictions if we

assume that the sequence is exchangeable instead of iid: under this point view, the

true parameters are indeed random variables.
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Thus, unless we have infallible knowledge of the parameters of the data generat-

ing process, if we accept the Bayesian paradigm we are also assuming that the true

probability is exchangeable.

B Appendix

In this appendix I make use of the notation O(.) and o(.) and ≈ with the following

meanings. The big-O notation, f(x) = O(g(x)), means lim supx→∞
|f(x)|
|g(x)| < ∞. The

little-o notation, f(x) = o(g(x)), abbreviates limx→∞
f(x)
g(x) → 0. The ≈ notation,

f(x) ≈ g(x), is used, not conventionally, to abbreviates lim f(x)
g(x) ∈ (0,+∞).

Definition 6. A probabilistic model M is regular if it is parametric and, for every p∗

in the interior of its parameter set A the following standard approximation holds:

D(p∗||p) := Ep∗ ln
p∗

p
=

1
2

(p− p∗)T I(p∗)(p− p∗) + o(||p− p∗||2)

Where I(p∗) is the Fisher information matrix evaluated at p∗.

This high order assumption is typically derived from more fundamental smoothness

conditions on the behavior of the log likelihood (see Schwarz (1978), Clarke-Barron

(1990), Phillips-Ploberger(2003), Grünwald (2007)). Its derivation is orthogonal to my

proof, thus omitted. Also, there are some technical issues that arises when the realized

sequence is such that the maximum likelihood parameter is on the boundary of A. This

cases are rule out by assuming that all Aγj are open sets.

Proof of Lemma 2

Proof. First:
∫
Aγj

pi(σt)
1
γ ci0di ≈ e

1
γ

ln pî(σ
t)(σt)− k

2
ln t
. It follows from Lemma 4 by sub-

stituting Aγj for A and exponentiating and ignoring constants.

Second: if P ∈ Aγj , then pî(σt) →P -a.s. P (σt|σt−1) by consistency of the maximum

likelihood estimator.

The proof of Lemmas 3 and 4 almost coincide with Grünwald’s (2007, pg. 248)

proofs of the BIC. The only difference between my proof and Grünwald’s is the 1
γ

term and the fact that ci0 need not to be a density. For, γ = 1 (log economies) the
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two proofs coincide. For simplicity, I assume that M is the iid Bernoulli model. The

generalization to other families is straightforward.

Lemma 3. LetM be a regular probabilistic model parametrized by A and ci0 a function

that satisfies A5, then:

ln
∫
A
pi(σt)

1
γ ci0di = ln

∫
A
e
− t
γ
D(pî(σ

t)||pi)
ci0di+ ln pî(σ

t)(σt)

Where pî(σ
t) is the parameter choice with the highest likelihood on σt and D(pî(σ

t)||pi) :=

E
pî(σ

t) ln pî(σ
t)

pi
is the one period Kullback-Leibler divergence between pi and pî(σ

t).

Proof.

ln
∫
A
pi(σt)

1
γ ci0di = ln

∫
A
pi(σt)

1
γ ci0di+ ln pî(σ

t)(σt)
1
γ − ln pî(σ

t)(σt)
1
γ

= ln
∫
A

pi(σt)

pî(σt)(σt)

1
γ

ci0di+ ln pî(σ
t)(σt)

1
γ

= ln
∫
A
e

1
γ

“
ln pi(σt)−ln pî(σ

t)(σt)
”
ci0di+ ln pî(σ

t)(σt)
1
γ

=a ln
∫
A
e
− t
γ
D(pî(σ

t)||pi)
ci0di+

1
γ

ln pî(σ
t)(σt)

a: For the Bernoulli model, the result follows because:

ln pi(σt)− ln pî(σ
t) = t

(
1
t

t∑
τ=1

Iστ=s ln
pi(sτ )

pî(σt)(sτ )

)
= −tE

pî(σ
t) ln

pî(σ
t)

pi
= tD(pî(σ

t)||pi)

Lemma 4. LetM be a regular probabilistic model parametrized by A and ci0 a function

that satisfies A5, then

ln
∫
A
pi(σt)

1
γ ci0di =

1
γ

ln pî(σ
t)(σt) + ln

√
γ + ln cî0 −

1
2

ln
t

2π
− ln

√
det I(pî(σt)) + o(1)

Where I(pî(σ
t)) is the Fisher information evaluated at pî(σ

t).

Proof. By Lemma 3

ln
∫
A
pi(σt)

1
γ ci0di = ln

∫
A
e
− t
γ
D(pî(σ

t)||pi)
ci0di+

1
γ

ln pî(σ
t)(σt)
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For 0 < α < 1
2 let Bt = {i : pi ∈ [pî(σ

t) − t−
1
2
+α, pî(σ

t) + t−
1
2
+α]}.

By additivity of the integral:∫
A
e
− t
γ
D(pî(σ

t)||pi)
ci0di =

∫
A\Bt

e
− t
γ
D(pî(σ

t)||pi)
ci0di+

∫
Bt

e
− t
γ
D(pî(σ

t)||pi)
ci0di

Since ci0 is continuous on A and strictly positive in int(A) there is a T , such that

∀t > T ci0 > 0, ∀i ∈ Bt. In what follows I always assume t > T . The proof is done by

performing a second order Taylor expansion of D(pî(σ
t))||pi) to bound the two integrals.

For t > T the error terms in the Taylor expansions are small for i ∈ B and

D(pî(σ
t)||pi) =

1
2

(
pî(σ

t) − pi
)2
I(pi

∗
) (4)

for some i∗ ∈ Bt such that pi
∗

lies between pi and pî.

† First integral: ∃k, a <∞ : I1 =
∫
A\Bt e

− t
γ
D(pî(σ

t)||pi)
ci0di < ke−at

2α → 0

Remember that D(pî(σ
t)||pi) as a function of pi is strictly convex, has a minimum at

pi = pî(σ
t) and is increasing in |pi − pî(σt)|, so that:

0 <
∫
A\Bt

e
− t
γ
D(pî(σ

t)||pi)
ci0di <

∫
A\Bt

e
− t
γ

mini∈A\Bt D(pî(σ
t)||pi)

ci0di

By Equation 4

min
i∈A\Bt

D(pî(σ
t)||pi) ≥ 1

2
t−1+2α min

i∈int(A)
I(pi)

so that, since I(pi) is continuous and > 0 for all i ∈ A, and
∫
A\Bt c

i
0di <∞,

0 <
∫
A\Bt

e
− t
γ
D(pî(σ

t)||pi)
ci0di <

∫
A\Bt

e
− t
γ ( 1

2
t−1+2αmini∈int(A) I(p

i))ci0di < ke−at
2α

For a = mini∈A\Bt
I(pi)
2γ > 0 and k =

∫
A\Bt c

i
0di <

∫
A c

i
0di <∞.

‡ Second integral: I2 =
∫
Bt
e
− t
γ
D(pî(σ

t)||pi)
ci0di ≈

√
2πcî0r
t
I(pî)
γ

Let I−t := infi′∈Bt I(pi
′
), I+

t := supi′∈Bt I(pi
′
), c−t := infi′∈Bt c

i′
0 , c

+
t := supi′∈Bt c

i′
0 ,

by Equation 4

I2 =
∫
Bt

e
− t
γ
D(pî(σ

t)||pi)
ci0di =

∫
Bt

e
− t
γ
(pî(σ

t)−pi)2I(i′)
ci0di
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Where i′ depends on i. Using the definitions above, we get

c−t

∫
Bt

e
− t
γ
(pî(σ

t)−pi)2I+t di ≤ I2 ≤ c+t
∫
Bt

e
− t
γ
(pî(σ

t)−pi)2I−t di.

We now perform the substitutions z := (pî(σ
t) − pi)

√
t
I+t
γ on the left integral and

z := (pî(σ
t) − pi)

√
t
I−t
γ on the right integral, to get

c−t√
t
I+t
γ

∫
|z|<tα

√
I−t

e−
1
2
z2dz ≤ I2 ≤

c+t√
t
I−t
γ

∫
|z|<tα

√
I−t

e−
1
2
z2dz

We now recognize both integrals as standard Gaussian.

Since, as t→∞ I−t → I(pî) and I+
t → I(pî), the domain of integration tends to infinity

for both integrals, so that they both converge to
√

2π. Since c+t → cî0 and c−t → cî0 the

constant in both integrals converges to cî0r
t
I(pî)
γ

and we get I2 ≈
√

2πcî0r
t
I(pî)
γ

.

Putting † and ‡ together:

ln
∫
A
pi(σt)

1
γ ci0di = ln (I1 + I2) +

1
γ

ln pî(σ
t)(σt)

→ 1
γ

ln pî(σ
t)(σt) + ln

√
γ + ln cî0 −

1
2

ln
t

2π
− ln

√
det I(pî) + o(1)

Where the approximation holds uniformly for all σt ∈ A0 because the bond on I1 does

not depend on σt, whereas, because ci0 and I(pi) are continuous functions of i over the

compact set A convergence of I2 is also uniform.

Proof of Proposition 2 In a large economy that satisfies A1-A6 in which the

MSH fails, the market selects for luck.

Proof. Let A be the cluster that dominates and pî(σ
t) ∈ A be the beliefs of the trader

with the maximum likelihood parameter on σt. Let Bt be the following shrinking sub-

cluster of A : Bt = [i ∈ A : pi ∈ pî(σt) − t−
1
2
+α, pî(σ

t) + t−
1
2
+α], for 0 < α < 1

2 . By the

FOC and using † and ‡ in the proof of Lemma 4

lim
t→∞

∫
i∈A\Bt c

i(σt)di∫
i∈Bt c

i(σt)di
= lim

t→∞

∫
i∈A\Bt e

− t
γ
D(pî(σ

t)||pi)
w(i)di∫

i∈Bt e
− t
γ
D(pî(σ

t)||pi)
w(i)di

→ 0
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Thus, by Lemma 1 consumption-shares concentrate in the shrinking interval Bt around

pî(σ
t). Since pî(σ

t) is a random variable, Bt is also a random variable and the market

is selecting for the lucky traders whose beliefs are, by chance, in Bt.

Proof of Proposition 4 In an large economy that satisfy A1-A5, with n clusters,

equilibrium prices satisfies: q(σt) ≈ maxj∈n et lnβj+ln p̂j(σt)−
γjkj

2
ln t.

Proof. By Theorem 1 maxj∈n et lnβj+ln p̂j(σt)−
γjkj

2
ln t ≈ maxj∈n

{
βtj

(∫
Aj
ci0p

i(σ)
1
γj di

)γj}
.

The proof is done by contradiction: we have to consider two possible cases:

i) ∃j,∃σt :
βt
R
Aj

ci0p
i(σt)

1
γj di

q(σt) → ∞. By the FOC Cj(σt) =
β
t
γj
R
Aj

ci0p
i(σt)

1
γj di

q(σt)
1
γj

→ ∞

violating the bounded aggregate endowment assumption (A2).

ii) ∃σt : ∀j = 1, ..., n;
βt
R
Aj

ci0p
i(σt)

1
γj di

q(σt) → 0. By the FOC, ∀j = 1, ..., n; Cj(σt) =

β
t
γj
R
Aj

ci0p
i(σt)

1
γj di

q(σt)
1
γj

→ 0 violating the positive aggregate endowment assumption (A2).

C Appendix

I have to show that Equation 2 converges to 0. For the sake of the argument, let

assume that all traders have the same initial equilibrium consumption. All traders in

AB are Bayesians with uniform prior on the Bernoulli (0,1), thus pB(σt) =
∫ 1
0 p(σ

t|θ)dθ

renaming, WLOG, θ as i, and adopting the notation of the paper, Equation 2 becomes:

∫
AB

ci(σt)di∫
AU

ci(σt)di
=
pB(σt)

1
γ
∫
AB

ci0di∫
AU

ci0p
i(σt)

1
γ di

=
1
2

(∫ 1
0 p

i(σt)di
) 1
γ

1
2

∫ 1
0 p

i(σt)
1
γ di

→ 0. (5)

An algebraic approximation of these quantities is given in Lemma 5. The result

follows by substituting the approximations in Eq. 5.

Lemma 5. Let σt be an arbitrary sequence of realizations with frequency of R = p,

then, for γ ∈ (0,∞),
∫ 1
0 p

i(σt)
1
γ di ≈

(
ppt (1− p)(1−p)t

) 1
γ 1√

t
.

Proof. pt is by assumption, the number of R realizations on σt, thus∫ 1

0
pi(σt)

1
γ di =

∫ 1

0
i

Pt
τ=1 Iστ =R

γ (1− i)
t−

Pt
τ=1 Iστ =R

γ di =
∫ 1

0
i
pt
γ (1− i)

(1−p)t
γ )di.
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Partial integration gives∫ 1

0
i
pt
γ (1− i)

(1−p)t
γ )di =

[
1

pt
γ + 1

i
pt
γ

+1(1− i)
(1−p)t
γ

]1

0

+
(1−p)t
γ

pt
γ + 1

∫ 1

0
i
pt
γ

+1(1− i)
(1−p)t
γ
−1
di,

where the middle term is equal to 0. Repeating this step (1−p)t
γ times 10 leads to

∫ 1

0
i
pt
γ (1− i)

(1−p)t
γ )di =

1 ∗ 2 ∗ ... ∗ (1−p)t
γ

(ptγ + 1) ∗ ... ∗ (ptγ + (1−p)t
γ )

∫ 1

0
i
t
γ di

=
( (1−p)t

γ )! ∗ (ptγ )!

( tγ )!
∗ 1

t
γ + 1

≈a
e
− pt
γ

(
pt
γ

)“ pt
γ

”
+ 1

2
e
−
“

(1−p)t
γ

” (
(1−p)t
γ

)“ (1−p)t
γ

”
+ 1

2

e
− t
γ

(
t
γ

) t
γ
+ 1

2 ∗ ( tγ + 1)

=

(
t
γ

) t
γ
+1
p
pt
γ

+ 1
2 (1− p)

(1−p)t
γ

+ 1
2(

t
γ

) t
γ
+ 1

2 ∗ ( tγ + 1)

≈

(
t
γ

) 1
2
p
pt
γ (1− p)

(1−p)t
γ

( tγ + 1)

≈
(
ppt (1− p)(1−p)t

) 1
γ 1√

t

a) By Sterling’s approximation, for every integer x, x! ∈
[√

2πxx+
1
2 e−x, xx+

1
2 e−x+1

]
).

Finite constants are disregarded, WLOG, every time I use the notation ≈.
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