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Abstract

This paper seeks to explain the role of bank capital in �uctuations of

lending and output. We build a continuous time equilibrium model of

an economy in which commercial banks �nance their loans by deposits

and equity, while facing issuance costs when they raise new equity. The

dynamics of the loan rate and the volume of lending in the economy

are driven by aggregate bank capitalization. The model has a unique

Markov competitive equilibrium that can be solved in closed form. We

show that the competitive equilibrium is constrained ine�cient: banks

lend too much in upturns and too little in downturns. However, impos-

ing a standard capital regulation does not help.
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1 Introduction

There is an ongoing debate among scholars and practitioners about the "right" level of

bank capital. While proponents of higher capital ratios emphasize the stabilizing e�ect of

bank capital,1 others argue that high leverage is a direct consequence of banks' intrinsic

role as creators of information insensitive, liquid debt (e.g. deposits).2 The current paper

brings together both aspects in a dynamic general equilibrium model where bank capital

plays the role of a loss absorbing bu�er that facilitates the creation of liquid, risk-free

claims while providing (risky) loans to real businesses.3

We consider an economy where �rms borrow from banks that are �nanced by deposits

and equity. Banks continuously adjust lending to �rms whose default probability varies

depending on aggregate shocks.4 They also decide when to distribute dividends and when

to issue new equity. Equity issuance is subject to deadweight costs, which represents the

main �nancial friction in our economy.5 The aggregate supply of bank loans is confronted

with the �rms' demand for credit, which is decreasing in the nominal loan rate. Finally,

as depositors are in�nitely risk-averse, all losses that may be generated by the banks'

loan portfolio must be borne by risk-neutral bank shareholders.

In a set-up without �nancial frictions (i.e., no issuance costs for bank equity) the

equilibrium volume of lending and the nominal loan rate is constant. Furthermore, div-

idend payment and equity issuance policies are trivial in this case: Banks immediately

distribute all pro�ts as dividends and issue new shares to o�set losses and honor obliga-

tions to depositors. This implies that, in a frictionless world, there is no need to build

up a capital bu�er and all loans are entirely �nanced by deposits.

In the model with �nancing frictions, banks' dividend and equity issuance strategy

becomes more interesting. In the unique competitive equilibrium, the value of aggregate

bank equity, which turns out to be a su�cient statistics for all relevant macro and �nancial

1Most prominently, Admati et al. (2010), Admati and Hellwig (2013).
2See DeAngelo and Stulz (2014) for an argument along these lines. More generally, the perception of

�nancial intermediaries as creators of liquidity ("inside money") has a long tradition within the �nancial
intermeditation literature (see, e.g. Diamond and Dybvig (1983), Diamond and Rajan (2001), Gorton
(2010), Gorton and Pennachi (1990), Holmstrom and Tirole (1998, 2011)).

3As we abstract from incentive e�ects of bank capital ("skin in the game"), our model captures
best the features of more traditional commercial banks whose business model makes them less prone
to risk-shifting than investment banks. The incentive e�ects of bank capital in a setting allowing for
risk-shifting are analyzed for instance in Martinez-Miera and Suarez (2012), DeNicolo et al. (2014), and
van den Heuvel (2008).

4Aggregate shocks are i.i.d. and, given that banks hold diversi�ed loan portfolios, they represent the
only relevant source of risk in the economy.

5We follow the literature (see e.g. Décamps et al. (2011) or Bolton et al. (2011)) by assuming that
issuing new equity entails a deadweight cost proportional to the size of the issuance. Empirical studies
report sizable costs of seasoned equity o�erings (see e.g. Ross et al. (2008), Hennessy and Whited
(2007)).



variables, follows a Markov di�usion process re�ected at two boundaries. Banks issue new

shares at the lower boundary where book equity is depleted and its marginal value equals

marginal issuance costs. When the book value of equity reaches its upper boundary,

any further earnings are paid out to shareholders as dividends. At this upper re�ecting

boundary, the marginal value of equity, or market-to-book value,6 equals the shareholders'

marginal value of consumption. Between the two boundaries, the level of equity changes

only due to retained earnings or absorbed losses. That is, banks retain earnings in order

to increase the loss-absorbing equity bu�er and thereby reduce the frequency of costly

recapitalizations.

The �uctuations of aggregate bank equity drives the cost of credit. The risk-adjusted

spread for bank loans turns out to be strictly positive (except at the dividend payout

boundary). To get an intuition for this result, note that the changes in equity of an

individual bank are mirrored by changes in aggregate equity, which in turn a�ects the

market-to-book value of bank equity. Since loss absorbing equity is most valuable when

it is scarce and is least valuable when it is abundant, a negative (positive) shock to bank

equity increases (decreases) the market-to-book value of equity. Therefore, the original

shock gets ampli�ed and banks will only lend to �rms if the loan rate incorporates an

appropriate premium. As the market-to-book value, this premium is strictly decreasing

in aggregate bank equity.

Based on our analytical solutions, we are able to study the long-run behavior of the

economy, which can be described by an ergodic density function. Our analysis shows that

the long-run behavior of the economy is mainly driven by the (endogenous) volatility

of aggregate bank capital. In particular, the economy spends the most time in states

with low endogenous volatility, and, for high recapitalization costs and a low elasticity

of demand for bank loans, severe credit crunches can arise. The occurrence of credit

crunches is caused by a simple mechanism. Assume that a series of adverse shocks has

depleted aggregate bank capital. Since banks require a larger loan rate when aggregate

capital is low, this drives down �rms' credit demand. As a consequence, banks' exposure

to macro shocks is reduced and thus also the endogenous volatility of aggregate equity,

which �nally leads to persistently low levels of equity (high bank leverage), high loan

rates and low volumes of lending.

A welfare analysis of the competitive equilibrium shows that lending decisions made

by banks are socially ine�cient. Speci�cally, credit is excessive in upturns and insu�-

cient in downturns.7 The source of this two-sided ine�ciency is rooted in the di�erence

6Since the model is homothetic in the level of book equity, the marginal value of equity can be
interpreted as the market-to-book value.

7Similar results are found by He and Kondor (2014) in a model of corporate liquidity management
and investment and by Gersbach and Rochet (2012) in a two-period model of banking.
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between social and private cost of lending. Furthermore, the fact that we �nd total wel-

fare to be increasing in aggregate bank capital suggests that welfare could be increased

by implementing a minimum capital ratio (or leverage constraint). However, although a

simple minimum capital ratio does, indeed, raise aggregate bank capitalization, it also

drives up loan rates, thereby, depressing demand for credit and total output in the econ-

omy.8 This result shows that a simple capital ratio might be not the right tool to address

the identi�ed two-sided ine�ciency, as it aggravates the underinvestment problem when

aggregate capital is low.

Related Literature. From the technical perspective, our paper is most closely

related to the macroeconomic models with �nancial frictions that study the formation

of asset prices in a dynamic endowment economy (see, e.g., Brunnermeier and Sannikov

(2014), He and Krishnamurthy (2012, 2013)). As in the above-mentioned papers, our

model lends itself to studying the full equilibrium dynamics of the economy, in contrast to

traditional macroeconomic models that only allow for analyzing the equilibrium around a

steady state. At the same time, the problem of individual banks with respect to dividend

distribution and recapitalization in our model shares some similarities with the liquidity

management models in Bolton et al. (2011, 2013) and Décamps et al. (2011).

The dynamic e�ects in our model are driven by an endogenous leverage constraint

based on the loss absorbing capacity of book equity in the presence of external �nancing

frictions. Via this transmission channel, temporary shocks can have persistent e�ects on

loan rates, which in turn ampli�es the initial shock on book equity. This ampli�cation

mechanism is similar in spirit to the collateral constraint in Kiyotaki and Moore (1997)

or the limitation of pledgeable income as in Holmstrom and Tirole (1997).

Since the re�ection property of aggregate equity in our model generates quasi-cyclical

patterns of lending, our paper is also related to the literature on credits cycles that

has brought forward a number of alternative explanations for their occurrence. Fisher

(1933) identi�ed the famous debt de�ation mechanism, that has been further formalized

by Bernanke et al. (1996) and Kiyotaki and Moore (1997). It attributes the origin of

credit cycles to the �uctuations of the prices of the assets that are used as collateral by

borrowers. Several studies also place emphasis on the role of �nancial intermediaries, by

pointing out the fact that credit expansion is often accompanied by a loosening of lending

standards and "systemic" risk-taking, whereas materialization of risk accumulated on the

balance sheets of �nancial intermediaries leads to the contraction of credit (see e.g. Aitken

et al. (2013), Dell'Ariccia and Marquez (2006), Jimenez and Saurina (2006)).

Finally, our paper relates to the literature on pecuniary externalities. Recent con-

8In that sense, the general equilibrium e�ects that are at work in our dynamic model of bank capital
give rise to similar implications as the ones brought forward by the critics of capital regulation (e.g.
Institute for International Finance 2010 or Pandit (2010)), albeit for quite di�erent reasons.
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tributions by Lorenzoni (2008), Bianchi (2011), Jeanne and Korinek (2011) show that

collateral price �uctuations can be the source of welfare decreasing pecuniary externali-

ties, which could justify countercyclical public policies. Such pecuniary externalities can

also be generated by agency problems (see e.g. Gersbach and Rochet (2014)) or market

incompleteness (e.g. He and Kondor (2014)). In our model, the source of pecuniary ex-

ternalities is rooted in the endogenous leverage constraint for banks: higher (lower) credit

supply depreciates (pushes up) loan rates, banks' pro�tability and ultimately banks' ca-

pacity to lend in future periods.

The rest of the paper is structured as follows. Section 2 presents the discrete-time

version of the model and discusses two useful benchmarks. In Section 3 we solve for

the competitive equilibrium in the continuous-time set up and analyse its implications

on �nancial stability and welfare. In Section 4 we study the impact of minimum capital

requirements on bank policies. Section 5 concludes. All proofs and computational details

are gathered in the Appendix.

2 The discrete-time model

To elucidate the main mechanisms that will be at work in the continuous time set-up,

we start by formulating our model in a discrete time and then will let the length ∆t of

each period go to zero.

2.1 Model set-up

There is one physical good, taken as a numeraire, which can be consumed or invested.

There are three types of agents: (i) depositors, who only play a passive role, (ii) investors,

who own and manage the banks, and (iii) entrepreneurs, who manage the productive

sector. Depositors are in�nitely risk averse and discount the future at rate r. Investors

and entrepreneurs discount the future at rate ρ > r (i.e., they are more impatient) but

they are risk neutral.9

2.1.1 Productive sector

The productive sector consists of a continuum of entrepreneurs controlling investment

projects that are parametrized by a productivity parameter x. The productivity pa-

rameter x is privately observed10 by each entrepreneur and is distributed according to a

9The di�erence between the discount factors ρ and r can be interpreted as a preference for liquidity:
depositors accept a lower rate of return in exchange for perfect liquidity

10This assumption is only made to facilitate exposition, as it prevents contracts in which loan rate
depends on x. Even when productivities were publicly observable, competition between banks would
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continuous distribution with density function g(x) de�ned on a bounded support [0, R].

Entrepreneurs' projects are short lived and each of them requires an investment of

one unit of good. If successful, a project yields (1+x∆t) units of good in the next period

and zero otherwise. Entrepreneurs have no own funds and �nance themselves via bank

loans. Thus, the entire volume of investment in the economy is determined by the volume

of bank credit. Entrepreneurs are protected by limited liability and default when their

projects are not successful. Given a nominal loan rate R∆t (for a loan of duration ∆t),

only the projects such that x > R will demand �nancing. Thus, the total demand for

bank credit in the economy will be

D(R) =

∫ R

R

g(x)dx.

For simplicity, all projects are assumed to have the same default probability:

p∆t+ σ0

√
∆tεt,

where p is the unconditional probability of default per unit of time, εt represents an

aggregate shock faced simultaneously by all �rms and σ0 re�ects the change in the default

probability caused by the aggregate shock. For simplicity εt is supposed to take only two

values +1 (recession) and −1 (boom) with equal probabilities. Then, the net expected

return per loan for a bank after an aggregate shock εt is

(R− r − p)∆t− σ0

√
∆tεt, (1)

where the �rst term re�ects the expected earnings per unit of time and the second term

captures the exposure to aggregate shocks.

At the equilibrium of the credit market, the net aggregate output per period in the

economy is

[F (D(R))− pD(R)]∆t− σ0D(R)
√

∆tεt, (2)

where

F (D(R)) =

∫ R

R

xg(x)dx

is the aggregate production function.

Note that F ′(D(R)) = R so that the total expected surplus, F (D(R)) − pD(R) −
rD(R), is maximized for Rfb = r + p. Thus, in the �rst best allocation of credit, the

cost of funding for �rms has two components: the riskless rate and the unconditional

lead to identical loan rates for all borrowers.
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probability of default. Consequently, banks make zero expected pro�t, and the total

volume of credit in the economy is given by D(Rfb).

2.1.2 Banking sector

Banks behave competitively and �nance loans to businesses by a combination of de-

posits and equity.11 Since we focus on credit, we do not introduce explicit liquidity

provision activities associated with bank deposits. These deposits are modeled in a parsi-

monious fashion: depositors are in�nitely risk averse and have a constant discount factor

r. This implies two things: �rst, deposits must be absolutely riskless (all the risks will

thus be borne by bank shareholders); second, depositors are indi�erent as to the level of

deposits and timing of withdrawal, provided that they receive an interest rate r. In sum,

banks can collect any amount of deposits (i.e., deposits represent an in�nitely inelastic

source of funding), provided that they o�er depositors the interest rate r and fully guar-

antee deposit value. As we will show in the sequel, the depositors' preference for safety

is an important driver of the cost of credit in the economy.

The main �nancial friction in our model is that banks face a proportional issuance cost

γ when they want to issue new equity.12 Because of this deadweight issuance cost, banks

will be reluctant to issue new equity too often and will mostly rely on retained earnings

as a way to accumulate capital. For simplicity, we will neglect other external frictions

such as adjustment costs for loans or �xed costs of issuing equity.13 This implies that

our economy exhibit a homotheticity property: all banks' decisions (lending, dividends,

recapitalization) will be proportional to their equity levels. In other words, all banks will

make the same decisions at the same moment, up to a scaling factor equal to their equity

level. This entails an important simpli�cation: only the aggregate size of the banking

sector, re�ected by aggregate bank capitalization, will matter for our analysis, whereas

the number of banks and their individual sizes will not play any role.

2.2 One-period benchmark

To introduce the main tools of our analysis and to provide the basic intuitions behind

the e�ects that we will encounter in a full-�edged continuous-time version of the model,

we start with a simple static set-up in which banks only live one period. At the beginning

of the period, bank shareholders have an exogenous amount of equity et. Given this equity

11Note that, in our setting, holding liquid reserves on top of risky loans is not optimal, because banks
can continuously adjust the volume of deposits.

12On top of direct costs of equity issuance, γ may also captures ine�ciencies caused by asymmetric
information, which are not modeled here.

13We also disregard any frictions caused by governance problems inside the banks or government
explicit/implicit guarantees.
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level, they choose the volume of deposits dt and lend kt = et+dt to the productive sector.

At the end of the period, the aggregate shock is realized, and the bank collects pro�t

k[(R− r − p)∆t− σ0

√
∆tεt].

For ∆t small enough, this pro�t is negative (i.e., the bank incurs losses) when εt = 1.

Since depositors are in�nitely risk-averse, they will deposit their money into the bank

only if they are certain to get it back at the end of the period. This implies that any

potential losses must be absorbed by the bank's equity, i.e.,

e ≥ k[σ0

√
∆t− (R− r − p)∆t]. (3)

In other words, the depositors' need for safety imposes a leverage constraint on each

bank, which must also be satis�ed at the aggregate level:

E ≥ K[σ0

√
∆t− (R− r − p)∆t]. (4)

The competitive equilibrium of this static set-up is characterized by a loan rate R(E)

and a lending volume K(E) that are compatible with the expected pro�t maximization

by each individual bank:

max
k

e+ k(R− r − p)∆t s.t. (3)

and the loan market clearing condition

K(E) = D(R(E)).

It is easy to see that, depending on the level of initial capitalization, two cases are

possible.

Case 1: well-capitalized banking sector. When aggregate bank capitalization

is su�ciently high, the leverage constraint does not bind and thus the equilibrium loan

rate is given by R∗(E) = r + p ≡ Rfb, which corresponds to the First-Best allocation of

credit. Speci�cally, this case is feasible for such E that satis�es

E ≥ E∗ ≡ D(Rfb)σ0

√
∆t.

Case 2: undercapitalized banking sector. When aggregate bank capitalization

is low, the leverage constraint binds and the equilibrium loan rate is de�ned implicitly
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by the value R∗(E) such that

D(R∗)[σ0

√
∆t− (R∗ − r − p)∆t] = E. (5)

Since the left-hand side of (5) is decreasing in R, the loan rate R∗(E) resulting from

(5) is decreasing in E (for E < E∗), which implies that R∗(E) > R∗(E∗) = r + p. Thus,

this parsimonious model illustrates an important idea: it is the limited loss absorbing

capacity combined with the need to guarantee riskless investment to depositors that

drives the loan rate away from its First-Best level.

Note that the shareholder value of any individual bank is proportional to its book

value e and depends on aggregate capitalization. This implies that the market-to-book

ratio is the same for all banks:

v(e, E)

e
≡ u(E) = 1 +

(R(E)− r − p)∆t
σ0

√
∆t− (R(E)− r − p)∆t

.

It is easy to see that, when the banking sector is well capitalized (i.e., E ≥ E∗), the

market-to-book ratio equals one. In the alternative case (E < E∗), it is strictly higher

than one and a decreasing function of aggregate bank capitalization:14

u(E) =
σ0

√
∆t

σ0

√
∆t− (R(E)− r − p)∆t

> 1, E < E∗.

As will become apparent below, these properties of the market-to-book value also hold

in the continuous time set-up.

Finalizing the discussion of this one-period benchmark, it is worthwhile to note that,

in this static set-up, the competitive equilibrium is constrained e�cient. To see this

property, consider a maximization problem of a social planner. A social planner would

choose a volume of lending K(E) that maximizes social welfare under the aggregate

leverage constraint:

W (E) = max
K

E + [F (K)− (r + p)K]∆t s.t. (6)

E ≥ K[σ0

√
∆t− (F ′(K)− r − p)∆t]. (7)

Note that the social welfare function W (E) is increasing and concave. Moreover,

W ′(E) ≥ 1, with strict inequality when E < E∗. Given these observations, it is easy

to see that the solution of the social planner's problem coincides with the competitive

equilibrium allocation, which is therefore constrained e�cient. However, we will show

14Recall that R′(E) < 0 when E < E∗.
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below that it is no longer true in a setting with multiple periods.

2.3 Two-period benchmark

Suppose now that banks live two periods (t = 0, 1), and assume for simplicity that

there is no shock in period 0 (i.e., ε0 = 0). In that case, the banks are not subject to a

leverage constraint. The only loan rate R0 that is compatible with the pro�t maximization

is R0 = r+ p and the volume of credit is then given by K0 = D(R0). Thus, in the initial

period, banks make zero pro�t and aggregate equity remains constant (E0 = E1 ≡ E).

The equilibrium loan rate at date t = 1 is then set to R∗(E), as in the one-period

benchmark.

However, in contrast to the one-period benchmark where a social planner's choice of

the volume of lending coincides with the competitive outcome, in the current setting a

social planner would choose a higher volume of lending in period 0. Indeed, intertemporal

welfare W0 now includes a term corresponding to the �rms' pro�t in period 0:15

W0(E0) = max
K

[F (K)−KF ′(K)]∆t+W (E0 +K[F ′(K)− r − p]∆t︸ ︷︷ ︸
E1

) (8)

The pro�t of the banks in period 0 is retained and appears in the argument E1 of the

welfare function for period 1. The �rst-order condition of this problem is

0 = −KF ′′(K) +W ′(E1)[F ′(K)− r − p+KF ′′(K)],

which enables us to express the corresponding loan rate as follows:

RSB ≡ F ′(Ksb) = r + p+
(
− KSBF

′′(Ksb)

F ′(Ksb)

)[
1− 1

W ′(E1)

]
.

The above expression suggests that, when W ′(E1) > 1 (undercapitalized banking

sector) and F ′′(K) < 0 (elastic loan rate), Rsb > Rfb ≡ r + p. The reason is that the

reduction of lending below K∗ = D(Rfb) allows the banks to increase their capitalization

in period 1. When there are frictions on �nancial markets, and banks cannot recapitalize

costlessly, a reduction in lending in period 0 increases banks' pro�t and thus relaxes their

leverage constraint in period 1.

Two important remarks are in order at this stage. First, the leverage constraint in

our model comes from the depositors' need for a safe investment. In such a context,

bank equity plays the role of a loss absorbing bu�er, very much in the spirit of the

15For simplicity, we do not allow for discounting and set ρ to zero for this subsection only.
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"loss absorbing capacity" concept that is put forward by regulators. This justi�cation of

leverage constraints di�ers from the other ones that are put forward by academics. One

of them relates to the limitation on pledgeable income by bank insiders (Holmstrom and

Tirole (1997)) and backs the concept of "inside" equity that is supposed to play the role

of "the skin in the game". The other academic justi�cation for leverage constraints stems

on the limited resalability of collateral (Kiyotaki and Moore (1997)), thereby, placing

emphasis on the asset side of borrowers' balance sheets, whereas we focus here on the

banks' liabilities.

Second, it is worthwhile to note that, even though the leverage constraint only binds

in the period 1, it also impacts the banks' choices in the period 0, i.e., there is an

intertemporal e�ect. If we also allow for a shock in period 0 (we ruled it o� only for

a simpler exposition), then a leverage constraint also appears in period 0, but it is not

always binding, in contrast to period 1. The reason is that the market-to-book value of

banks u(E) �uctuates with E, and bankers are aware that they are exposed to the same

aggregate shocks. Therefore, each bank's loss is magni�ed by an increase in u(E) and,

vice-versa, each bank's gain is reduced because of the decrease in u(E). As we will see in

the continuous-time setting, there exists a particular value of the loan spread R(E) − p
that exactly compensates for the �uctuation of the market-to-book value, and allows for

an interior choice of lending volume by banks.

3 The continuous-time model

In this section we turn to the full-�edged continuous-time model. For the rest of the

paper we assume that r = 0 and solve the model for the case r > 0 in Appendix D.

Taking the continuous time limit of net bank income per loan, we obtain:

(R− p)dt− σ0dZt, (9)

where
{
Zt, t ≥ 0

}
is a standard Brownian motion.

Given the homotheticity property of our economy, it is legitimate to anticipate the

existence of a Markovian competitive equilibrium, where all aggregate variables depend

on a single state variable following a Markov process. Aggregate bank equity, Et, turns

out to be a natural candidate for the state variable in our framework. Indeed, as we could

clearly see in the discrete-time benchmarks, it is the very level of bank capitalization that

drives the cost of credit. The dynamics of aggregate equity Et satis�es

dEt = K(Et)[(R(Et)− p)dt− σ0dZt]− d∆t + dIt, (10)

10



where K(Et) is the aggregate lending, d∆t ≥ 0 re�ects aggregate dividend payments and

dIt ≥ 0 captures aggregate equity injections.

De�nition 1 A Markov competitive equilibrium consists of an aggregate bank capital

process Et, a loan rate function R(E) and a credit volume K(E) that are compatible with

the individual banks' maximization and market clearing condition K(E) = D[R(E)].

In the following subsections we solve for the competitive equilibrium and study its

implications on �nancial stability and social welfare.

3.1 The competitive equilibrium

To characterize the competitive equilibrium, we have to determine the optimal recap-

italization and �nancing decisions of banks at the individual and aggregate levels, as well

as the mapping R(E) between the aggregate level of bank equity Et and the loan rate

Rt.

Consider �rst the optimal decision problem of an individual bank that takes the loan

rate Rt = R(Et) as given and makes its decisions based on the level of its own equity et

and aggregate equity Et. Bank shareholders choose lending kt ≥ 0, dividend dδt ≥ 0 and

recapitalization dit ≥ 0 policies so as to maximize the market value of equity:16

v(e, E) = max
kt,dδt,dit

E
[∫ +∞

0

e−ρt (dδt − (1 + γ)dit)|et = e, Et = E

]
, (11)

where aggregate equity Et evolves according to (10) and

det = kt[(R(Et)− p)dt − σ0dZt]− dδt + dit. (12)

A fundamental property of the individual decision problem of a bank is that the feasi-

ble set, in terms of trajectories of (kt, dδt, dit), and the objective function are homogenous

of degree one in the individual equity level et. Therefore, the value function itself must

satisfy:

v(e, E) = eu(E),

where u(E) can be thought of as the market-to-book value of equity for banks, which

re�ects the market assessment of banks' pro�tability.

Using the above property and applying standard dynamic programming methods (see

Appendix A), it can be shown that it is exactly the market-to-book value that drives all

16Throughout the paper, we use lower case letters for individual variables and upper case letters for
aggregate variables.
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bank policies in our framework. The optimal dividend and recapitalization policies turn

out to be of the so-called "barrier type".17 In particular, dividends are distributed only

when Et = Emax, where Emax is such that u(Emax) = 1. In other words, distribution of

dividends only takes place when the marginal value of equity capital equals the sharehold-

ers' marginal value of consumption. Recapitalizations occur only when Et = Emin, where

Emin satis�es u(Emin) = 1 + γ, i.e., when the marginal value of equity equals the total

cost of equity issuance. As long as aggregate bank equity Et remains in between Emin and

Emax, �uctuations of the individual bank's equity are only caused by retained earnings

or absorbed losses. Given that the market-to-book value is the same for all banks, bank

recapitalizations and dividend payments in our economy are perfectly synchronized in

time.

Maximization with respect to the level of lending kt shows that the optimal lending

policy of the bank is indeterminate, i.e., bank shareholders are indi�erent with respect

to the volume of lending. Instead, the latter is entirely determined by the �rms' demand

for credit.18 We show in Appendix A that the maximization problem (11) has a non-

degenerate solution, if and only if the market-to-book ratio simultaneously satis�es two

equations:
u′(E)

u(E)
= −R(E)− p

K(E)σ2
0

, (13)

and

ρ = K(E)[R(E)− p]u
′(E)

u(E)
+
σ2

0K
2(E)

2

u′′(E)

u(E)
, (14)

where K(E) = D(R(E)).

Combining these two equations, we obtain that R(E) satis�es a �rst-order di�erential

equation:

R′(E) = − 1

σ2
0

2ρσ2
0 + (R(E)− p)2(

D[R(E)]− [R(E)− p]D′[R(E)]
) . (15)

Given that D′(R) < 0, it is easy to see that R′(E) < 0, so that in the states with

higher aggregate capital, banks charge lower loan rates, which leads to higher volume of

credit and output in the economy. In contrast, when aggregate bank capital gets scarce

17The barrier-type recapitalization and payout policies are well explored by the corporate liquidity
management literature (see e.g. Jeanblanc and Shiryaev (1996), Milne and Robertson (1996), Décamps
et al. (2011), Bolton et al. (2012, 2013) among others) that places emphasis on the loss-absorbing
role of corporate liquid reserves in the presence of �nancial frictions. In our model, the role of book
equity is very similar to the role of liquidity bu�ers in those models. However, we di�erentiate from
this literature by allowing for the feedback loop between the individual decisions and the dynamics of
individual book equity via the general equilibrium mechanism that determines the loan rate and thus
the expected earnings of a bank.

18This situation is analogous to the case of an economy with constant returns to scale, in which the
equilibrium price of any output is only determined by technology (constant marginal cost), whereas the
volume of activity is determined by the demand side.
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after a long series of negative aggregate shocks, banks raise the loan rate, which triggers

the reduction in credit and output.19

It is important to emphasize that, for any level of bank capitalizationE ∈ [Emin, Emax),

the risk-adjusted credit spread R(E)− p remains strictly positive. Indeed, expressing the

loan rate R(E) from equation (13) immediately shows that, for any E > Emax, bank

shareholders require a strictly positive premium for accepting to lend:

R(E) = p+ σ2
0K(E)

[
− u′(E)

u(E)

]
︸ ︷︷ ︸

�lending premium�

. (16)

To understand the �raison d'être� for this lending premium, consider the impact of the

marginal unit of lending on shareholder value eu(E). A marginal increase in the volume

of lending increases the bank's exposure to aggregate shocks. However, note that the

aggregate shock not only a�ects the individual bank's equity et but also aggregate equity

Et and thus the market-to-book ratio u(E) that is decreasing in E.20 Thus, if there is a

negative aggregate shock dZt > 0 that depletes the individual bank's equity, the e�ect of

this loss on shareholder value gets ampli�ed via the market-to-book ratio. Symmetrically,

a positive aggregate shock (dZt < 0), while increasing book equity, translates into a

reduction of u(Et), which reduces the impact of positive pro�ts on shareholder value.

This mechanism gives rise to a kind of induced risk aversion with respect to variation in

aggregate capital, which explains why risk-neutral bankers require a positive spread for

accepting to lend.

The following proposition summarizes our �ndings.

Proposition 1 There exists a unique Markov equilibrium, in which the loan rate function

R(E) satis�es the ordinary di�erential equation

R′(E) = − 1

σ2
0

2ρσ2
0 + (R(E)− p)2(

D[R(E)]− [R(E)− p]D′[R(E)]
) , (17)

with the boundary condition R(0) = Rmax. Aggregate bank capital evolves according to:

dEt = K(Et)[(R(Et)− p)dt− σ0dZt], Et ∈ (0, Emax). (18)

Banks recapitalize when Et = 0 and distribute dividends when Et = Emax.

19Another remark to be made in light of the negative relation between the loan rate and aggregate
equity is that recapitalizations occur when the bank makes a strictly positive pro�t in expectation,
whereas dividends are distributed when the bank makes a zero expected pro�t.

20Intuitively, having an additional unit of equity reduces the probability of facing costly recapitaliza-
tions in the short-run, so that the marginal value of equity, u(E), is decreasing with bank capitalization.
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The numbers Emax and Rmax are uniquely determined by two conditions:

R(Emax) = p and

∫ Emax

0

R(E)− p
σ2

0D(R(E))
dE = log(1 + γ).

The typical patterns of the loan rate R(E) and the market-to-book value u(E) that

emerge in the competitive equilibrium are illustrated in Figure 1.
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Figure 1: Loan rate and market-to-book ratio in the competitive equilibrium

Note that the loan rate function R(E) cannot generally be obtained in closed form.

However, it turns out that the dynamics of the loan rate Rt = R(Et) is explicit.

Proposition 2 The loan rate Rt = R(Et) follows the process

dRt = µ(Rt)dt+ σ(Rt)dZt, p ≤ Rt ≤ Rmax, (19)

with re�ections at both ends of the support. The volatility function is given by

σ(R) =
2ρσ2

0 + (R− p)2

σ0

(
1− (R− p)D′(R)

D(R)

) . (20)

The drift function is

µ(R) = σ(R)(R− p)H(R), (21)

where

H(R) =
(R− p)

σ0[D(R)− (R− p)D′(R)]
D′(R) +

[(R− p)2 + 2ρσ2
0]

2σ0[D(R)− (R− p)D′2
D′′(R). (22)

Moreover, Rmax satis�es∫ Rmax

p

(R− p)
σ0σ(R)

dR = log(1 + γ) and

∫ Rmax

p

σ0D(R)

σ(R)
dR = Emax. (23)

To sum up, the dynamics of Et and Rt = R(Et) in the competitive equilibrium depends

on the credit demand function D(R) and four parameters: exposure to aggregate shocks
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(or fundamental volatility) σ0, the unconditional probability of default p, discount factor

ρ and �nancial frictions γ. In equilibrium, the loan rate Rt �uctuates in between its

�rst-best level p and Rmax. Re�ection of the loan rate at the both boundaries of its

support generates a pseudo-cyclical behavior of the economy in our model. Moreover, it

can be easily seen from the �rst expression in (23) that the magnitude of these �credit

cycles�, captured by the wedge Rmax − p, is increasing with the magnitude of �nancial

frictions, γ.21 Thus, our model predicts that loan rates, lending and, thereby, output will

be more volatile in the economies with stronger �nancial frictions. At the same time,

the second expression in (23) shows that the target level of bank capitalization, Emax, is

also increasing with the magnitude of �nancial frictions. By contrast, in the absence of

�nancial frictions, i.e., when γ = 0, one would have Rmax = p and E ≡ 0.

3.2 Financial (in)stability

To study the properties of the competitive equilibrium and the behavior of the economy

in the long run, we will focus at the dynamics of the loan rate, which is explicitely

determined in (19).22 We start by applying the impulse response methodology to study

the stability of the deterministic steady state. Then, we discuss the ergodic properties of

the system, showing that the system behavior in a stochastic environment can be in sharp

contrast to the behavior predicted by the analysis conducted in a deterministic setting.

3.2.1 Impulse response analysis

The usual methodology to analyze the long-term behavior of macro-variables in a

DSGE model is to linearize around the deterministic steady-state and perturb the system

by a single unanticipated shock. The equivalent here would be to look at the case where

dZt ≡ 0 for t > 0. The dynamics of the system then becomes deterministic and can be

described by the ordinary di�erential equation (linearization is not needed here):

dRt = µ(Rt)dt,

where the initial shock determines R0 > p.

It is easy to see from expression (21) that µ(p) = 0. Hence, the frictionless loan rate

(Rt ≡ p) is an equilibrium of the deterministic system that is further referred to as the

21Interestingly, �nancial frictions only a�ect Rmax, without having any impact on µ(R), σ(R) and
u(E).

22Working with Rt instead of Et enables us to provide an analytical characterization of the system's
behavior, because the drift and volatility of Rt are closed-form expressions. By contrast, in a general
case, the drift and volatility of the process Et cannot be expressed in a closed form, since R(E) has an
explicit expression only for the particular speci�cations of the credit demand function.
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deterministic steady-state (DSS). It is locally stable when µ′(p) < 0 and is globally stable

when µ(R) < 0 for all R. After some computations, it can be shown that

µ′2σ2
0

D′′(p)

D(p)
.

Hence, the DSS is locally stable when D′′(p) < 0. Moreover, it also follows from (22),

that condition D′′(R) < 0 ensures global stability.

Illustrative example. To illustrate the properties of the equilibrium, consider the

following speci�cation of the loan demand function:

D(R) = (R−R)β, (24)

where β > 0 and p < R.

Under the above speci�cations, the volatility of the loan rate is

σ(R) =
[2ρσ2

0 + (R− p)2] (R−R)

σ0[R + (β − 1)R− βp]
. (25)

The drift of the loan rate is given by

µ(R) = σ(R)
β(R− p)Q(R)

2σ0[R + (β − 1)R− βp]2
, (26)

where Q(R) is a quadratic polynomial:

Q(R) = (1− β)((R− p)2 − 2ρσ2
0)− 2(R− p)(R− p). (27)

Given the above speci�cation, it can be easily shown that, when β < 1 (which is

equivalent to D′′(R) < 0), µ′(p) < 0 and µ(R) < 0 in the entire interval [p,R]. Thus

the DSS is locally and globally stable. By contrast, when β > 1 (which is equivalent

to D′′(R) > 0), the DSS is locally unstable, i.e., µ′(p) > 0, and there exists a unique

R∗ ∈ (p,R) such that µ(R) is positive in the region (0, R∗) and negative in the region

(R∗, R) (see Figure 2).

3.2.2 Long run behavior in the stochastic set-up

After studying the properties of the deterministic equilibrium, we consider the full

dynamics of the stochastic equilibrium. It turns out that the system is ergodic and

thus the long run behavior of the economy can be described by the ergodic density

function. This ergodic density measures the average time spent by the economy in the
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Figure 2: The loan rate drift and volatility, β > 1.

neighborhood of each possible loan rate R: the states with lower R (and, respectively,

high aggregate capital E) can be interpreted as "boom" states and the states with higher

R (and, respectively, low aggregate capital E) can be thought of as "bust" states. The

ergodic density function can be computed by solving the Kolmogorov forward equation.

Proposition 3 If σ(R) > 0 for ∀R ∈ [p,Rmax], there exists a unique ergodic distribution

of R characterized by the density function

f(R) =
C0

σ2(R)
exp
(∫ R

p

2µ(s)

σ2(s)
ds
)
, (28)

where the constant C0 is such that
∫ Rmax

p
f(R)dR = 1.

It can easily be seen from the expression of σ(R) provided in (20), for any loan demand

speci�cations such that D′(R) < 0 and D(R) > 0 in the region [p,Rmax], the volatility

of the loan rate remains strictly positive, which guarantees the existence of an ergodic

distribution of R. By di�erentiating the logarithm of the ergodic density de�ned in (28),

we obtain:
f ′(R)

f(R)
=

2µ(R)

σ2(R)
− 2σ′(R)

σ(R)
. (29)

Using the general formulas for σ(R) and µ(R), it can be shown that σ(p) = 2ρσ0,

σ′(p) = 2ρσ0
D′(p)
D(p)

< 0 and µ(p) = 0. Hence, f ′(p) > 0, which means that the state R = p

corresponding to the DSS is de�nitely not the one at which the economy spends most of

the time in the stochastic set up. To get a deeper understanding of the determinants of

the system behavior in the long run, we resort to the numerical example.

Figure 3 reports the typical patterns of the endogenous volatility σ(R) (left panel)

and the ergodic density f(R) (right panel) for the loan demand speci�cation de�ned in

(24). It shows that the extrema of the ergodic density almost coincide with those of the

volatility function, i.e., the economy spends most of the time in the states with the lowest
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Figure 3: Endogenous volatility and ergodic density functions

loan rate volatility. Intuitively, the economy can get "trapped" in the states with low

loan rate volatility because the endogenous drift is generally too small to move it away

from these states. In fact, σ(R) turns out to be much larger than µ(R) for any level of

R, so that the volatility impact always dominates the drift impact.23

Note that functions σ(.) and f(.) must be truncated (and, in the case of the ergodic

density, rescaled) on [p,Rmax], where Rmax depends on the magnitude of issuing costs γ.

For the chosen speci�cation of the loan demand function, D(R) = (R − R)β, we always

have Rmax < R.24 However, Rmax can be arbitrary close to R, which typically happens

under strong �nancial frictions and low elasticity of credit demand. In that case the

economy will spend quite some time in the region where the loan rate is close to Rmax.

We interpret this situation as a persistent "credit crunch": it manifests itself via scarce

bank equity capital, high loan rates, low volumes of lending and output.

This "credit crunch" scenario is reminiscent to the "net worth trap" documented by

Brunnermeier and Sannikov (2014). In their model, the economy may be brought into

recession because of the ine�cient allocation of productive capital between more and

less productive agents, which they call �experts� and �households� respectively. This

allocation is driven by the dynamics of the equilibrium price of capital, which depends

on the fraction of the total net worth in the economy that is held by experts. After

experiencing a series of negative shocks on their net worth, experts have to sell capital

to less productive households, so that the average productivity in the economy declines.

Under a reduced scale of operation, experts may struggle for a long time to rebuild net

worth, so that the economy may be stuck in a low output region. In our model, the output

in the economy is driven by the volume of credit that entrepreneurs can get from banks,

whereas the cost of credit depends on the level of aggregate bank capitalization. When

23Formally, this can be observed from the expression (26): in fact, µ(R) ≡ σ(R)H(R), where H(R) is
typically very small.

24To prove this property, it is su�cient to show that the integral
∫ R
p

R−p
σ0σ(R)dR diverges.
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the banking sector su�ers from a series of adverse aggregate shocks, its loss absorbing

capacity deteriorates. As a result, the ampli�cation mechanism via the market-to-book

value becomes more pronounced and bankers thus require a larger lending premium. The

productive sector reacts by reducing its demand for credit and the banks have to shrink

their scale of operations, which makes it even more di�cult to rebuild equity capital.

Overall, the analysis conducted in this subsection suggests that the long run behavior

of the economy in the stochastic environment is determined by the volatility of the loan

rate, rather than by its drift. Thus, relying on the results of the impulse response analysis

in order to infer the long-run behavior of the economy in the stochastic environment might

be misleading.

3.3 Welfare analysis

Having solved for the competitive equilibrium, it is natural to question its e�ciency.

We show below that the competitive allocation of credit emerged in our continuous-time

framework does not maximize social welfare, provided that the social planner is subject

to the same frictions as the private investors (i.e., she cannot directly transfer wealth

through taxes and subsidies between the productive and the banking sectors).

In our simple set-up where deposit taking does not generate any surplus, social welfare

can be computed as the sum of the market value of the �rms (i.e., the expected discounted

pro�t of the productive sector) and the market value of the banks' equity:25

W (E) = E
[∫ +∞

0

e−ρtπF [K(E)]

]
+ E

[∫ +∞

0

e−ρt (d∆t − (1 + γ)dIt)

]
≡ VF (E) + V (E),

(30)

where πF [K(E)] = F (K)−KF ′(K) is the expected pro�t of �rms per unit of time.

Note that the social welfare function can be seen as the value of a �claim� that is

contingent on the underlying �asset� - aggregate bank equity E. Thus, we can apply

standard pricing methods to compute the social welfare function. Recall that, in the

region (0, Emax), banks neither distribute dividends nor recapitalize, so that the avail-

able cash �ow consists uniquely of the �rms' pro�t. Therefore, for E ∈ (0, Emax), the

social welfare function at the competitive equilibrium, W (E), must satisfy the following

di�erential equation:

ρW (E) = πF [K(E)] +K(E)[R(K(E))− p]W ′(E) +
σ2

0

2
K2(E)W ′′(E). (31)

Note that dividend distribution and bank recapitalizations only a�ect the market

25We assume that the social planner has the same discount factor as equity investors.
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value of banks, without producing any immediate impact on the �rms' pro�t. This

observation yields two boundary conditions, W ′(0) = 1+γ andW ′(Emax) = 1. Thus, the

welfare function corresponding to the competitive allocation of credit can be computed

numerically.26 Figure 4 depicts a typical pattern of social welfare in the simple case

where the credit demand function is linear (see Appendix B for the computation details):

maximum welfare is attained at a maximum level of aggregate bank capitalization and

the maximum variation of welfare depends on the magnitude of �nancial frictions.
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Figure 4: Welfare as a function of aggregate bank capital

Consider now the marginal impact of lending on social welfare, by taking the �rst

derivative of the right-hand side of equation (31) with respect to K(E):

L(E) = −K(E)F ′′(K(E)) + [K(E)F ′′(K(E)) +R(K(E))− p]W ′(E) + σ2
0K(E)W ′′(E),

(32)

where F ′′(K(E)) = R′(K(E)).

The constrained optimal allocation of credit could be obtained by maximizing the

right-hand side of (31) in K(E) and solving the associated Bellman equation. However,

it is more reasonable to consider that the social planner has no real power to directly

control the volume of credit in the economy. Thus, instead of looking for the socially

optimal allocation of lending, we exploit expression (32) to shed light on the source and

the sign of ine�ciency at the competitive equilibrium.

Note that L(E) = 0 and thus the socially optimal allocation of credit would be

achieved if the loan spread would equal the social costs of lending, i.e., when

R(E)− p = σ2
0K(E)

[
− W ′′(E)

W ′(E)

]
−R′(K(E))K(E)

[
1− 1

W ′(E)

]
. (33)

Comparing the social costs of lending in (33) with the private costs of lending to

26Given W (E), one could easily compute the expected social welfare loss as a function of the bank
capital loss, i.e., [W (E0) − W (E0 − ∆E)]/W (E0)100%, where ∆E > 0 is the aggregate loss of bank
capital and E0 is the level of bank capitalization before the loss.
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banks (see (16)) suggests that the allocation of credit in the competitive equilibrium is

distorted in two ways: �rst, because of the di�erence in the private and social induced

risk aversion, i.e., −u′(E)
u(E)

and −W ′′(E)
W ′(E)

; second, because an increase in lending decreases

the loan spread (recall that R′(K) < 0) and thus reduces the marginal earnings of banks.

Indeed, since W ′(E) > 1, the second term at the right-hand side of expression (33) is

positive. This is exactly the di�erence between the social and private cost of lending that

drives the ine�ciency of the competitive allocation of credit.

To illustrate this ine�ciency and to have a precise picture of the relation between

the levels of bank capitalization and welfare distortions, we numerically estimate the

sign of the marginal cost of lending L(E) in the particular case where the credit demand

function is linear (see Figure 5). It turns out that, in this case,27 L(E) is positively signed

for the lower levels of bank capitalization and becomes negative for the higher level of

capitalization. This suggests that, for the lower levels of bank capital, welfare can be

improved by increasing credit to the productive sector, whereas for the higher level of bank

capitalization welfare can be improved by reducing credit. Put di�erently, competitive

banks lend too much when things go well (high equity), and too little when things go

badly (low equity). In our economy where credit entirely determines investment, such an

allocation of credit would lead to underinvestment in downturns and overinvestment in

upturns.28
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Figure 5: Market failure

27We do not know if this result extends to more general speci�cations of credit demand.
28A similar result is obtained in He and Kondor (2014) albeit in a di�erent setting without an explicit

banking sector
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4 Capital regulation

So far our analysis has been focused on the "laissez-faire" environment in which banks

face no regulation. Our objective in this section is to understand how capital regulation

does a�ect the banks' lending policies and the equilibrium behavior of the economy. We

assume that public authorities enforce a minimum capital requirement, under which each

bank must maintain equity capital above a certain fraction of loans, i.e.,

et ≥ Λkt,

where Λ is the minimum capital ratio.

It is worthwhile to note that banks have two options to comply with minimum cap-

ital requirements. The �rst option would be to immediately recapitalize as soon as the

regulatory constraint starts binding. The second option consists in cutting on lending

and reducing deposit taking. Anecdotal evidence suggests that bank shareholders usu-

ally prefer to use the latter option, rather than to undertake costly recapitalizations. As

will become apparent below, such a strategy turns out to be privately (but not socially)

optimal in the presence of �nancial frictions.

To solve for the regulated equilibrium, we again start by looking at the maximization

problem of an individual bank. As in the unregulated set-up, bank shareholders maximize

the market value of their claim by choosing the lending, recapitalization and dividend

policies, yet, facing a restriction on the volume of lending:

vΛ(e, E) ≡ euΛ(E) = max
kt≤ e

Λ
,dδt,dit

E
[∫ +∞

0

e−ρt (dδt − (1 + γ)dit)|et = e, Et = E

]
. (34)

To have the intuition on the problem solution, recall that, in the unregulated case,

bank recapitalizations take place only when equity is completely depleted. Thus, it is

natural to expect that the regulatory constraint will be binding for relatively low levels

of equity. Indeed, in the general case, the bank may �nd itself in one of two regions: (i)

when the level of equity is relatively high, the regulatory constraint is not binding and

the volume of lending is still determined by the �rms' demand for credit; (ii) in the states

with low equity, the regulatory constraint binds and the volume of lending is determined

by kt = et/Λ. Due to the homotheticity property, at each moment of time, all banks have

the same leverage ratio. Thus, it is legitimate to anticipate the existence of the critical

level of bank capital EΛ, such that the regulatory constraint binds on the aggregate and

individual levels for any E ∈ [EΛ
min, EΛ] and is slack for any E ∈ (EΛ, E

Λ
max]. This critical
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threshold EΛ must satisfy
K(EΛ)

EΛ

=
1

Λ
.

For Λ high enough, EΛ tends to EΛ
max and the unconstrained region disappears entirely.

Proposition 4 For all Λ, there exists a unique regulated equilibrium, characterized by

one of two regimes:

a) for Λ high enough, the regulatory constraint binds over [EΛ
min, E

Λ
max]. The loan rate is

explicitly given by

R(Et) = D−1[Et/Λ], (35)

where D−1 is the inverse function of the loan demand. The dynamics of the aggregate

bank capital is given by:

dEt
Et

=
(D−1[Et/Λ]− p)dt− σ0dZt

Λ
, (EΛ

min, E
Λ
max).

b) for relatively low Λ, capital constraint is binding or E ∈ [EΛ
min, EΛ] and is slack for

E ∈ (EΛ, E
Λ
max]. When E ∈ [EΛ

min, EΛ], the dynamics of aggregate equity and the loan

rate function are de�ned as in the regime a). When E ∈ (EΛ, E
Λ
max], the loan rate must

satisfy di�erential equation (15) with the boundary condition R(EΛ) = D−1[EΛ/Λ]

and the dynamics of the aggregate equity is described by the same equation as in the

unregulated set-up.

In either regime, banks distribute dividends when Et = EΛ
max and recapitalize when Et =

EΛ
min.

We show in the Appendix C that, in the unconstrained region (EΛ, E
Λ
max], the market-

to-book value still simultaneously satis�es (13) and (14), whereas in the constrained region

[EΛ
min, EΛ] it must satisfy

ρ =
E(D−1[E/Λ]− p)

Λ

u′Λ(E)

uΛ(E)
+
σ2

0E
2

2Λ2

u′′Λ(E)

uΛ(E)
, (36)

under condition
u′Λ(E)

uΛ(E)
≥ −D

−1[E/Λ]− p
E/Λσ2

0

, (37)

with strict equality at E = EΛ
min.

The optimal decisions are characterized by the recapitalization and payout boundaries,

EΛ
min and EΛ

max, such that uΛ(EΛ
min) = 1 + γ and uΛ(EΛ

max) = 1 + γ. In Appendix C
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we provide the detailed description of the computational procedure that enables us to

numerically solve for the regulated equilibrium.

It is already clear from expression (35) that, for any given level of aggregate bank

capitalization, a higher capital ratio implies a higher loan rate, unless the bank does

not immediately recapitalize.29 To get a better understanding of the impact of capital

regulation on the cost of credit in the economy, we perform a comparative static analysis

by computing the equilibrium characteristics of bank policies for all values of Λ ∈ (0, 1].

Parameter values are taken as follows: ρ = 0.05, σ0 = 0.05, p = 0.02, R = 0.1, γ = 0.2,

and credit demand function is linear, i.e., D(R) = R−R.
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Figure 6: Impact of minimum capital ratio on bank policies

The left panel of Figure 6 reports the values of EΛ
min, E

Λ
max and EΛ (solid lines), con-

trasting them to the Emin and Emax computed in the unregulated setting (dashed lines).

It shows that, in the regulated equilibrium, banks recapitalize at a strictly positive level

of equity and generally build larger target equity bu�er, as compared to the unregulated

set-up. However, even though higher bank capitalization improves the loss absorbing ca-

pacity of banks, this fact does not have any positive implications for lending. In contrast,

as shown in the right panel of Figure 6, tighter capital regulation drives up the cost of

credit in the economy, thereby triggering a decline of lending and output. This mech-

anism driving this result is very simple. Recall that depositors (that have a preference

for liquidity) are willing to accept a lower return than shareholders. Capital regulation

induces banks to substitute cheaper deposit funding by costlier equity funding, and, as a

consequence, the loan rate increases.30

It is worthwhile to note, however, that this adverse e�ect of capital regulation that

29Note that the credit demand function D(R) is decreasing on its argument and the inverse function
of a decreasing function is also decreasing.

30This can be seen immediately in the set-up without re�nancing costs. In the fully �edged model
with re�nancing costs, however, we so far only claim that capital regulation shifts the support of the loan
rate to the right. A more complete analysis of the welfare e�ects of regulation in our setting is subject
to ongoing research.
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manifests itself in our framework does not mean per se that capital regulation is always

bad. Our results simply suggest that a rigid capital ratio is not a suitable tool to tackle

credit market ine�ciencies, so that there is room for additional research exploring alter-

native regulatory instruments to address this issue (e.g. countercyclical capital ratios or

dividend restrictions).

5 Conclusion

This paper develops a general equilibrium model of commercial banking, in which

banks satisfy households' needs for safe investment and channel �nancing to the produc-

tive sector. Bank capital plays the role of a loss-absorbing bu�er that insulates banks

from the need to undertake costly recapitalizations too often. In our model, the aggregate

level of bank capitalization drives the cost and the volume of lending. Speci�cally, we

establish a negative relation between the equilibrium loan rate and the level of aggregate

bank capital. The closed-form characterization of the equilibrium dynamics of loan rates

enables us to study analytically the long-run behavior of the economy. We show that this

behavior is ergodic and is essentially determined by the volatility of the loan rate and

the magnitude of �nancing frictions. The economy never spends the most of time at the

boom state and, under severe �nancing frictions, may spend quite a lot of time in the

credit crunch phase.

We also use our model to explore the impact of minimum capital regulation on bank

policies and �nd that, while boosting the overall bank capitalization, tighter capital

requirements push up the cost of credit, leading to the reduction of lending in the economy.

Our model su�ers from two important limitations. First, it only considers commercial

banking activities (deposit taking and lending), while neglecting market activities such

as securities and derivatives trading. Second, it only considers di�usion risks that do not

lead to actual bank defaults, but merely �uctuations in the size of the banking sector.

A consequence of these limitations is that we cannot address the important questions of

banks' excessive risk-taking and the role of capital regulation in the mitigation of this

behaviour.
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Appendix A. Proofs

Proof of Proposition 1. By the standard dynamic programming arguments, share-
holder value v(e, E) must satisfy the Bellman equation:31

ρv = max
k≥0,dδ≥0,di≥0

{
dδ(1− ve)− di(1 + γ − ve)+

+ k[(R(E)− p)ve + σ2
0K(E)veE] +

k2σ2
0

2
vee

+K(E)(R(E)− p)vE +
σ2

0K
2(E)

2
vEE

}
.

(A1)

Using the fact that v(e, E) = eu(E), one can rewrite the Bellman equation (A1) as
follows:

ρu(E) = max
k≥0,dδ≥0,di≥0

{dδ
e

[1− u(E)]− di

e
[1 + γ − u(E)] +

k

e
[(R(E)− p)u(E) + σ2

0K(E)u′(E)]+

+K(E)(R(E)− p)u′(E) +
σ2

0K
2(E)

2
u′′(E)

}
(A2)

A solution to the maximization problem in k only exists when

u′(E)

u(E)
≤ −R(E)− p

σ2
0K(E)

, (A3)

with strict equality when k > 0.
Under conjecture that R(E) ≥ p (which will be veri�ed ex-post), it follows from the

above expression that u(E) is a decreasing function of E. Then, the optimal payout
policy maximizing the right-hand side of (A2) is characterized by a critical barrier Emax
satisfying

u(Emax) = 1, (A4)

and the optimal recapitalization policy is characterized by a barrier Emin such that

u(Emin) = 1 + γ. (A5)

In other words, dividends are only distributed when Et reaches Emax, whereas recap-
italization occurs only when Et reaches Emin. Given (A3), (A4), (A5) and k > 0, it it
easy to see that, in the region E ∈ (Emin, Emax), market-to-book value u(E) satis�es:

ρu(R) = K(E)(R(E)− p)u′(E) +
σ2

0K
2(E)

2
u′′(E). (A6)

Note that, at equilibrium, K(E) = D[R(E)]. Taking the �rst derivative of (A3), we

31For the sake of space, we omit the arguments of function v(e, E).
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can compute u′′(E). Plugging u′′(E) and u′(E) into (A6) and rearranging terms yields:

R′(E) = − 1

σ2
0

2ρσ2
0 + (R(E)− p)2(

D[R(E)]− [R(E)− p]D′[R(E)]
) . (A7)

Since D′(R(E)) < 0, it is clear that R′(E) < 0 if R(E) > p. To verify that R(E) > p
for any E ∈ [Emin, Emax), it is su�cient to show that Rmin ≡ R(Emax) ≥ p.

To obtain Rmin, let V (E) ≡ Eu(E) denote the market value of the entire banking
sector. At equilibrium, one must have V ′(Emax) = 1 and V ′(Emin) = 1 + γ. Given
that V ′(E) = u(E) + Eu′(E), it must hold that Eu′(E) = 0. Hence, u′(Emax) = 0 and
Emin = 0. Inserting u′(Emax) = 0 into the binding condition (A3) immediately shows
that Rmin = p, so that R(E) > p for any E ∈ [Emin, Emax). The loan rate R(E) is de�ned
as a solution to the di�erential equation (A7) with the boundary condition R(Emax) = p.

To obtain Emax, we use the fact that individual banks' optimization with respect to
the recapitalization policy implies u(Emin) = 1 + γ. Thus, integrating equation (A3) in
between Emin = 0 and Emax, while using u(Emax) = 1, yields an equation that implicitly
determines Emax:

u(0) = exp
(∫ Emax

0

R(E)− p
σ2

0K(E)
dE
)

= 1 + γ. (A8)

Proof of Proposition 2. Applying Itô's lemma to Rt = R(Et) yields:

dRt = K(Et)

(
(R(Et)− p)R′(Et) +

σ2
0K(Et)

2
R′′(Et)

)
︸ ︷︷ ︸

µ(R(Et))

dt−σ0K(Et)R
′(Et)︸ ︷︷ ︸

σ(R(Et))

dZt. (A9)

After some computations involving the use of (A7), the drift and the volatility of
Rt = R(Et) can be expressed by simple formulas stated in (20) and (21). The system
of equations (23) immediately follows from the change of the variable of integration in
equation (A8), i.e., dE = E ′(R)dR = dR

R′(E)
.

Appendix B. Computing social welfare

Consider the simple case where the credit demand is linear, i.e.

D(R) = R−R.

In this particular case, the loan rate R(E) can be computed in a closed form:

R(E) = p+
√

2ρσ0 tan

( √
2ρ

σ0(R− p)
(Emax − E)

)
, (A10)

and thus

K(E) = R− p−
√

2ρσ0 tan

( √
2ρ

σ0(R− p)
(Emax − E)

)
. (A11)

27



To recover the production function, F (D(R)), recall that F ′(D(R)) = R. Using the
fact that R = R−D, we obtain F ′(D) = (R−D) and, thereby,

F (D(R)) = RD(R)− [D(R)]2

2
. (A12)

At equilibrium, we have D(R(E)) = K(E), so the that �rm' expected pro�t is given
by

πF (K(E)) = F (K(E))−K(E)F ′(K(E)) =
[K(E)]2

2
.

Then, social welfare follows ODE:

ρW (E) =
[K(E)]2

2
+K(E)(R−K(E)− p)W ′(E) +

σ2
0

2
[K(E)]2W ′′(E), (A13)

given that W ′(0) = 1 + γ and W ′(Emax) = 1.
Di�erentiating the above expression with respect to E and solving the obtained equa-

tion numerically with respect to W ′(E) enables us uncover W (E).

Appendix C. Solving for the regulated equilibrium

Consider the shareholders' maximization problem stated in (34). By the standard
dynamic programming arguments and the fact that vΛ(e, E) = euΛ(E), the optimal
bank's policies must satisfy the following Bellman equation:

ρuΛ(E) = max
dδ≥0,di≥0

{dδ
e

[1− uΛ(E)]− di

e
[1 + γ − uΛ(E)]

}
+

+ max
0<k≤e/Λ

{k
e

[(R(E)− p)uΛ(E) + σ2
0K(E)u′Λ(E)]

}
+

+K(E)[R(E)− p]u′Λ(E) +
σ2

0K
2(E)

2
u′′Λ(E).

(A14)
The solution to (A14) exists only if

u′Λ(E)

uΛ(E)
≥ −R(E)− p

σ2
0K(E)

, (A15)

whith strict equality for 0 < k < e/Λ.
The optimal dividend and recapitalization policies are characterized by the barriers

EΛ
max and E

Λ
min such that uΛ(EΛ

max) = 1 and uΛ(EΛ
min) = 1 + γ.

Under the conjecture that there exists a certain EΛ such that the regulatory constraint
is binding for E ∈ [EΛ

min, EΛ] and is slack for E ∈ [EΛ, E
Λ
max], let

αi(E) ≡ −u
′
Λ(E)

uΛ(E)
,

where i = 1 for E ∈ (EΛ, E
Λ
max] and i = 2 for E ∈ [EΛ

min, EΛ].
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Then, in the region (EΛ
min, E

Λ
max), equation (A14) can be rewritten as follows:

ρ = −Πi(E)αi(E) +
σ2

0K
2
i (E)

2
[α2
i (E)− α′i(E)] + 1i=2

[Ri(E)− p− σ2
0Ki(E)αi(E)]

Λ
,

(A16)

where index i = {1, 2} re�ects the fact that the loan rate and the aggregate volume of
lending are de�ned di�erently on each of two regions and Πi(E) denotes the aggregate
expected banks' pro�t:

Πi(E) = Ki(E)[Ri(E)− p].

At equilibrium, in the constrained region i = 2, the volume of credit is given by

K2(E) = D[R2(E)] = E/Λ,

and, hence, the loan rate is
R2(E) = D−1[E/Λ],

where D−1 is the inverse function of the demand for credit.
In the unconstrained region i = 1, the volume of lending is determined by the credit

demand and the loan rate R1(E) satis�es equation (A7) with the boundary condition32

R1(EΛ) = R2(EΛ).

Moreover, it must hold that u′Λ(Emax) = 0 and u′Λ(Emin) = 0, which implies α1(Emax) =
0 and α2(Emin) = 0.

Numerical procedure to solve for the regulated equilibrium. This numerical al-
gorithm solving for the regulated equilibrium can easily be implemented with the Math-
ematica software:

• pick a candidate value ÊΛ
min. Solve numerically for α2(E) such that α2(Êmin) = 0;

• compute a candidate value ÊΛ
max such that α2(ÊΛ

max) = 0;

• check the condition
D−1[ÊΛ

max/Λ]− p
σ2

0Ê
Λ
max/Λ

≥ 0 (A17)

a) if (A17) holds, compute the market-to-book value uΛ(ÊΛ
min) according to

uΛ(ÊΛ
min) = exp

(∫ ÊΛ
max

ÊΛ
min

α2(E)dE
)

b) if (A17) is violated, �nd ÊΛ that satis�es

α2(ÊΛ) =
D−1[ÊΛ/Λ]− p

σ2
0ÊΛ/Λ

, (A18)

32This is an immediate implication of condition D[R1(EΛ)] = EΛ/Λ.
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and compute the market-to-book value uΛ(ÊΛ
min) according to:

uΛ(ÊΛ
min) = CΛexp

(∫ ÊΛ

ÊΛ
min

α2(E)dE
)
,

where

CΛ = exp
(∫ ÊΛ

max

ÊΛ

α1(E)dE
)
, where α1(E) =

R1(E)− p
σ2

0K1(E)
.

• if uΛ(ÊΛ
min) = 1 + γ, EΛ

min = ÊΛ
min and EΛ

max = ÊΛ
max; otherwise, pick a di�erent

ÊΛ
min, repeat the procedure from the beginning.

Appendix D. Competitive equilibrium with r > 0

In this appendix, we solve for the competitive equilibrium in the set up where r > 0.
In this case, the dynamics of equity value of an individual bank follows:

det = retdt+ kt[(R(Et)− p− r)dt − σ0dZt]− dδt + dit. (A19)

The aggregate equity of the banking sector evolves according to:

dEt = [K(Et)(R(Et)− p− r) + rEt]dt− σ0K(Et)dZt − d∆t + dIt. (A20)

Solving the shareholders' maximization problem in the same way as we did in the
proof of Proposition 1 and allowing for k > 0 yields us two equations:

u′(E)

u(E)
= −R(E)− p− r

σ2
0K(E)

, (A21)

(ρ− r)u(E) = K(E)(R(E)− p− r)u′(E) +
σ2

0K
2(E)

2
u′′(E). (A22)

Substituting u′(E) and u′′(E) into (A22), while allowing forK(E) = D[R(E)], enables
us to express R′(E):

R′(E) = − 1

σ2
0

2(ρ− r)σ2
0 + (R(E)− p− r)2 + 2(R(E)− p− r)E/D[R(E)](
D[R(E)]− [R(E)− p− r]D′[R(E)]

) . (A23)

Applying the same arguments as in the setting with r = 0, we can show that Emin = 0
and Rmin = r+p. The boundary Rmax must be computed numerically by solving equation∫ Rmax

p

E ′(R)
(R− p− r)
σ2

0D(R)
dR = log(1 + γ), (A24)

where E ′(R) = 1/R′(E).
Note that the left-hand side of the above expression is increasing in Rmax. Hence, there

exists a unique solution to (A24), which guarantees the uniqueness of the equilibrium.
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