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Abstract

We build a linear-quadratic model to analyze trading in a market with pri-
vate information and heterogeneous agents. Agents receive private endowment
shocks and trade continuously. Agents differ in their need for trade as well as
size, i.e. the ability to stay away from their ideal positions. In equilibrium,
trade is gradual, its speed depends on the size of the market, and trade among
large market participants is slower than that among small investors. Price has
momentum due to the actions of large traders: it drifts up if the sellers are
fewer and larger and the buyers are smaller and more competitive, and vice
versa. The model captures welfare: it can answer questions about the social
costs and benefits of high-frequency traders, the welfare consequences of market
consolidation, and many others.

1 Introduction.

A market with heterogeneous investors - large institutions, small retail investors,
liquidity providers and high-frequency traders - presents many puzzles. What deter-
mines the speed of trading? What determines price momentum? When a large seller
sends his flow to the market, how does the price react at the inception, as the flow
continues, and when the flow stops? How detrimental are traders that try to discover
large buyers and sellers, and front-run them? Should large institutions be protected
from traders that try to front-run them? Do high-frequency traders enhance welfare

∗We are grateful to seminar participants at Yale and the New York Fed for helpful comments.
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by providing liquidity or do they harm investors? Why do certain market makers pay
to execute retail flow?

To address these questions in a unified manner, a theoretical framework is needed.
We need to understand strategic interactions in a market, in which agents who want
to buy and sell choose their flows strategically, anticipating the price impact and
the execution risk. When the strategic considerations of individual traders are put
together, what do they imply about the speed of trading, liquidity, price dynamics
and inefficiencies? We need a model that is suitable for analyzing welfare: the costs
from the time delay in the execution of large orders and the costs of price impact.
Importantly, it has to be a model that captures the utilities of all agents explicitly,
i.e. it cannot ignore a part of the market by designating it to be the “noise traders.”

We build a model to address these issues and to also be able to analyze welfare.
Market participants are heterogeneous: they differ in their trading needs and also in
their capacity to wait and absorb risk. There can be many motivations for trade:
investors may want to rebalance portfolios, hedge risk exposures, trade to accom-
modate client needs, etc. Some participants may demand liquidity and have large
trading needs, while other participants may have the capacity to make profit while
providing liquidity. However, the key source of heterogeneity in the model is not
the need to trade, but rather the capacity to wait. Large players are willing to stay
further from their ideal positions when the price is not right. They have a greater
risk capacity than small traders. It turns out that the concentration of the market,
and its composition in terms of participants of different sizes, matters crucially for
market dynamics.

Because large and small market participants trade differently, it pays to know the
source of trade. Indeed, large players - those with the capacity to wait to minimize
price impact - trade slowly. Small players trade fast. When the source of sales is a
large trader, then we know that these sales are just a tip of the iceberg: the large
player will hide most his desired quantity. Thus, sales by a large player have put
a persistent downward pressure on the market price. In contrast, when sales are
initiated by small traders, perhaps a group of small traders that decide to sell at the
same time, then desired quantities are traded fast. Small traders have no incentives
to wait, especially if sales by other small traders are pushing the price down. Thus,
while sales of small traders push the price down at the moment, they do not imply a
continuous downward pressure on the price.

The knowledge of the source of trades provides important information about price
momentum. In practice, market participants can have various strategies to learn the
source of trades: they can observe whether most recent orders are executed near the
bid or the ask, they can watch the size of orders, they can try to identify active
market participants through trading, and they can even pay for the flow that they
know comes from small retail investors. Theoretically, if market participants observe
only the price, the may try to learn the source of trade from price momentum. This
can lead to a very complicated filtering problem, in which players’ beliefs about the
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trading needs of other market participants, and even higher-order beliefs, may affect
strategies.

To highlight important properties of markets with heterogeneous participants in
a clean way, throughout this paper we assume that players observe the source of
trade, so they do not need to worry about the filtering problem. This creates a clear
benchmark, which nevertheless leads to highly non-trivial dynamics. Different traders
choose to trade towards their desired positions at different rates. Consequently, dif-
ferent players have different price impact. When some market participants want to
buy and others want to sell, trade is not immediate but slow. The rate of trading,
and convergence to desired allocations, depends on the composition of both sides of
the market. Importantly, prices exhibit momentum: prices drift down if the segment
of the market that wants to sell is more concentrated (i.e. consists of fewer and
larger traders) than the segment of the market that wants to buy. The welfare of
traders depends on whether they provide or take liquidity - liquidity providers can
make profit while other traders generally pay costs through price impact and due to
delayed execution. The welfare of traders also depends on their size, i.e. their pricing
power.

While our model is first to capture many of these features, we build upon a lot
of important market microstructure literature. Papers such as Kyle (1985) and Back
(1992) capture price impact and gradual trading in a model that features an insider
that has private information and noise traders. In these models, from the point of view
of market participants who have no inside information, prices have no drift. From the
point of insiders, of course, prices drift towards fundamentals known only to insiders.
Welfare analysis using these models, however, is restricted by the fact that noise
traders provide exogenous flows and have no utility functions. Much closer to our
model are the papers of Vayanos (1999) and Du and Zhu (2013). Those papers model
a market with finitely many symmetric traders. In those models, even though prices
reflect the efficient allocation of assets, allocations themselves are inefficient. Players
trade slowly to the efficient allocation: like in our model, they signal their private
information by the rate of selling. Vayanos (1999) shows that the speed of trading
increases in the number of market participants, and the equilibrium converges to
efficiency as the number of players grows to infinity. Du and Zhu (2013), in addition,
show that the trading speed slows down when players receive not only shocks to their
own endowments but also information about the common component of value. In
addition, Du and Zhu (2013) also analyze the implications of the frequency of trading
on efficiency.

Relative to Vayanos (1999) and Du and Zhu (2013), who model markets through a
double uniform-price auction, our paper presents a methodological contribution as we
develop a tractable way to analyze markets with heterogeneous traders. As discussed
above, double auctions present a complicated filtering problem in our environment,
as players want to know their counterparty. To avoid this problem, we assume that
players observe the distribution of supply and demand across players of different
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sizes, or, equivalently, they can condition their supply and demand on the size of the
counterparty. Players can change their behavior depending on whether they face a
competitive segment of the market with small investors, or a large counterparty.

Our model, set in a linear-quadratic framework, leads to interesting dynamics.
Trading speeds can be characterized conveniently via the eigenvector decomposition
of the matrix that describes the rates, at which each player sells his endowment and
at which other players absorb these flows. The eigenvectors correspond to misallo-
cations away from efficiency, and the eigenvectors describe the speed at which these
misallocations get traded away. We find that misallocations among large players get
traded away much more slowly than those among the more competitive segment of
the market. The equilibrium price does not depend on total supply uniformly: it is
more sensitive to the supply from small traders as they tend to sell their endowments
faster. However, as a function of the flow, large traders have a greater price impact.
When a large trader sells, the market infers that more is left behind, and so the price
drops more.

We can also study welfare using our model. One interesting implication of the
model is that liquidity providers, including high-frequency traders, who may make
money by front-running large investors, are generally good for welfare. This obser-
vation is somewhat at odds with the common view that high-frequency traders are
good for small retail investors, but bad for large institutional traders. Indeed, when
we introduce into the model new market participants who do not have trading needs
on their own, but who participate in the flow to make profits off of price momentum,
they do “front-run” large traders but they also change the entire equilibrium dynam-
ics. The general force at work here is that the more market participants there are, the
faster the speed of trading, and the lower price impact everyone has. Large players
trade faster, in part because they expect to be front-run. The market, anticipating
this behavior, reacts less to the trades of large traders: it expects less of the iceberg
to be hidden underwater. The entry of liquidity providers does not benefit everyone,
however. Clearly, other liquidity providers suffer from greater competition.

This paper is organized as follows. Section 2 presents the baseline linear-quadratic
model and discusses trading in environments where players can adjust behavior de-
pending on the size of their counterparty. Section 3 derives equilibrium equations
when each trader anticipates their price impact and takes into account aggregate price
dynamics. Section 3 also characterizes convergence to efficiency and price dynamics
using eigenvectors and eigenvalues. Section 4 introduces a competitive fringe into the
model and investigates phenomena such as price momentum and front running. Sec-
tion 5 analyzes welfare, especially the effects of mergers and high-frequency traders.
Section 6 microfounds the linear-quadratic model in a more realistic framework with
exponential utility. Section 7 concludes.
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2 The Model.

This section lays out a basic linear-quadratic model of trading in a small market with
private information about individual preferences. While here we assume quadratic
preferences, in Section 4 we present a more realistic model with exponential util-
ity. As we see later, the linear-quadratic model provides an especially tractable
special case of the exponential model. It leads to trading dynamics that are ex-
pressed cleanly through the market power of individual players, independently of the
individual shocks to buy or sell. The exponential model leads to a slightly more
complicated system of equilibrium equations, and it also allows not only for private
values, i.e. idiosyncratic reasons for trading, but also a common-value component of
private information, related to fundamentals and future cash flows.

There are N large traders. The traders get stochastic endowment shocks of an
asset. The position X i

t of trader i evolves according to the equation

dX i
t = −δX i

t dt+ σi dZ
i
t − qit dt, (1)

where Brownian endowment shocks Zi
t have the non-singular correlation matrix

R =


1 ρ12 . . . ρ1N

ρ21 1 . . . ρ2N
...

...
...

ρN1 ρN2 . . . 1

 (2)

and qit reflect the net trading rates of the asset. The trading rates qit must add up to
0, so that the markets clear. Parameter δ reflects the depreciation rate.

For simplicity, we assume that the players’ preferences over asset holdings are
quadratic of the form

− bi(X i
t)

2/2. (3)

That is, the player experiences a quadratic disutility when his position deviates away
from the bliss point, normalized to 0. We denote the vector of the players’ risk
parameters by B = [b1, b2, . . . bN ].

Players have private information about their endowment shocks dZi
t . We can inter-

pret this private information, which motivates trade, in various ways. Players could
be equity fund managers, who have to manage inflows or outflows of clients money.
Trades can be motivated by portfolio rebalancing. Alternatively, asset X could also
reflect a particular risk exposure that a market participant can have, such as expo-
sure to interest rate or currency risk. If so, then we can interpret this as a market for
options or swaps to hedge these risk exposures. Depreciation δ can be interpreted as
the rate at which the trader absorbs the risk that he would otherwise desire to trade.

We can interpret 1/bi as the “risk capacity” of trader i. Players with a lower
coefficient bi are “larger”: they can hold larger positions away from their bliss points
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at a lower cost. Conversely, players with a higher coefficient bi are “smaller”, and
therefore more impatient to trade the shocks to their endowments.

Players are risk-neutral with respect to monetary transfers and they discount their
payoffs at rate r. If pt is the price at which player i = 1, . . . N sells the flow of qit at
time t, then his total payoff is given by

E

[
r

∫ ∞
0

e−rt
(
bi

(X i
t)

2

2
+ ptq

i
t

)
dt

]
.

First Best. The efficient allocation of assets is proportional to risk capacities.
Given any endowments (X1

t , . . . X
N
t ), it would be efficient for the players to trade

immediately to the efficient allocation, under which player i would be holding the
quantity

X̂ i
t =

1

biβ̄
X̄t, where X̄t =

N∑
n=1

Xn
t and β̄ =

N∑
n=1

1/bn. (4)

If endowments were publicly observable, then the players would be able to trade
to the efficient allocation immediately. The resulting price would be equal to the
marginal disutility of holding an additional unit of asset, which would be the same
across all agents. This value is given by

p̂t =
d

dxi

∫ ∞
0

e−rt
−bi
2

(e−δtX̂ i
t)

2 dt = − biX̂
i
t

r + 2δ
= − 1

(r + 2δ)β̄
X̄t, (5)

where β̄ is the total risk capacity of the market. Under first best, an extra unit of
endowment received by any player has the same price impact of

− 1

(r + 2δ)β̄
. (6)

Mechanisms for trading. It is typical to model market trading through a double
uniform-price auction, as in Vayanos (1999) and Du and Zhu (2012). However, in our
setting, since players are not symmetric, such a mechanism leads to a complicated
solution which involves a filtering problem. For reasons that will become clear later,
players would want to know not only the price but also the counterparty. They would
be making inferences about the distribution of supply and demand, across players of
different sizes, from the dynamic properties of prices and through other means.

To avoid these filtering problems, we assume that players observe the flows of all
other players, or can condition their demand functions on these flows.1 To match
these requirements, we analyze the following auction format.

1There is evidence that market participants in practice spend a considerable amount of effort
identifying the sources of trades. For example, brokers call each other to find out who traded, and
some market-makers pay discount brokerages for the flow from retail investors. Moreover, recently
NYSE began allowing orders from retail investors to be marked as such through the Retail Liquidity
Program (RLP).
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Conditional Double-Auction. At each moment of time t, each player i
announces a supply-demand function

p = π̄i −
∑
j 6=i

πijqj

that gives the price at which the player is willing to trade, as a function of the selling
rates of all other players (with player i buying the net residual supply). The market
maker then determines the price p and the selling rates qj from the system of equations

N∑
i=1

qi = 0, ∀ i, p = π̄i −
∑
j 6=i

πijqj. (7)

Note that the system of equations (7) may have no solutions, or multiple solutions.
The market maker may have special treatment for those situations, e.g. the price-flow
vector (p, q) = (0, 0, . . . 0) may be chosen in those situations. Moreover, the players’
bids may or may not reveal information about their endowment shocks. We focus on
strategy profiles that never lead to degeneracies, and which reveal the players’ private
endowment shocks. That is, we look for fully separating equilibria of these games.

A profile of strategies is stationary if the slopes of the demand functions πij remain
constant, while the intercepts π̄i may depend on the players’ endowments. Further-
more, a stationary profile of strategies is linear if π̄i = π̂iX i for an appropriate
constant π̂i, where X i is player i’s endowment. Obviously, a linear stationary profile
such that π̂i 6= 0 for all i is revealing (i.e. fully separating).

While the conditional double auction is an intuitive way to model price formation
in the market, it is easier to analyze price formation and trade dynamics using a
direct revelation mechanism that is (as we show below) strategically equivalent to
that auction.

Direct Revelation Mechanism. A (stationary, linear) mechanism (P,Q) is a
direct revelation mechanism in which at each moment of time t, the market maker asks
every trader to announce his endowmentX i

t . The vector of announcements determines
the price pt = PXt and the vector of trading rates qt = QXt such that the market
clears (i.e. the columns of Q must add up to 0). We require the mechanism (P,Q)
to be within-period incentive compatible i.e., that truthtelling is a best response for
every player for every vector of reports of other traders.

Note that since the mechanism is linear in reports, for every vector of reports
of others, trader i can find a report that implies he does not trade. Hence, in this
setup ex-post incentive compatibility implies that (ex-post) individual rationality is
satisfied as well.

We now show that any stationary linear equilibrium of the conditional double-
auction can be implemented through a direct revelation mechanism and vice versa.
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Definition. Two profiles of strategies in two mechanisms are equivalent if (1) they
lead to the same paths of prices and flows, conditional on histories of endowments
shocks and (2) after each history, each player with his action can choose among price-
flow vectors from the same set under both mechanisms.

Theorem 1 Given any stationary linear revealing equilibrium of the conditional dou-
ble auction, there is an equivalent truth-telling equilibrium of an appropriate direct
revelation mechanism, and vice versa.

Proof. Consider any stationary linear revealing profile of strategies of the conditional
double auction, and let us show that truth-telling under an appropriate direct reve-
lation mechanism is equivalent, in the sense that they lead to (1) the same paths of
prices and flows, conditional on endowment shocks and (2) choice sets for all players.

Let us derive the system of equations that characterizes the map from conditional
demand functions to the price-flow vectors (p, q2, . . . qN). Since q1 = −

∑N
i=2 qi, the de-

mand functions of players 2 through N can be written in terms of the flows (q2, . . . qN)
as follows

p+
∑
j 6=1,i

(πij − πi1)qj − πi1qi = π̄i.

Thus, the map from conditional demand functions to prices and flows is represented
through the matrix equation

1 π12 . . . π1N

1 −π21 . . . π2N − π21

1
...

...
1 πN2 − πN1 . . . −πN1


︸ ︷︷ ︸

Π̂


p
q2

...
qN

 =


π̄1

π̄2

...
π̄N

 .

Given any non-degenerate strategy profile, this equation must have a unique solution,
so the matrix Π̂ must be invertible. Denote its inverse U and its components by uij.
Any subset of N − 1 equations has a one-dimensional set of solutions, and so the set
of price-flow vectors that any player i has control over is also one-dimensional. Player
i can reach any point in that set simply by varying π̄i, and so this set is

U


π̄1

π̄2

...
π̄N

+


u1i

u2i

...
uNi

x.
For comparison, in a direct revelation mechanism, the map from allocations to prices
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and flows is determined by the map
p1 p2 . . . pN

q21 q22 . . . q2N

...
...

...
qN1 qN2 . . . qNN


︸ ︷︷ ︸

QP

X̂ =


p
q2

...
qN

 ,

where X̂ represents the vector of reports, qij represent the entries of the matrix Q
and pi represent the entries of the vector P. Player i controls the ith component of
X̂. Thus, in order for the second requirement of equivalence to hold, the ith column
of U must be collinear to the vector 

pi

q2i

...
qNi

 .
Thus, to get from vector P and matrix Q to the equivalent demand functions, we
must invert matrix QP to obtain a matrix in which rows are collinear to the rows of
Π̂ and multiply each row i by a constant αi so that the first column is a column of
ones. Furthermore, to ensure that the vector (p, q2, . . . qN) is in the choice set of all
players, and is chosen, given their vector of endowments X, we need that

U


π̄1

π̄2

...
π̄N

 = QP


α1π̄1

α2π̄2

...
αN π̄N

 = QPX =


p
q2

...
qN

 .
That is, we need to take

π̄i = π̂iX i, where π̂i = 1/αi.

This leads to a stationary linear revealing strategy profile of the conditional double
auction, which is equivalent to the truth-telling strategy profile of the direct revelation
mechanism (P,Q).

We must reverse the procedure to get from the conditional double auction to the
direct revelation mechanism. That is, we need to start with the matrix Π̂, invert it,
and then multiply each column of the resulting matrix by π̂i to obtain the matrix
QP . This matrix can be split into the vector P and the matrix Q, knowing that the
columns of Q must add up to 0. (Note that rows 2 thought N of QP are rows 2
through N of Q).
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Finally, the argument so far has focused on the equivalence of strategy profiles. Of
course, since the set of choices available to each player after each history is the same
under both mechanisms, it follows that if we have an equilibrium of the conditional
double auction, then truthtelling must be an equilibrium of the corresponding direct
revelation mechanism, and vice versa.

From now on we will focus on direct revelation mechanisms, in which truth-telling
is an equilibrium, as the representation in terms of P and Q provides a direct map
from the players’ allocations to prices and flows.

3 Equilibrium Characterization.

This section derives the equations that characterize trading dynamics under station-
ary linear equilibria in our model.

Under a direct revelation mechanism (P,Q), on the equilibrium path the endow-
ments follow

dXt = −δXt dt+ Σ dZt −QXt dt,

where Σ is the diagonal matrix of the volatilities of endowment shocks and Z is a
vector of N Brownian motions with the correlation matrix R given by (2). The
resulting price is given by pt = PXt.

If player i deviates and reports endowment y+X i
t instead of X i

t then the resulting
price is pt + piy and the endowment vector follows

dXt = −δXt dt+ Σ dZt −QXt dt−Qiy dt, (8)

where Qi is the ith column of Q.
Denote the value function of player i by f i(X), where X is the vector of players’

endowments. Then function f i(X) must satisfy the HJB equation

rf i(X) = max
y

−bi

2
(X i)2 + (PX + piy)(QiX + qiiy)+ (9)

∇f i(X)(−δX −QX −Qiy) +
1

2

N∑
j=1

N∑
k=1

∂2f i

∂Xj∂Xk
σjσkρjk,

where Qi is the i-th row of Q, qii is the i-th diagonal entry of Q and ∇f i denotes
the gradient of f i. In a truth-telling mechanism, y = 0 must solve the maximization
problem in (9).

We conjecture (and verify) that the players’ value functions take the quadratic
form f i = XTAiX+ki, where Ai is a symmetric N -by-N matrix and ki is a constant.
Given that, the HJB equation (9) becomes

r(XTAiX+ki) = max
y

−bi

2
(X i)2+(PX+piy)(QiX+qiiy)−2XTAi(δX+QX+Qiy)+σT (Ai◦R)σ,

10



where σ = [σ1, σ
2, . . . σN ]T is the vector of volatilities of individual shocks and Ai ◦R

denotes the Hadamard (i.e. element-wise) product of two matrices.
Taking the first-order condition at y = 0, the HJB equation reduces to the follow-

ing system of equations
piQi + qiiP = 2(AiQi)T , (10)

ki =
1

r
σT (Ai ◦ R) σ and Ai((r + 2δ)I + 2Q) ∼ P TQi − bi

2
1ii, (11)

where we use the notation “∼” to indicate that two matrices have the same diagonals,
and the same sums of all symmetric off-diagonal entries, I denotes the N -by-N iden-
tity matrix and 1ii denotes the square N -by-N matrix that has 1 in the i-th diagonal
position and zeros everywhere else.2

The following proposition formally registers the fact that appropriate solutions of
equations (10) and (11) indeed lead to equilibria.

Proposition 1 Consider any solution (P,Q, ki, Ai, i = 1, . . . N) of the system (10)
and (11) such that pi < 0 and qii ≥ 0 for all i = 1, . . . N, and the matrix Q is such
that the process X defined by (8) is non-explosive. Then, for all i it is optimal to
follow the truth-telling strategy if all other players tell the truth in the direct revelation
mechanism given by (P,Q). That is, we have stationary linear equilibrium of the
model.

Proof. See Appendix.

The trading game has degenerate equilibria, in which some or all of the traders are
excluded from the market (i.e. the matrix Q consists of zeros in several columns). We
are interested primarily in the non-degenerate equilibria, and would like to understand
their properties such as the speed of trade, price momentum, and inefficiencies.

Unfortunately, the system of (10) and (11) cannot be solved in closed form in
general. However, any equilibrium for a given pair (r, δ) can be adjusted to obtain
an equilibrium for any other pair (r̂, δ̂). As the following proposition demonstrates,
in general the speed of trading is proportional to r+ 2δ for any set of market powers
of individual players.

Proposition 2 Consider a stationary linear equilibrium (P,Q) of the game with pa-
rameters (r, δ) Let α = (r̂ + 2δ̂)/(r + 2δ). Then for parameters (r̂, δ̂), there exists a
stationary linear equilibrium in which

Q̂ = αQ and P̂ = P/α. (12)

2That is, A ∼ B if aij + aji = bij + bji for all i and j, or, equivalently, if XTAX = XTBX for
all vectors X.
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Proof. Suppose that the value functions of players i = 1, . . . N are characterized by
(Ai, ki) in the equilibrium (P,Q) under the parameters (r, δ). Then (P,Q, ki, Ai, i =
1, . . . N) of the system (10) and (11) and satisfy the conditions of Proposition 1.
Define Âi = Ai/α and k̂i = (r/r̂)ki/α. Then it is straightforward to verify that
(P̂ , Q̂, k̂i, Âi, i = 1, . . . N) solve the system (10) and (11) for parameters (r̂, δ̂) and
satisfy the conditions of Proposition 1. Thus, parameters (r̂, δ̂), (P̂ , Q̂) give a linear
stationary equilibrium.

3.1 The Speed of Trade and Price Impact.

The equilibrium is inefficient: players take time to trade towards the efficient alloca-
tion even though on the equilibrium path they can infer everybody’s desire to trade
from their trading behavior. The following proposition illustrates the equilibrium for
the case of symmetric traders.

Proposition 3 If the players have identical risk parameters given by B = [b, b, . . . b],
then in the unique symmetric non-degenerate equilibrium the price is always first best,
given by the vector3

P = −
[
b/N

r + 2δ
,
b/N

r + 2δ
, . . .

b/N

r + 2δ

]
.

However, the allocation does not jump to first best immediately, but rather its conver-
gence is given by the matrix

Q =
(N − 2)(r + 2δ)

2N


N − 1 −1 . . . −1
−1 N − 1 . . . −1
...

...
...

−1 −1 . . . N − 1

 .
That is, the allocation converges towards efficiency at the exponential rate given by
(N − 2)(r + 2δ)/2. The players’ welfare is characterized by the matrices (r + 2ρ)Ai

with entries

aiii = − b
2

3N − 2

N2
, aiij = − b

2

N − 2

N2
and aijk =

b

2

N − 2

(N − 1)N2
(13)

for j, k 6= i. In case shocks Zi
t are uncorrelated across players, the constant term in

the value functions reduces to

ki =
1

r(r + 2δ)

b

2N2

(
−(3N − 2)(σi)2 +

N − 2

N − 1

∑
j 6=i

(σj)2

)
. (14)

3Of course, there are also degenerate equilibria in which specific rows of Q are set to 0, i.e. specific
players are excluded from trade.
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Proof. See Appendix.

The result that with symmetric players, trading takes place gradually even though
the price converges to first-best immediately, has already been proved in a slightly
different context by Vayanos (1999). Of course, the speed of trade is increasing in the
number N of players in the market.

Equations (13) and (14) reveal interesting implications about welfare. Even
though the utility functions (3) are always negative, some players may sometimes
have positive utility in equilibrium. Those players are the liquidity providers: they
have low endowment shocks σi relative to the rest of the market, and so they can
make money by catering to the needs of other players.

Next, we want to understand how the equilibrium changes when players have
unequal risk capacity. While in general it seems like the equilibrium cannot be char-
acterized in closed form, the following proposition illustrates how the equilibrium
changes near the symmetric case.

Proposition 4 Consider a perturbation of the symmetric case, in which

B = [b1, b2, . . . bN ] = [b, b, . . . b] + [ε1, ε2, . . . εN ], with
N∑
n=1

εn = 0.

Then there is an equilibrium in which

P = − 1

N(r + 2δ)

(
[b, b, . . . b ] +

3N − 4

N(N − 1)

[
ε1, ε2, . . . εN

])
+O(ε2) (15)

and

Q =
(N − 2)(r + 2δ)

2Nb


(N − 1)b1 −b2 . . . −bN
−b1 (N − 1)b2 . . . −bN

...
...

...
−b1 −b2 . . . (N − 1)bN

+O(ε2). (16)

Proof. See Appendix.

Proposition 4 provides a fairly precise approximation of the equilibrium dynamics
even when εn are not small, e.g. on the order of 10% of b. For example, if r + 2δ = 1
and B = [1.8, 1.9, 2, 2.1, 2.2], equation (16) predicts that the rates at which players
sell their endowments (i.e. the diagonal of Q) are given by

[1.08, 1.14, 1.2, 1.26, 1.32].

The true rates are given by

[1.0820, 1.1428, 1.232, 1.2631, 1.3224],

13



i.e. the approximation error is only about 0.24% in this case. The approximation
errors for P and the off-diagonal entries of Q are similar. In particular, the columns
of (16) indicate that when player i sells, the flow is absorbed approximately equally
by all other traders despite the differences in their risk capacities. Trade among small
traders is faster than it is among large traders.

Some of the most interesting aspects of our model are price impact and price
momentum. We can estimate those from the approximation given by Proposition 4.
First, from (15) we see that the price is more sensitive to the endowments of large
players than those of small players. Large players control have market power and
they control their trading rates better, while the small players compete with each
other and pay much less attention to the impact of their trades on the price.

The traditional definition of market impact measures the sensitivity of the price
to the trading flow, rather than endowment. According to this definition, the price
impact of player i is given by

pi

qii
≈ 2

(r + 2δ)2(N − 1)

(
b

N − 2
− εi N − 2

N(N − 1)

)
,

and it is clear that as long as N > 2, the market impact of players is increasing with
their size (i.e. as εi decreases).4 This phenomenon occurs because we assumed that
market participants can observe who they are trading against. They know that when
large players sell, their sales are a smaller tip of a bigger iceberg. Therefore, their
sales signal larger hidden supply, and the price reacts more.

3.2 Eigenvalue Decomposition of Equilibria.

If no further shocks occur, then any misallocation away from efficiency goes away due
to the trading rates from the matrix Q (as well as depreciation), according to the
equation

dXt = −δXt dt−QXt dt.

Moreover, if δ = 0, then any misallocation can go away only through trading. In order
to understand how quickly different missalocations get traded away to efficiency, it is
useful to compute the eigenvector decomposition of the matrix Q. Then eigenvalues
give the rates, at which the misallocations from the corresponding eigenvectors get
traded away.

The efficient allocation U1 = [1/b1, . . . 1/bN ]T is always one eigenvector of Q, with
the corresponding eigenvalue being 0. In equilibrium, players do not trade if they are
at the efficient allocation: if they traded then at least one player would be worse of
than if he had not traded at all. If the equilibrium is nondegenerate and the players
eventually trade to efficiency, then all other eigenvectors of Q must have components

4If N = 2, then our game does not have any stationary linear equilibria with trade.
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that add up to 0 and the corresponding eigenvalues must be positive. Let

Q = UΛU−1

be the eigenvalue decomposition of Q, where the columns of U are eigenvectors and
Λ is a diagonal matrix of eigenvalues, in increasing order. Furthermore, denote by
Π = PU the vector that prices the eigenvector misallocations. The following theorem
transforms the equilibrium conditions into the eigenvector space.

Theorem 2 In the eigenvector space, equations (11) and (10) can be written as

Âi((r + 2δ)I + 2Λ) ∼ ΠTU iΛ− bi

2
(U i)TU i and (17)

Π(U−1)iU iΛ + (U iΛ(U−1)i)Π = 2((U−1)i)TΛÂi, (18)

where the relationship between Ai and Âi is given by Âi = UTAi U. The following
expressions for the coefficients of Âi are equivalent to (17):

âijk = −b
iuijuik + πjuikλk + πkuijλj

2(r + 2δ + λk + λj)
, (19)

where λk is the k-th diagonal element of Λ.

Proof. See Appendix.

Equations (19) provide a convenient direct formula to compute the players’ value
functions from the pair (P,Q). Otherwise, to obtain the matrices Ai from (11), one
has to solve a more complicated system of equations, or obtain Ai via an iterative
procedure.

3.3 An Example.

We finish this section by providing a numerically solved example, in order to develop a
sense for what equilibria look like in general, away from the symmetric case. Consider
a game with five traders, whose risk coefficients are (b1, b2, b3, b4, b5) = (1, 1.5, 2, 2.5, 3).
Then any allocationX is priced by the vector P = [−.254,−.329,−.387,−.435,−.476].
The rates of trading flows are given by the matrix

Q =


0.630 −0.244 −0.319 −0.389 −0.455
−0.163 0.965 −0.326 −0.401 −0.473
−0.160 −0.244 1.289 −0.405 −0.481
−0.156 −0.241 −0.324 1.598 −0.483
−0.152 −0.236 −0.320 −0.403 1.892

 .
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When players have different risk tolerances, the equilibrium pricing vector P does
not assign the same weights to the endowments of different players (even though
the first-best pricing vector still assigns the same weight to all players). The reason
is that players with large risk capacity 1/bi exercise market power by selling their
endowments more slowly. They do it in order to get a more favorable price from
smaller players: it is less costly for large players than for small players to stay away
from their ideal allocations.

The diagonal of Q consists of positive numbers that capture the rates, at which all
players sell their endowments. The off-diagonal terms of Q in each column i indicate
how the sales of trader i become absorbed by other traders. Interestingly, flows
are not absorbed proportionately to risk capacity. Rather, smaller traders absorb
a disproportionately large portion of the flows, while large players wait and trade
slowly.

As large traders trade more slowly and exercise market power, they also have a
greater price impact, defind as the derivative of the price with respect to the flow
from trader i, i.e. pi/qii. In this example the vector of price impacts is

[−0.403 − 0.341 − 0.301 − 0.272 − 0.251 ] .

Larger players have a greater price impact in our model because the market can
identify the source of trades. Larger players trade more slowly, and hide their true
supply. When the market sees sales by a large player, it knows that these trades
are just a tip of the iceberg: they expect the selling to continue for a long time and
depress the price. In contrast, if the trade came from a small trader who is desperate
to sell quickly, the price would fall a lot less for the same volume of trade. These
observations explain why in practice market participants want to know the source of
trade, and are more willing to trade against the flows of small traders than those of
large traders.

The eigenvector decomposition of Q information about the rates at which different
misallocations get traded away to efficiency. The eigenvector misallocations, together
with the corresponding eigenvalues, are given by

U =


1 1 .218 .118 .081
.666 −.530 .782 .214 .123
.5 −.221 −.619 .668 .213
.4 −.143 −.234 −.748 .583
.333 −.106 −.147 −.252 −1

 , diag Λ = [ 0 0.93 1.38 1.82 2.24].

Note the sign pattern in the eigenvectors: they break the market into two sides
according to risk capacity, with one side of the market selling and the other, buying.
Misallocations among the smallest players get traded away much faster than those
among the largest players in the market.

We normalized the eigenvectors of Q so that one unit in total is misallocated
in each one, and so that the larger players are sellers. The prices assigned to each
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eigenvector are given by

Π = [−1 .119 .098 .086 .078].

When large players sell, they have market power to raise prices above first best. The
price impact is the greatest in the eigenvector, in which the largest player alone sells
to the rest of the market.

4 Trading between Large Players and a Fringe.

Existing literature, such as Vayanos (1999) and Du and Zhu (2012), has shown that in
a market with finitely many large traders there is inefficiency as players trade slowly
to the efficient allocation. However, in those models all traders are identical; prices
do not depend on the allocation of assets and follow martingales.

Many other phenomena can happen in a market with heterogeneous traders, and
our model is suitable for explaining these phenomena. Prices may have momentum
due to trading between large and small traders. For example, a large seller will try
to control the price by choosing an appropriate rate of selling, so that the price will
have a downward drift. Price drift leads to other interesting phenomena, such as
front-running. Players, who do not have any needs to buy or sell on their own, will
attempt to identify sales by large traders in order to sell ahead of the price drop and
buy back later. In this section, we illustrate these phenomena using a simplest version
of our model: which captures trade between identical large players and a competitive
fringe.

The benchmark case of interactions between one large trader and a competitive
fringe, which we can solve in closed form, also provides useful bounds that shed a lot of
light on dynamics in large markets with a low but positive Herfindahl index. Arguably,
the case of a large number of market participants but not of perfect competition, is
most relevant empirically. We would like to understand well the properties of these
markets, particularly the speed of trade and price momentum. We finish by providing
several examples of those markets and explaining how the dynamics in those markets
can be understood through the prism of a special case with one large player and a
fringe.

4.1 Equilibrium Equations with a Competitive Fringe.

So far, we analyzed a model with a finite number of traders. In this subsection we
include a competitive fringe and derive the relevant equilibrium conditoins. We define
a competitive fringe as a continuum of traders with a given finite risk capacity bF .
A group of m traders has risk capacity 1/bF if each trader has quadratic disutility
function with the same coefficient mbF . Taking m → ∞, we obtain a competitive
fringe. We can include a competitive fringe into our model and, if so, we designate
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trader N as the fringe. The common shock among the fringe members is denoted by
σN dZN

t , and the disutility flow of the fringe is

−b
F

2
(XN)2.

Individual fringe members may also experience idiosyncratic shocks, but since fringe
members trade infinitely fast among each other, those shocks get diversified instan-
taneously and they do not affect the utility of the fringe.

The HJB equation for the utility fN(X) of the fringe is given by the same equa-
tion as the equation (11) for large traders. However, the first-order condition differs
from (10), since individual fringe members can no longer affect the price with their
individual actions.

Proposition 5 If player N represents a competitive fringe, then prices and flows
must satisfy the first-order condition

P ((r + 2δ)I +Q) + bF1N = 0, (20)

where 1N denotes a row vector with 1 in the N-th position and zeros everywhere else.

Proof. The value function of an individual fringe member, whose allocation x may
differ from the allocation of the fringe XN , is given by XTANX+ (x−XN)PX+kN .
Indeed, from symmetry, we know that the optimal strategy of the individual is to sell
the excess allocation and align himself with the rest of the fringe. The trade generates
income (x−XN)PX.

The value function of the individual must satisfy the HJB equation

max
x

−bF

2
x2 − r(XTANX + (x−XN)PX + kN) + (PX)(QNX)

−2XTAN(δX +QX)− δ(x−XN)(PX)− (x−XN)P (δX +QX) +
N∑
j=1

aNjj(σ
j)2 = 0,

where x denotes the individual’s choice of asset holdings. The first-order condition is

−bFx− P (rX + 2δX +QX) = 0.

Since the choice x = XN must be optimal, it follows that (20) must hold.
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4.2 Price Momentum: One Large Player and a Fringe.

We can immediately apply the condition of Proposition 5 to a market with a single
large player and a fringe, and obtain a closed-form solution. The following proposition
characterizes trading in a model between one large player with risk capacity 1/bL and
a competitive fringe with risk capacity 1/bF .

Proposition 6 Consider a market with N = 2, in which player 1 is an individual
large player and player 2 is a competitive fringe. Then in the unique nondegenerate
linear stationary equilibrium, equilibrium prices and the players’ trading rates are
characterized by vectors

P = − 1

r + 2δ

[
bLbF

3bF + bL
,
bLbF + 2b2

F

3bF + bL

]
, Q =

r + 2δ

2

[
bL/bF −1
−bL/bF 1

]
. (21)

The welfare of the large trader and the fringe is characterized by matrices

AL =
bF

2(r + 2δ)(3bF + bL)

[
−3bL −bL
−bL bF

]
and

AF =
bF

2 (r + 2δ) (3bF + bL) (2bF + bL)

[
− (b2

L + 5bLbF + 5b2
F ) −bLbF

−bLbF b2
L

]

Proof. See Appendix.

Note that the second coefficient of P is more negative than the first coefficient.
This leads to price momentum. Market price depends not only on the total endow-
ment, but also its distribution between the large player and the fringe. A greater
allocation to the fringe leads to a lower price.

If assets do not depreciate, i.e. δ = 0, and in the absence of shocks, the initial
allocation will converge to efficiency according to the equation

d

[
XL
t

XF
t

]
= −r + 2δ

2

bL + bF
bF

[
XL
t − X̂L

t

XF
t − X̂F

t

]
,

where (X̂L
t , X̂

F
t ) is the first-best efficient allocaiton given by (4). The rate at which

any misallocation gets traded away is given by the second eigenvalue of Q,

r + 2δ

2

bL + bF
bF

. (22)

This is also the rate at which the price converges to the first-best price of

p̂t = −(XL
t +XF

t )
bLbF
bL + bF

.
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We have

dpt = −r + 2δ

2

bL + bF
bF

(pt − p̂t).

The rate of trading and price convergence (22) decreases as the fringe becomes smaller
relative to the large player. The rate of convergence varies from r/2 + δ when the
fringe is small to infinity when the fringe is large (so that the “large” player is like
any other member of the fringe). Of course, any misallocation within the fringe gets
traded away instantaneously, since the fringe is competitive.

Now, price momentum leads to front-running. In the case of a large player trading
against a fringe, imagine that the large player has one unit to sell while the fringe as a
whole wants to buy on unit, so that X0 = [1,−1]T . However, imagine that the demand
of one unit is not distributed uniformly and some of the fringe members in fact want
neither to buy nor sell. Then, will these fringe members stay at their bliss endowment
points, while the large trader sells to other fringe members? Certainly not: all fringe
members will trade at time 0 to redistribute their endowments uniformly, and then
they will buy from the large trader at proportionate rates. Effectively, the fringe
members who start at their bliss point front-run the large trader who wants to sell.
These players will sell assets short to other fringe members ahead of the large trader,
while the price is high, and then buy back later from the large trader at a lower price.

We illustrate the process of front-running in more detail in the next subsection,
using a model with identical large players trading against a fringe.

4.3 Front-Running: Many Large Players and a Fringe.

Consider a market with N − 1 large players with identical risk capacities 1/bL and
a competitive fringe with risk capacity 1/bF . The following proposition characterizes
trading dynamics in this market.

Proposition 7 In a market with N − 1 identical large traders and a fringe, trading
towards the efficient allocation is characterized by the following eigenvector decompo-
sition

U =


1/bL 1 . . . 1 1
1/bL −1 . . . 0 1

...
...

. . .
...

...
1/bL 0 . . . −1 1
1/bF 0 . . . 0 1−N

 , diag Λ = [0 λ . . . λ λ̄]. (23)

The columns of U, eigenvector misallocations, are priced at

Π =

[
− 1

r + 2δ
0 . . . 0 πB

]
, where πB =

(N − 1)bF
r + 2δ + λ̄

.
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Figure 1: Convergence to efficiency: identical large traders and a fringe.

The rates of convergence to efficiency λ and λ̄ satisfy equations

(
λbF
r + 2δ

− λπB

N − 1
− λ̄

N − 1

bL − πBλ
r + 2δ + λ+ λ̄

)
bL

bL + (N − 1)bF
− λbL
r + 2δ + 2λ

N − 2

N − 1
= 0,

(
λ̄bF
r + 2δ

− λ̄πB

N − 1
− λ̄

N − 1

bL − 2πBλ̄

r + 2δ + 2λ̄

)
bL

bL + (N − 1)bF
− λbL
r + 2δ + λ+ λ̄

N − 2

N − 1
−

(
λ
N − 2

N − 1
+

λ̄

N − 1

bL
bL + (N − 1)bF

− λ2

r + 2δ + λ+ λ̄

N − 2

N − 1

)
πB = 0.

Proof. See Appendix.

From symmetry, any misallocation within the sector of large traders has no effect
on the price. In contrast, any misallocation between large traders and the fringe leads
to a price that is different from first best: when large traders are net sellers, the price
will be above first best, as illustrated by the positive value of πB.

Figure 1 illustrates the rates of convergence to efficiency in a market with 2 and
3 identical large traders and a fringe, where we set r = 1, δ = 0, and bL = 1. Trading
between the large traders and the fringe always takes place at a faster rate of λ̄ than
the speed λ of trading within the group of large traders. The speed of trading is
increasing in the number of market participants, but individual eigenvalues may be
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nonmonotonic in the risk parameters of individual participants. In the right panel of
Figure 3, as the fringe segment becomes small (i.e. as bF → ∞), the rate of trading
among the large traders converges to the rate (r + 2δ)/2 of trading in a market with
3 symmetric players.

Let us illustrate how front-running can happen in this model. Consider a market
with two identical large traders and a fringe (i.e. N = 3, where the last player is the
fringe). Suppose that player 1 wants to sell one unit, while the fringe wants to buy
one unit. Player 2 wants neither to buy nor sell, so that X0 = [1 0 − 1]T . Then,
because player 1 has market power against the fringe, he will sell slowly and charge
a price which is above first best (5). This can be seen by the positive last component
of Π, which prices the excess holdings of the large players relative to the fringe. Over
time, the price will drift down and converge to first best.

Knowing this, of course, player 2 will not stay at his bliss point but rather sell
short initially to the fringe, and buy back later. In other words, player 2 will front-
run player 1. The mere presence of player 2 in the market completely changes the
dynamics between player 1 and the fringe. Player 1 has a lot less control of the price,
and so he sells much faster to the fringe. This can be illustrated by the comparison
of λ̄ with the dashed curve in the left panel of Figure 1.

In this example, the initial allocation can be decomposed into eigenvectors in the
following way  1

0
−1

 =
1

2
U2 +

1

2
U3 =

 1/2
−1/2

0

+

 1/2
1/2
−1

 .
That is, the allocation X0 = [1 0 − 1]T consists of an imbalance between the large
players, and between large players and the fringe. The former gets traded to efficiency
much more slowly than the latter, with the corresponding convergence rates λ < λ̄.
Thus, at the beginning player 2 will be primarily selling to the fringe, and buying
only a little from player 1. The misallocation between the two large players persists
a lot longer than the misallocation between the large traders and the fringe.

4.4 Large but Not Perfectly Competitive Markets.

It turns out that the closed-form characterization of the game between a single large
player and a fringe (see subsection 4.2) can shed a great deal of light on behavior in
large but not perfectly competitve markets.

Arguably, asset markets in practice are large but not perfectly competitive. Trades
have price impact, which can be measured empirically. Large market participants
spread trades over time to optimize the execution price. Market prices have momen-
tum.

To give a flavor of what our model implies about these markets, we start by looking
at a couple of numerical examples. Consider a market with infinitely many market
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Figure 2: Speed of trading and price impact, as functions of size.

participants that have risk coefficients

b, b/x, b/x2, . . .

Then the total risk capacity of this market is given by 1/(b(1−x)). We can normalize
the total risk capacity to 1 by setting b = 1/(1− x).

Furthermore, the Herfindahl Index of this market is given by

H =
∞∑
n=0

x2n

b2
=

1− x
1 + x

.

For this market, Figure 2 shows the speed of trading and price impact in this market
for H = 0.1 and 0.05, and r + 2δ = 1. The left panel plots the logarithm of the
corresponding diagonal element of Q against the logarithm of size, measured as the
fraction of the whole market. Smaller players trade a lot faster than large traders.
However, the speed of trading is not hugely sensitive to the Herfindahl Index: as the
index moves half-way to zero, the larger players in the market trade only about 15%
faster. It is natural to ask the question: will these players trade infinitely fast as
H → 0, or is there a specific upper bound on the speed of trading?

The right panel plots the price impact pi/qii against the logarithm of size. Smaller
traders have a lot less price impact, because their trades are less “toxic.” Moreover,
as H falls, players of the same size trade faster and their price impact falls. If a player
sells 1% faster, it means that for the same flow, the hidden supply is less by about
1%. In this example, as H falls from 0.1 to 0.05, the price impact of the larger players
is about 17% greater.
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Figure 3: Speed of trading and price impact, together with theoretical bounds.

Is there any pattern? It is natural to guess that the market between a single large
player and a competitive fringe can give us excellent guidance as to what goes on. In
particular, it can provide an upper bound on the speed of trading as well as a lower
bound on price impact for a player of any size.

Proposition 8 In a market with one large player and a competitive fringe, if the
size of the large player is x as a fraction of the entire market, then the trading speed
of the large player is given by

Q11 =
r + 2δ

2

1− x
x

and the price impact is given by

−P 1/Q11 =
2

(r + 2δ)2

x

(1− x)(1 + 2x)
.

Proof. If the large player is fraction x of the market, and the total risk capacity of the
market is 1, then the corresponding risk coefficients are bL = 1/x and bF = 1/(1−x).
Using these in conjunction with Proposition 6, we obtain the desired expressions.

Figure 3 superimposes the theoretical bounds implied by Proposition 8 onto the
example in Figure 2. We observe that the bounds provide good estimates of the speed
trading and price impact in markets with many participants, which are nevertheless
not perfectly competitive. We estimate that in practice, markets for listed equities
and options have value of H a lot closer to 0 than those from this example, and so
the approximate estimate would be even more precise.
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5 Welfare.

We can use our model to analyze welfare in the market. In particular, we can study
how welfare depends on the amount of competition in the market, the number of play-
ers, asymmetries in the market, and potentially market design. While we consider
a particular trading mechanism, there are many others - we can study the welfare
of different mechanisms, given the players’ preferences and information, address the
question of optimal mechanism design and think about natural market implementa-
tions of the optimal mechanism.

This section focuses on the effects of mergers and entry on welfare. Mergers have
costs in our model, as they lead to slower trade due to decreased competition. This
leads to inefficiencies, as players have to wait longer to trade shocks. At the same
time, when players merge, then there is the obvious benefit of diversification, assuming
that the merged players can perfectly share risks within the unit after the merger.
Had the players not merged, the risks that they would otherwise diversify within the
unit would need to be traded in the open market, with delay.

To do proper welfare experiments, we have to treat the risk coefficients as well as
the volatilities of shocks properly. When players j and k merge, the risk capacity of
the merged unit has to be the sum of the risk capacities of individual players. That
is, the risk coefficient of the unit b satisfies 1/b = 1/bj + 1/bk. Then, taking as given
the total endowment of the two players, the sum of individual utilities under first-best
sharing of endowments must equal to the utility of the merged unit that holds the
total endowment. Likewise, if individually players face shocks with volatilities σj and
σk and correlation ρjk, then the volatility of shock to the unit is√

(σj)2 + (σk)2 + 2ρjkσjσk.

The correlations between the shock to the unit and shocks to the endowments of the
remaining players must also be computed appropriatedly.

We begin with a surprising result that in symmetric markets, symmetric mergers
have no effect on total welfare. This result holds even when shocks to individual
players’ endowments are correlated.

Proposition 9 Consider a market with N = 2n symmetric players, in which each
player has risk coefficient b = 2β and faces shocks with volatility σ. Shocks to endow-
ments of any two different players j and k have correlation ρ. Then the equilibrium
utility of any player at time 0 (before any shocks are realized) is given by

ki = − 1

r(r + 2δ)

b

2

2 + ρ(N − 2)

N
(σi)2. (24)

If the players merge in pairs, so that n units with risk coefficients β appear, then
assuming perfect diversification of risks within the unit, the equilibrium utility is now

− 2

r(r + 2δ)

β

2

2 + ρ(2n− 2)

n
(σi)2 (25)
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per unit. The total welfare in the market does not change with merger.

Proof. First, let us confirm (24). According to (11), rki = σT (Ai ◦ R)σ. From
Proposition 3, matrix Ai ◦ R takes the form

1

r + 2ρ


. . . −ρ b

2
N−2
N2 . . . ρ b

2
N−2

(N−1)N2

−ρ b
2
N−2
N2 − b

2
3N−2
N2 −ρ b

2
N−2
N2 −ρ b

2
N−2
N2

... −ρ b
2
N−2
N2

. . . ρ b
2

N−2
(N−1)N2

ρ b
2

N−2
(N−1)N2 −ρ b2

N−2
N2 ρ b

2
N−2

(N−1)N2
b
2

N−2
(N−1)N2

 .
Multiplying by σ on both sides, we obtain (24).

Now, when pairs of players merge, then the variance of the shocks that each unit
faces is 2(1+ρ)(σi)2. The correlation between the shocks of different units is 2ρ/(1+ρ).
Thus, the welfare of each unit is now

− 1

r(r + 2δ)

β

2

2 + 2ρ
1+ρ

(n− 2)

n
2(1 + ρ)(σi)2 = − 2

r(r + 2δ)

β

2

2 + ρ(2n− 2)

n
(σi)2,

which confirms (25).

Proposition 9 implies that there are no obvious reasons why mergers in our model
may be beneficial or detrimental for all players.5 However, mergers by some of the
players can have mixed effects on the welfare of everyone else as well as within the
merged group. These effects depend on market power as well as whether different
players experiencing small shocks, and thus providing liquidity, or demanding liq-
uidity. Some of the welfare effects may appear counterintuitive at first. We present
several interesting examples in the next subsection. In all of the examples, we assume
that shocks are independent and normalize r + 2δ = 1.6

5.1 Examples.

We start with a basic question: does market power really help players? While players
with market power can control the rate of trading, in order to get a more favorable
price from the rest of the market, they are also punished by greater sensitivity of
prices to flows as the rest of the market anticipates this behavior. Our first example
is a market with a large player and a fringe, which have identical risk coefficients
bL = bF = 1 and face identical shocks [σL, σF ] = [1, 1]. In this case the equilibrium
utilities of the large player and the fringe are given by

[kL, kF ] = [−0.25, −0.333].
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Figure 4: Utility of the large player as a function of bF .

Clearly, market power helps in this example.
Next, we explore how the welfare of the large player depends on the size of the

fringe. As we vary bF in the example above we find that

kL =
(bF − 3)bF

2(3bF + 1)
.

As seen in Figure 4, this funciton is non-monotonic. The large player gets utility 0
when the fringe is large (i.e. bF = 0) as he can offload any idiosyncratic exposure
costlessly. This becomes harder as the fringe gets smaller and utility becomes neg-
ative. At some point, when the fringe becomes sufficiently small, and desperate to
trade as σF = 1, the utility of the large player starts rising and eventually becomes
positive. The large player can make profit by trading with the fringe.

Mergers. Let us explore the effects of mergers on the welfare of different players.
In the following examples, we start with a market containing a large player with
bL = 1 (risk capacity 1) and a fringe with bF = 1/2 (risk capacity 2). Then we merge
half of the fringe members to form another large player (hedge fund, H) with risk
capacity 1.

If the variances of the shocks before the split are given by [(σL)2, (σF )2] = [1, 1],
then the equilibrium payoffs are

[kL, kF ] = [−0.25, −0.1875]. (26)

5Proposition 9 assumes that shocks can be fully diversified within the merged unit. If they are
not, then mergers would be clearly detrimental in the symmetric model.

6Also, when dealing with the fringe, we evaluate its welfare by the formula from the proof of
Proposition 6, which assumes perfect risk sharing among fringe members. This is inconsistent with
the limit taken in Proposition 9, in which the utility of N players does not converge to first best.
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After the formation of the hedge fund, the variances of shocks are [(σL)2, (σH)2, (σF )2] =
[1, 1/2, 1/2], and the equilibrium payoffs are

[kL, kH , kF ] = [−0.2786, −0.1030, −0.1459].

Here, the formation of the hedge fund is bad for everyone, as the utilities of both the
fund and the remaining fringe are less than half of the utility of the large fringe prior
to merger.

Surprisingly, the fringe as a whole does not need to be worse off as a result of the
formation of a hedge fund. Moreover, the hedge fund does not need to be better off
than the rest of the fringe, even though both face identical shocks but the hedge fund
has market power. Suppose that, in the example above, [(σL)2, (σF )2] = [1, 0] before
the split and [(σL)2, (σH)2, (σF )2] = [1, 0, 0] after. Then the payoffs are

[kL, kF ] = [−0.3, 0.05] (27)

before the split and

[kL, kH , kF ] = [−0.3275, 0.0237, 0.0297].

Fringe members compete to provide liquidity to the large player and they get positive
payoff only because their risk capacity is bounded. When the hedge fund splits off, it
may look surprising that the hedge fund, with its market power, gets a smaller payoff
than the fringe. The reason is that both are competing to provide liquidity to the
large player, and the heldge fund - with its market power - absorbs the flow from the
large player more slowly. The remaining fringe members, of course, free ride.

High-frequency Trading. In our last set of examples, rather than keeping the
set of market participants constant, we consider what happens when we allow new
players to enter. Specifically, in the examples above with [bL, bF ] = [1, 1/2], we
consider the entry of a second large player with risk parameter b2 = 1. The entrant
has no individual need to trade as σ2 = 0. He only provides liquidity, so we interpret
the entrant as a high-frequency trader.

First, if [(σL)2, (σF )2] = [1, 1] then the entrant changes the vector of utilities from
(26) to

[kL, k2, kF ] = [−0.2298, 0.0497, −0.1765].

The utilities of both the large player and the fringe rise with the entry of the high-
frequency trader. While the latter effect confirms our intuition, the former may
seem surprising. Conventional wisdom holds that high-frequency traders hurt large
institutional investors. What happens here is that while the entrant can front-run the
large player, he also changes the entire equilibrium dynamics so that trade is faster.
This, of course, benefits the large player.

On the other hand, if [(σL)2, (σF )2] = [0, 1], i.e. the large player is a liquidity
provider, then the entrant obviously hurts the large player. In this case, welfare before
entry is given by

[kL, kF ] = [0.05, −0.2375],
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and after entry,
[kL, k2, kF ] = [0.0335, 0.0335, −0.2132].

The fringe unambiguously benefits from a competing liquidity provider.

6 A Microfoundation of Quadratic Preferences.

In this section we microfound our model with quadratic preferences by laying out a
more natural model with exponential utilities, in which players trade to hedge private
shocks that expose them to a common risk factor. We show that the equilibrium
equations of the linear-quadratic model match those of the exponential model in the
special case when the shocks that expose players to the common risk factor become
small. In this sense, the exponential model is more general, but the linear-quadratic
model provides a clean special case as the equilibrium dynamics, characterized by the
pair (P,Q), depend only on the players’ risk capacities and not the sizes of shocks
that individual players receive, or the correlation among shocks.

We also extend the model to also allow the shocks to carry information about a
common component of value. We confirm the result of Du and Zhu (2013) that is
symmetric markets, as the players get more information about common fundamentals,
the speed of trade slows down. In general asymmetric markets, equilibrium in this
more general setting is characterized by the same set of equations with only one extra
term.

6.1 The Exponential Model.

Consider a model in which all players i = 1, . . . N have exponential utility

− exp(−αict),

where αi > 0 is the coefficient of absolute risk aversion. Players consume continuously
and have a common discount rate r, which is also the risk-free rate in the market.

Players have private information about their risk exposure X i
t to a common Brow-

nian risk factor dWt. Risk exposure depreciates at rate δ and changes due to shocks
σi dZi

t for player i, where Z = [Z1
t , . . . Z

N
t ] is a vector of Brownian motions with the

correlation matrix R, but independent of Wt. Risk exposures can also be traded in
the market. We consider a linear equilibrium, in which players announce their risk
exposures, and given a vector of announcements X̃t, the trading flows are given by
QX̃t, and the market price is given by PX̃t. Then the risk exposures follow

dXt = −ρXt dt+ σdZt −QX̃t dt

and the wealth of agent i follows

dwit = (rwit − cit) dt+ (PX̃t)(Q
iX̃t) dt+X i

t dWt,
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where cit is the consumption of player i.
Conjecture that the equilibrium value function of player i takes the form

− 1

r
exp(−rαi (wit +XT

t A
iXt + ki)︸ ︷︷ ︸

vit

). (28)

Then
dvit = (rwit − cit) dt+ (PX̃t)(Q

iX̃t) dt+X i
t dWt

+2XT
t A

i(−ρXt dt+ σdZt −QX̃t dt) + σT (Ai ◦ R) σ dt.

In order to write down the HJB equation for player i, we must consider X̃ i
t of the

form Xt + 1iy, where 1i is the i-th coordinate vector and y is the amount by which
player i lies.

Then the HJB equation of player i is

− exp(−rαivi) = max
c, X̂=X+1iy

− exp(−αic)

+αi exp(−rαivi)
(
rwi − ci + (PX̃)(QiX̃)− 2XTAi(ρX +QX̃) + σT (Ai ◦ R) σ

)
−r(α

i)2

2
exp(−rαivi)

(
4XTAiΣR ΣAiX + (X i)2

)
,

where Σ is the diagonal matrix with the elements of σ on the diagonal. The term
4XTAiΣ R ΣAiX is the incremental variance of vit from the volatility of the entire
vector Xt.

7

The first-order condition with respect to c is

exp(−αic) = exp(−rαivi) ⇔ −c = −r(wi +XTAiX + ki).

Given this, the HJB equation simplifies to

0 = max
X̂=X+1iy

−r(XTAiX + ki) + (PX̃)(QiX̃)− 2XTAi(ρX +QX̃) + σT (Ai ◦ R) σ

− rαi

2

(
4XTAiΣR ΣAiX + (X i)2

)
. (29)

Separating the first-order condition, we obtain matrix equations that characterize
stationary linear equilibria in this model. We summarize them in the following propo-
sition.

7This expression assumes that Ai is symmetric, otherwise the second instance of Ai would need
to be replaced with (Ai)T .
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Proposition 10 Stationary linear equilibria of the exponential model are character-
ized by the equations

P iQi +QiiP = 2(AiQi)T , rki = σT (Ai ◦ R) σ, (30)

and Ai((r + 2ρ)I + 2Q) ∼ P TQi − rαi

2
1ii − 2rαiAiΣR ΣAi. (31)

Proof. Equation (29) must hold for all vectors X ∈ RN . To ensure that, the coeffi-
cients on the constant term as well as the terms of the form XjXk must match, and
the first-order condition with respect to y must hold at y = 0. From those conditions,
we obtain (30) and (31).

The system of (30) and (31) is different from equations (10) and (11) in the
linear-quadratic model only in the term 2rαiAiΣR ΣAi. Parameter bi in the linear-
quadratic model corresponds to rαi in the exponential model, i.e. it reflects the
players’ capacities to wait and absorb risk waiting for a better price to hedge at. In
the limit as σ → 0, the equations in the exponential model become identical to those
in the linear-quadratic model. This, the linear-quadratic model is a special case of
the exponential model. We summarize this finding in the following proposition.

Proposition 11 Any solution of the linear-quadratic model solves equations (30) and
(31) in the limit as σ → 0.

Proof. The conclusion follows immediately, since the term that distinguishes the two
sets of equations converges to 0 as σ → 0.

Even though the exponential case is more general, the linear-quadratic model
provides a much cleaner picture of equilibrium dynamics, as the equilibrium equations
depend only on the players’ risk capacities and not the distribution of shocks. This
makes our benchmark case particularly attractive. Nevertheless, in order to provide
a more complete picture, we present a couple of computed examples for the general
case at the end of this section.

6.2 Extension to Private Information about Fundamentals.

The explicit exponential model makes it clear how we can include private informa-
tion about fundamentals, i.e. future cash flows to the traded asset. For simplicity,
we assume that players learn about fundamentals from the same shocks Zi

t that af-
fect their individual preferences.8 We also assume that the signals of all players are

8If players had learned about fundamentals and their individual preferences from different sig-
nals, other market participants would face a filtering problem when figuring out whether trades
are motivated by private or common values. This would lead to a more difficult problem, which is
important for future research, but beyond the scope of current paper.
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equally informative about fundamentals, so that the total supply of the asset 1̄TXt

is a sufficient statistic for all available information about fundamentals, where 1̄ is a
column vector with all coefficients equal to 1.

To be concrete, suppose that the rate of change of the value of the asset is given
by

dWt − κ 1̄TXt dt,

where Wt is a Brownian motion the information of all market participants and 1̄TXt

is the total supply of the asset. In particular, if κ > 0 then whenever any player
gets a shock that increases that player’s exposure to Wt, the shock also carries bad
information about the payoff from holding the asset. The wealth of player i, given
his exposure X i

t and consumption cit, has to follow

dwit = (rwit − cit) dt− (PX̃t)(Q
iX̃t) dt+X i

t (dWt − κ 1TXt dt).

Maintaining all other assumptions of subsection 6.1, we conjecture value functions of
the form (28). Then

d (wt +XT
t A

iXt + ki))︸ ︷︷ ︸
w̃i

t

= (rwit − cit) dt− (PX̃t)(Q
iX̃t) dt+X i

t (dWt − κ 1TXt dt)

+2XT
t A

i(−ρXt dt+ σdZt −QX̃t dt) + σT (Ai ◦ R) σ dt

and, through an analogous sequence of steps, the HJB equation (29) is reduced to

Ai((r + 2ρ)I + 2Q) + 2rαiAiΣR ΣAi ∼ −P TQi − 1

2
rαi1ii − κ 1i, (32)

where 1i is a matrix with ones in the i-th row, and zeros everywhere else. Equations
(30) remain the same.

A common-value component can also be included in our linear-quadratic model if
we generalize the payoff flow that each player receives (3) to

− bi

2
(X i

t)
2/2− κ1̄TXt. (33)

In this case the equilibrium equations are given by (30) as well as (32) with the last
term of the left-hand side removed (or with Σ set to 0). For the linear-quadratic
model with a common-value component, we are able to characterize the equilibrium
in a symmetric market in closed form, extending Proposition 3.

Proposition 12 In the linear-quadratic model, if all players have identical risk pa-
rameters given by B = [b, b, . . . b], then a symmetric non-degenerate equilibrium exists
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whenever the common-value component κ ∈ (−b/N, (N − 2)b/N). In this case, the
price of the asset is always first-best and given by

P = −
[
b/N + κ

r + 2δ
,
b/N + κ

r + 2δ
, . . .

b/N + κ

r + 2δ

]
and trading dynamics are characterized by the matrix

Q =
q

N


N − 1 −1 . . . −1
−1 N − 1 . . . −1
...

...
...

−1 −1 . . . N − 1

 , with q =
r + 2δ

2

N−2
N
b− κ

b
N

+ κ
.

Proof. See Appendix.

This proposition confirms the result of Du and Zhu (2013) that as the common-
value component of individual signals increases, trade in equilibrium slows down.

6.3 Examples.

We revive the example from subsection 3.3 to explore how the extra term in (31) af-
fects prices and the rates of trading. Recall that the risk coefficients are [b1, b2, b3, b4, b5] =
[1, 1.5, 2, 2.5, 3] in that example. We set r = 0.05 and δ = 0.475 so that r + 2δ = 1,
and the coefficients of absolute risk aversion to [α1, α2, α3, α4, α5] = [20, 30, 40, 50, 60]
to match that example. Assume that R = I, i.e. shocks to individual players are
uncorrelated.

Then, if σ = [0.1, 0.1, 0.1, 0.1, 0.1]T , we have

P = [−.257, −.334, −.394, −.443, −.485].

The price sensitivities to the allocations of all players increase slightly. Trading dy-
namics are now characterized by

Q =


0.619 −0.243 −0.318 −0.388 −0.454
−0.161 0.953 −0.324 −0.400 −0.472
−0.157 −0.242 1.278 −0.403 −0.479
−0.153 −0.237 −0.320 1.589 −0.481
−0.147 −0.231 −0.315 −0.398 1.886

 .
The speed of trading slows down somewhat, but qualitatively and quantitatively the
solution looks similar to our baseline model.

Now, consider σ = [0.1, 0.3, 0.3, 0.1, 0.1]T . We raise the fundamental needs to trade
of players 2 and 3, while keeping shocks to everyone else the same. Now, players 1, 4
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and 5 can provide liquidity to players 2 and 3, and help them share risks. Then the
trading dynamics are characterized by the price vector

P = [−.265, −.358, −.426, −.463, −.507]

and the trading matrix

Q =


0.572 −0.246 −0.326 −0.374 −0.437
−0.146 0.951 −0.322 −0.374 −0.445
−0.131 −0.222 1.312 −0.364 −0.439
−0.150 −0.244 −0.334 1.500 −0.467
−0.145 −0.239 −0.330 −0.387 1.787

 .
The price impact of shocks rises and trade slows down, especially for players who are
hit by relatively smaller shocks.

These examples seem to imply that the more general model with exponential
utility does not add much intuition about market dynamics on top of what the baseline
linear-quadratic model already tells us. Of course, there may be interesting effects
that we are overlooking.

7 Conclusion

To be completed.
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Appendix

Proof of Proposition 1. We have to prove that the truth-telling strategy maxi-
mizes the utility of any player i. For an arbitrary strategy {yt, t ≥ 0}, which specifies
the misrepresentation yt of player i’s allocation for any history {Xs, s ∈ [0, t]} of
allocations, consider the process

Gt =

∫ t

0

e−rs
(

(PXs + piys)(Q
iXs + qiiys)−

bi

2
(X i

s)
2

)
ds+ e−rtf i(Xt).

Then the conditions pi < 0 and qii > 0 ensure that yt = 0 maximizes the drift of
Gt, and (9) ensures that the maximal drift of Gt equals 0. That is, the process Gt is
always a supermartingale, and a martingale under the truth-telling strategy.

Now, since the process X defined by (8) us nonexplosive, it follows that

E[e−rtf i(Xt)]→ 0

as t → 0 when player i, as well as everybody else, follow the truthtelling strategies.
Therefore, player i’s expected payoff under the truthtelling strategy is

E

[∫ ∞
0

e−rs
(

(PXs)(Q
iXs)−

bi

2
(X i

s)
2

)
ds

]
= E[G∞] = G0 = f i(X0).

Consider any alternative strategy {yt, t ≥ 0} that satisfies the no-Ponzi con-
dition E[e−rtX2

t ] → 0 as t → 0. Then for any quadratic value function f i(X),
E[e−rtf i(Xt)]→ 0 as t→ 0. It follows then that player i’s payoff under this strategy
is

E

[∫ ∞
0

e−rs
(

(PXs + piys)(Q
iXs + qiiys)−

bi

2
(X i

s)
2

)
ds

]
= E[G∞] ≤ G0 = f i(X0).

Thus, truth-telling is optimal. This completes the proof of Proposition 1.

Proof of Proposition 3. In a symmetric model with bi = b, a symmetric mecha-
nism (P,Q) has the trade-flow trading matrix:

Q =

 q −q 1
N−1

−q 1
N−1

−q 1
N−1

q −q 1
N−1

−q 1
N−1

−q 1
N−1

q


and price vector P = [p, ..., p] . In other words, a symmetric mechanism is character-
ized by two parameters, q and p. Moreover, the value function of any trader depends
only on own holdings and total holdings of others, X−i =

∑
j 6=iX

j:

rf i
(
X i, X−i

)
= max

Y
− b

2

(
X i
)2

+p
(
Y +X−i

)(
qY − q

N − 1
X−i

)
+E

df i (X i, X−i|Y )

dt
(34)
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Recall that we guessed f i = XTAiX + ki, which in the symmetric model simplifies
to:

f i
(
X i, X−i

)
= k + a11

(
X i
)2

+ 2a12X
iX−i + a22

(
X−i

)2

The change of continuation payoff due to trade is then:

E
df i (X i, X−i|Y )

dt
= 2a11X

iE
[
Ẋ i|Y

]
+2a12

(
X−iE

[
Ẋ i|Y

]
+X iE

[
Ẋ−i|Y

])
+2a22X

−iE
[
Ẋ−i|Y

]
+C

Since holdings change according to:

E
[
Ẋ i|Y

]
= −δX i − q

(
Y − X−i

N − 1

)
E
[
Ẋ−i|Y

]
= −δX−i + q

(
Y − X−i

N − 1

)
we get:

E
df i (X i, X−i|Y )

dt
= −2

(
a11X

i + a12X
−i)(δX i + q

(
Y − X−i

N − 1

))
−2
(
a22X

−i + a12X
i
)(

δX−i − q
(
Y − X−i

N − 1

))
+ C

Plugging it back to the optimization problem of reporting X i, we obtain the
following FOC:

pq

(
2Y +X−i − X−i

(N − 1)

)
− 2

(
a11X

i + a12X
−i) q + 2

(
a22X

−i + a12X
i
)
q = 0

Evaluated at truth-telling it becomes (after collecting terms with X i and X−i):(
pq
N − 2

N − 1
− 2qa12 + 2qa22

)
X−i + (2pq − 2qa11 + 2qa12)X i = 0

Since we require that the mechanism be ex-post incentive compatible, the FOC has
to hold for all X i, X−i, that is:

pq
N − 2

N − 1
− 2qa12 + 2qa22 = 0

pq − qa11 + qa12 = 0
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Finally, matching the coefficients of the value function we get:

r
(
a11

(
X i
)2

+ 2a12X
iX−i + a22

(
X−i

)2
)

= − b
2

(
X i
)2

+ p
(
X i +X−i

)(
qX i − q

N − 1
X−i

)
−2
(
a11X

i + a12X
−i)(δX i + q

(
X i − X−i

N − 1

))
−2
(
a22X

−i + a12X
i
)(

δX−i − q
(
X i − X−i

N − 1

))
Matching up coefficients, brings the whole system with unknowns (p, q, a11, a12, a22)

to

pq
N − 2

N − 1
− 2qa12 + 2qa22 = 0

pq − qa11 + qa12 = 0

ra11 = −1

2
b+ 2qa12 − 2a11 (q + δ) + pq

r2a12 = 2qa22 − 2a12

(
2δ + q

N

N − 1

)
+ 2q

a11

N − 1
+ pq

N − 2

N − 1

ra22 = q
2a12

N − 1
− 2a22

(
δ +

q

N − 1

)
− p q

N − 1

This system has two solutions: a degenerate one (i.e., q = 0 and no trade) and a
regular one:

q = (r + 2δ)
(N − 1) (N − 2)

2N

p = − 1

N

b

r + 2δ

Ai =
−b

2 (r + 2δ)N2

[
3N − 2 N − 2
N − 2 −N−2

N−1

]
Given this solution, price at time t is:

pt = PXt = − 1

N

b

r + 2δ
X̄t = − 1

(r + 2δ) β̄
X̄t

which is indeed the efficient price (5).
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The efficient allocation is X̄t

N
and individual holdings evolve according to:

E
d
(
X i
t − X̄t

N

)
dt

= −δ
(
X i
t −

X̄t

N

)
− q

(
X i
t −

X−it
N − 1

)
= −

(
δ + q

N

N − 1

)(
X i
t −

X̄t

N

)
= −

(
δ + (r + 2δ)

(N − 2)

2

)(
X i
t −

X̄t

N

)
Hence trade contributes exponential rate of convergence (r + 2δ) (N−2)

2
, as claimed.

Proof of Proposition 4. Let us show that the equilibrium equations hold with
linear approximations

P = P̂ + P ε, Q = Q̂+Qε and Ai = Âi + Ai,ε,

where (P̂ , Q̂, Âi; i = 1 . . . N) represent the solution of the symmetric model with risk
capacities b (from Proposition 3), and

P ε = − 1

r + 2δ

3N − 4

N2(N − 1)

[
ε1, ε2, . . . εN

]
+O(ε2),

Qε =
(N − 2)(r + 2δ)

2Nb


(N − 1)ε1 −ε2 . . . −εN
−ε1 (N − 1)ε2 . . . −εN

...
...

...
−ε1 −ε2 . . . (N − 1)εN

+O(ε2)

and (r + 2δ)Ai,ε has entries

ai,ε,ii = −4(N − 1)

N3
εi, ai,ε,ij = ai,ε,ji = −N − 2

N3
(εj + εi)

and ai,ε,jk =
N − 2

N2(N − 1)

(
εj + εk

N
− N − 2

2(N − 1)
εi
)
,

for j, k 6= i. We have to show that the equilibrium equations hold up to terms of O(ε)
(inclusively).

Note that (10), given (11), is equivalent to ((r+ 2δ)I +Q)Aii = −(bi/2)1i, where
Aii denotes the i-th column of Ai. Linearizing this equation, together with (11), near
the symmetric solution, we obtain

(r + 2δ)Ai,ε,i + (Qε)T Âii + Q̂TAi,ε,i = −εi/2 1i, (35)

and
(r + 2δ)Ai,ε + (Qε)T Âi + Q̂TAi,ε + ÂiQε + Ai,εQ̂ = (36)
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−εi1ii/2 + (P̂ TQε,i + (Qε,i)T P̂ )/2 + ((P ε)T Q̂
i
+ (Q̂

i
)TP ε)/2.

We have

(Qε)T Âii = −N − 2

4N3


(N − 1)ε1 −ε1 . . . −ε1
−ε2 (N − 1)ε2 . . . −ε2

...
...

...
−εN −εN . . . (N − 1)εN




N − 2
...

3N − 2
...

 =
N − 2

2N2
(ε−Nεi1i)

((r + 2δ)I + Q̂T )Aε,ii =
1

N2

N
2
I − N − 2

2N

 1 1 . . .
1 1 . . .
...

...


(−N − 2

N
(ε+ εi1)− 2N

N
εi1i
)

=

1

N2

(
−N

2

N − 2

N
(ε+ εi1)−Nεi1i +

(N − 2)2

2N
εi1 +

N − 2

N
εi1

)
=

1

N2

(
−N − 2

2
ε−Nεi1i

)
Combining these expressions, we obtain (35).
Furthermore, to evaluate column i of the left-hand side of (36), we compute

ÂiQε,i =
N − 2

4N3


N−2
N−1

. . . −(N − 2) . . .
...

...
−(N − 2) . . . −(3N − 2) . . .

...
...

 (−εi1+Nεi1i) = −N − 2

4N2
((N−2)1+N1i)εi

Ai,εQ̂i =
N − 2

2N3


−N−2
N−1

(∑
k 6=i εk+ε1(N−1)

N
− N−2

2
εi
)
− N−2

N
(ε1 + εi)(N − 1)

...
N−2
N

(∑
k 6=i εk + (N − 1)εi

)
− 4(N−1)

N
εi(N − 1)

...

 =

N − 2

2N3


−N−2
N−1

(
ε1(N−1)

N
− N−2

2
εi − εi

N

)
− N−2

N
(ε1 + εi)(N − 1)

...
N−2
N

(N − 2)εi − 4(N−1)
N

εi(N − 1)
...

 =
N − 2

2N3


−(N − 2)ε1 − (N−2)2

2(N−1)
εi

...
−(3N − 4)εi

...
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It follows that column i of the left-hand side of (36) is

− 1

2
1iεi − (N − 2)2

4N2
1εi − N − 2

4N
1iεi +

N − 2

2N3


−2N−2

N
ε1 − (N−2)2

2(N−1)
εi

...
−(3N − 4)εi

...

 (37)

Column i of the right-hand side of (36) is

−1

2
1iεi−N − 2

4N2
(N−1)1εi+

N − 2

4N2
ε−N − 2

4N
1iεi−N − 2

4N

3N − 4

N2
ε− 3N − 4

N2(N − 1)
εi
N − 2

4N
(N1i−1).

Subtracting (37), we obtain

−N − 2

4N2
1εi−(N − 2)2

2N3
ε− 3N − 4

N2(N − 1)
εi
N − 2

4N
(N1i−1)+

N − 2

2N3


(N − 2)ε1 + (N−2)2

2(N−1)
εi

...
(3N − 4)εi

...



= − (N − 2)3

4N3(N − 1)
1εi − (3N − 4)(N − 2)

4N2(N − 1)
1iεi +

N − 2

2N3


(N−2)2

2(N−1)
εi

...
2(N − 1)εi

...


= −(3N − 4)(N − 2)

4N2(N − 1)
1iεi +

N − 2

2N3

(
2(N − 1)− (N − 2)2

2(N − 1)

)
1iεi = 0.

Next, let us compute column j 6= i of the left-hand side of (36). We have

(Qε)T Âij =
N − 2

4N3


(N − 1)ε1 −ε1 . . . −ε1
−ε2 (N − 1)ε2 . . . −ε2

...
...

...
−εN −εN . . . (N − 1)εN




N−2
N−1

...
−(N − 2)

...

 =
(N − 2)2

4N2(N − 1)
(ε−Nεi1i)

((r+2δ)I+Q̂T )Aε,ij =

N
2
I − N − 2

2N

 1 1 . . .
1 1 . . .
...

...


 N − 2

N2(N − 1)

(
εj1 + ε

N
− εj1i − N − 2

2(N − 1)
εi1− N

2(N − 1)
εi1i
)

=
N − 2

N2(N − 1)

(
εj1 + ε

2
− N

2
εj1i − (N − 2)N

4(N − 1)
εi1− N2

4(N − 1)
εi1i +

N − 2

4
εi1

)
=
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=
N − 2

N2(N − 1)

(
εj1 + ε

2
− N

2
εj1i − N − 2

4(N − 1)
εi1− N2

4(N − 1)
εi1i
)

ÂiQε,j =
N − 2

4N3


N−2
N−1 . . . −(N − 2) . . .

...
...

−(N − 2) . . . −(3N − 2) . . .
...

...

 (−εj1+Nεj1j) =
N − 2

4N2(N − 1)
((N−2)1+N1i)εj

Ai,εQ̂j =
N − 2

2N3


N N−2

N−1

(
εj+ε1

N
− N−2

2(N−1)
εi
)
− N−2

N−1

(∑
k 6=i εk+ε1(N−1)

N
− N−2

2
εi
)

+ N−2
N

(ε1 + εi)
...

−(N − 2)(εj + εi) + N−2
N

(∑
k 6=i εk + (N − 1)εi

)
+ 4N−1

N
εi

...



=
N − 2

2N3


N−2
N−1

εj + N−2
N−1

ε1 + (N−2)N
2(N−1)2

εi

...
−(N − 2)εj + 2εi

...

 =
N − 2

(N − 1)N2

(
N − 2

2N
εj1 +

N − 2

2N
ε+

N − 2

4(N − 1)
εi1

)

+
N − 2

N2(N − 1)

(
N

4(N − 1)
εi − N − 2

2
εj
)

1i.

Adding up,

N − 2

N2(N − 1)

(
N

4
ε−NN − 2

4
εi1i +

εj1

2
− N − 2

4(N − 1)
εi1− N2

4(N − 1)
εi1i +

N − 2

4
1εj − N

4
1iεj
)

+
N − 2

(N − 1)N2

(
N − 2

2N
εj1 +

N − 2

2N
ε+

N − 2

4(N − 1)
εi1 +

N

4(N − 1)
εi1i − N − 2

2
εj1i
)

=

N − 2

N2(N − 1)

(
N2 + 2N − 4

4N
ε−NN − 1

4
εi1i − 3N − 4

4
1iεj +

N2 + 2N − 4

4N
εj1

)
Next, column j 6= i of the right-hand side of (36) is

N − 2

4N2
εj1 +

N − 2

4N2
(ε−Nεi1i) +

N − 2

4N

3N − 4

N2(N − 1)
ε− 3N − 4

N2(N − 1)
εj
N − 2

4N
(N1i− 1) =
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−N − 2

4N
εi1i +

N − 2

4N2

N2 + 2N − 4

N(N − 1)
ε− 3N − 4

N(N − 1)

N − 2

4N
εj1i +

N2 + 2N − 4

N(N − 1)

N − 2

4N2
εj1

We see that left and right-hand sides match in column j for all j 6= i as well. We
conclude that indeed all relevant equilibrium conditions hold up to terms of order ε
inclusively.

Proof of Proposition 6. With one large trader and the fringe, the mechanism is
described by the four parameters:

Q =

[
qL −qF
−qL qF

]
, P = [PL, PF ]

Let Lt denote the holding of the large trader and Ft the holding of the fringe.
Price at time t is

pt = (PFFt + PLLt)

and the large trader net selling rate is

(qLLt − qFFt) dt

We now establish existence of and uniqueness of a non-degenerate mechanism.
Consider first the fringe optimality condition which in this case simplifies to:

− (r + δ) pt = bFFt − E
[
PF Ḟt + PLL̇t

]
The expected changes in holdings are

E
[
L̇t

]
= −δLt − (qLLt − qFFt)

E
[
Ḟt

]
= −δFt + (qLLt − qFFt)

The fringe optimality can be hence written as:

(r + 2δ) (PFFt + PLLt) = −bFFt + (PF − PL) (qLLt − qFFt)
Since this equation has to hold for all F and L, we must have:

PF (r + 2δ + qF )− PLqF = −bF
PL (r + 2δ + qL)− PF qL = 0.

Now consider the large trader optimality. He chooses an announcement Yt to
maximize:

rf (Lt, Ft) = max
Yt

(
−bL

2
L2
t + (PLYt + PFFt) (qLYt − qFFt) + E

df (Lt, Ft|Yt)
dt

)
(38)
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As usual, we make a guess that the value function is quadratic:

f (L, F ) = k0 + a11L
2 + 2a12LF + a22F

2

Then

Edf (Lt, Ft|Yt) = 2a11LtE
[
L̇t

]
+ 2a12(LtE

[
Ḟt

]
+ FtE

[
L̇t

]
) + 2a22FtE

[
Ḟt

]
+ C

and

E
[
L̇t

]
= −δLt − (qLYt − qFFt)

E
[
Ḟt

]
= −δFt + (qLYt − qFFt)

The FOC of the maximization problem (38) is:

PL (2qLYt − qFFt) + PFFtqL − 2 (a11Lt + a12Ft) qL + 2 (a22Ft + a12Lt) qL = 0

Evaluated at truth-telling it becomes:

PL (2qLLt − qFFt) + PFFtqL − 2 (a11Lt + a12Ft) qL + 2 (a22Ft + a12Lt) qL = 0

For it to hold for all (Lt, Ft) we need:

−PLqL + qLa11 − qLa12 = 0

PLqF − PF qL − 2a22qL + 2a12qL = 0

Finally, matching the coefficients of the large player value function we get a system
of equations: :

0 = −PLqL + qLa11 − qLa12

0 = PLqF − PF qL − 2a22qL + 2a12qL

ra11 = 2a12qL − 2a11 (δ + qL)− 1

2
bL + PLqL

r2a12 = 2a11qF − 2a12 (2δ + qL + qF ) + 2a22qL + PF qL − PLqF
ra22 = 2a12qF − 2a22 (δ + qF )− PF qF
−bF = PF (r + 2δ + qF )− PLqF

0 = PL (r + 2δ + qL)− PF qL

43



This system has two solutions: a degenerate one (with no trade) and a regular one:

qF =
1

2
r + δ

qL =
1

2
bL
r + 2δ

bF

PL = − bLbF
(3bF + bL) (r + 2δ)

PF = − (2bF + bL) bF
(r + 2δ) (3bF + bL)

AL =
bF

2 (r + 2δ) (3bF + bL)

[
−3bL −bL
−bL bF

]
Finally, the welfare of the fringe can be written as

rfF (F,L) = −bF
2
F 2 + (PLL+ PFF ) (−qLL+ qFF ) +

dfF (F,L)

dt
Making a guess that

fF (F,L) = kF0 + aF11F
2 + 2aF12LF + aF22L

2

allows us to match coefficients:

raF11 = −1

2
bF + PF qF + d12qF − 2aF11 (δ + qF )

r2aF12 = 2aF11qL − 2aF12 (2δ + qF + qL) + PLqF − PF qL + 2aF22qF

raF22 = −PLqL + 2aF12qL − 2aF22 (δ + qL)

Using the solutions for P and Q we get a unique solution:

aF11 = −1

2
bF

b2
L + 5bLbF + 5b2

F

(3bF + bL) (2bF + bL) (r + 2δ)

aF12 = −1

2
bL

b2
F

(3bF + bL) (2bF + bL) (r + 2δ)

aF22 =
1

2
b2
L

bF
(3bF + bL) (2bF + bL) (r + 2δ)

or

AF =
1

2

bF
(3bF + bL) (2bF + bL) (r + 2δ)

[
− (b2

L + 5bLbF + 5b2
F ) −bLbF

−bLbF b2
L

]

Proof of Proposition 7. If λ = λ̄ then subtracting the second equation from the
first equation, we get an expression whose sign is the same as

− r + 2δ + λ̄

r + 2δ + 2λ̄

(
bL

bL + (N − 1)bF
+N − 2

)
< 0.

To be completed.

44



Bibliography.

Babus, A. and P. Kondor (2012) “Trading and Information Diffusion in Over-
the-Counter markets,” working paper, Imperial College London.

Back, K. (1992) “Insider Trading in Continuous Time,” Review of Financial Stud-
ies, 5, 387-409.

Back, K., C. H. Cao, and G. A. Willard (2000) “Imperfect Competition among
Informed Traders,” Journal of Finance, 55, 2117-2155.

Du, Songzi and Haoxiang Zhu (2013) “Dynamic Ex Post Equilibrium, Welfare
and Optimal Trading Frequency in Double Auctions,” working paper, MIT

Glosten, L. R. and P. R. Milgrom (1985) “Bid, Ask and Transaction Prices in
a Specialist Market with Heterogenously Informed Traders,” Journal of Financial
Economics, 14, 71-100.

Kyle, A. S. (1985) “Continuous Auctions and Insider Trading,” Econometrica, 15,
p. 1315-1335.

Kyle, A. S. (1989) “Informed Speculation with Imperfect Competition,” Review
of Economic Studies, 56, 317-355.

Rostek, M. and M. Weretka (2012) “Price Inference in Small Markets,” Econo-
metrica, 80(2), 687-711.

Vayanos, D. (1999) “Strategic Trading and Welfare in a Dynamic Market,” Review
of Economic Studies

Vives, X. (2011) “Strategic Supply Function Competition with Private Informa-
tion,” Econometrica, 79, 1919-1966.

45


	Page de garde Sannikov
	Finance Research Seminar
	Supported by Unigestion
	Friday, October 9, 2015, 10:30-12:00
	Room 126, Extranef building at the University of Lausanne



