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1 Introduction

Managers often disclose private information in a voluntary fashion. These discretionary

disclosures constitute a significant source of information to capital markets whose relative

importance has been growing over time.1 Yet, not all the managers’ private information is

disclosed in a timely fashion. Since the seminal contributions of Grossman (1981); Milgrom

(1981) the literature has recognized that, on the one hand, managers may strategically

withhold private information that is likely to have negative price consequences and, on the

other hand, that markets understand the strategic behavior of managers thus penalizing

their silence (see e.g., Jovanovic (1982); Verrecchia (1983); Dye (1985)).

This disclosure game between managers and markets is in essence dynamic. In reality,

a manager who wishes to maximize his firm’s stock price must select not just whether to

disclose information but also when to do it and how often. After all, the manager’s private

information sooner or later will become public information even if he withholds it forever.

Unfortunately, very little is known about the dynamics of disclosure and it is fair to say

that, in this area, measurement is ahead of theory. While a vast number of empirical papers

study disclosure dynamics and its implications for the time-series of stock returns, (see e.g.,

Kothari, Shu and Wysocki (2009)) disclosure theories are for the most part static.

This paper follows the lead of Acharya, DeMarzo and Kremer (2011) in an attempt to

fill this gap. As Acharya, DeMarzo and Kremer (2011) we suppose that the firm’s manager

maximizes the present value of the firm’s future stock prices, perhaps because his compen-

sation at each point in time is proportional to the market value of the firm. The evolution

of asset values is described by a continuous time Markov chain that fluctuates between two

possible states: low asset value and high asset value. The distribution of asset values is

known but the manager privately observes the evolution of actual values, namely he only

can tell whether the asset has experienced a temporary impairment or, on the contrary, has

recovered from one. Yet, the manager can disclose his private information to the market at

any point in time and as many time as he so wishes. Unraveling is however not possible

in equilibrium because –as in Jovanovic (1982); Verrecchia (1983)– disclosing information

(specially, good news) is costly.

The baseline model generates the following dynamics. At the beginning of the game, or

for that matter after any disclosure, there is a blackout period where no disclosure is made.

During that period, stock prices experience a downward drift (driven by the possibility of

1Earnings guidance explains a large portion of the variation in stock returns (Ball and Shivakumar 2008;
Beyer, Cohen, Lys, and Walther 2009). More than 15 percent of the variation in quarterly stock returns
occurs around guidance announcements, compared to less than three percent for earnings announcements
and about six percent for analyst forecasts (Beyer, Cohen, Lys and Walther 2009).
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an undisclosed impairment) up to a point where the undervaluation of the asset could be so

severe that a disclosure becomes profitable. At this point, the manager discloses his private

information if favorable, in which case the price jumps upwards and the game restarts. If,

on the contrary, the manager decides to withhold his information, the market infers the

asset must have low value and the stock price experiences a drastic drop. From that point

onwards the stock price stays flat (at the lowest level) until the asset recovers its value and

the manager discloses good news.

The length of the blackout period is affected both by the cost of disclosure and, more

importantly, by the time-series properties of asset values, specially the cash flows’ mean

reversion. A higher mean reversion means that information becomes more transitory. Con-

sequently, the stock price drifts faster toward its long term value. That, in turn, gives the

manager an incentive to accelerate his disclosure so as to mitigate the undervaluation the

asset experiences when the asset is in the hight state. This effect would seem to strengthen

the incentives of the manager to disclose good news. However, a higher mean reversion, also

means the price effect of disclosing good news will be shorter-lived which weakens the incen-

tives for such disclosures. The interaction between these two effects results in the length of

the blackout period being non-monotonic in the cash flows’ mean reversion.

We then consider how the presence of a public news process, correlated with asset values

but observed at random times, affects the manager’s disclosure incentives. Specifically, we

model the public news as a Poisson process whose arrival intensity depends on the value of

assets. If arrivals are more likely in the bad state, a news arrival conveys bad news. The

arrival thus triggers a price drop whose magnitude depends on the information quality of

the news. Conversely, the absence of arrivals mitigates the price’s downward drift –relative

the case without public news– because the absence of arrivals is perceived by the market

as good news. At first, this suggests that the presence of the public news process should

moderate the propensity of the manager to disclose his information. But, public news also

have an opposing effect: the observation of a news arrival by the market induces a drastic

price drop which naturally stimulates the manager to disclose good news as soon as the asset

recovers its value. We show however that the former effect dominates, so that the higher

the frequency of news arrivals the lower is the frequency of managerial disclosures. In this

setting, public news substitute managerial disclosures.

In the previous model, the manager may only disclose good news; bad news are eventually

observed but only from the public news process. In the real world, however, bad news

disclosures are prevalent (see e.g., Kothari, Shu and Wysocki (2009)) perhaps because the

realization that the manager withheld adverse information has important legal implications

(see e.g., Skinner (1997)). To capture this feature of the disclosure environment, we consider
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the possibility that a news arrival may give rise to litigation costs when the manager fails to

disclose bad news and the news reveal the asset was overpriced. The presence of litigation

risk, one might think, should stimulate the manager’s bad news disclosures as a means to

preempt the litigation costs: the manager should sometimes reveal bad news, specially when

the stock price is relatively low. Yet, this idea presents a conundrum: if the manager revealed

bad news with probability one, at any given point in time, then the absence of such disclosures

would be perceived as perfect evidence the asset value is high, thus inducing a sharp increase

in the stock price. This jump in the stock price would destroy the manager’s incentives to

disclose bad news in the first place. To overcome this conundrum, the equilibrium must entail

disclosure randomization. When prices are sufficiently low, the manager randomizes between

disclosing and not disclosing the bad news. At that point, the price remains constant over

time, up until the bad news are either disclosed by the manager or revealed by the public

news.

The manager’s decision to disclose bad news has the flavor of the real options problem

analyzed by Dixit (1989), where a firm has the option, at any point in time, to shut-down

(i.e., disclose bad news) or restart a project (i.e., disclose good news), based on the project’s

observed profitability.2 In our setting, when the stock price is low and the value of the

asset is also low, disclosing bad news becomes profitable for the same reason shutting down

a project that is making losses is optimal in Dixit’s model. Also, as in Dixit’s model, the

decision to disclose bad news today is inherently liked with the value of the option to disclose

good news in the future: if the cost of disclosing good news is higher, then the benefit from

disclosing bad news today goes down, which naturally delays such disclosures. This speaks

to a certain complementarity between bad and good news disclosures in the presence of legal

liability.

In the presence of legal liability, the public news process no longer substitutes managerial

disclosures, but actually complements them. This is natural: a higher frequency of public

news means that the expected litigation cost from withholding information goes up. Man-

agers are subject to a tighter scrutiny and feel more compelled to reveal bad news. They

thus accelerate the release of bad news.

1.1 Related Literature

This paper extends Jovanovic (1982) and Verrecchia (1983, 1990) to a continuous time set-

ting. The most closely related paper is Acharya, DeMarzo and Kremer (2011). They consider

a dynamic version of Dye (1985) where the manager may be privately informed about the

2But in our setting the profitability of the project is endogenous because it is determined by the Bayesian
beliefs of the market about the asset value.
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asset value. When informed, the manager may disclose his private information at one of

two points in time: at the start of the game or right after a public news signal is released,

at a known date. If the manager’s private information is not so favorable, waiting for news

has positive option value since the public signal might induce a higher price in the absence

of disclosure than in the presence of it. By contrast, if the public signal turned out to be

unfavorable, the manager could mitigate the negative price effect of the public signal by dis-

closing his own private information. Their model is able to explain clustering of disclosure

in bad times: the less favorable the public signal the higher the probability of disclosure.

Dye (2010) also studies the timing of disclosure. A risk averse manager must sell his

shares among a number of risk neutral investors during several trading periods following a

fixed trading profile. Also, in each period the manager must acquire and disclose a signal

about the asset value. Ex-ante, the manager is allowed to choose the precision profile of

the signals he will be releasing, but the sum of the signals’ precisions is fixed. So the

manager’s choice regards the timing of disclosure: namely how much precision to allocate to

each period’s signal. In equilibrium, the manager engages in disclosure bunching, namely he

allocates all the precision to a single period instead of spreading the precision over time. This

bang-bang solution is driven by optimal risk sharing between the manager and other traders:

when the manager is too risk averse relative to other traders, very informative disclosures

impose excessive risk on the manager’s wealth, so the manager tends to delay them until a

sufficiently high portion of his portfolio has already been off-loaded.

Beyer and Dye (2012) study a reputation model in which the manager may learn a single

private signal in each of two periods. The manager can be either “forthcoming’ and disclose

any information he learns or “strategic.’ At the end of each period, the firm’s signal/cash

flow for the period becomes public and the market updates beliefs about the value of the

firm and the type of the agent.

Finally, Kremer, Guttman and Skrypacz (2012) consider the price consequences of the

choice of disclosure timing. They study a two-period extension of Dye (1985) model, where

in each period, the manager may observe any of two pieces of information (if previously

unobserved) with some probability. They show that later disclosures are interpreted more

favorably by the market because the probability that the manager is hiding information is

perceived to be higher when partial disclosures are made earlier.

2 Baseline Model

We study a dynamic model of voluntary disclosure that extends Jovanovic (1982); Verrecchia

(1983, 1990). We consider a firm that pays a terminal dividend VτM when the firm matures
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at a random time τM that has arrival intensity γ.3

The value of assets Vt follows a continuous time Markov chain with state space {0, 1}.

The terminal dividend is thus equal to 1 if the value of assets is 1 at time τM , and zero

otherwise. The value of the asset jumps from 0 to 1 with intensity λ1 while it jumps back

from 1 to 0 with intensity λ0. We can think of λ0 as the frequency with which the asset suffers

an impairment. When λ1 = 0, this impairment is permanent, otherwise the impairement is

transitory.

At the outset, the asset value is known to be 1, namely V0 = 1.4 From that point onwards,

the manager privately observes any shock to the asset value. However, at any point in time,

the manager can disclose his private information at a cost. This disclosure cost may arise

from the proprietary nature of the information (as in Jovanovic (1982); Verrecchia (1983)),

the need to certify the information to make it credible –by for example hiring an auditor–

or simply from the opportunity cost of the time required to prepare and disseminate the

information.5 The disclosure cost varies with the value disclosed. In particular, the cost of

disclosing information is C > 0 when the asset value is high and 0 when the asset value is

low. Hence, disclosing bad news is costless.6

Prices are set in a Bayesian and risk neutral manner. We normalize the market’s interest

rate to be zero. So if dt ∈ {0, 1} denotes the disclosure decision at time t and d = {dt}t≥0

denotes the conjecture of the market about the manager’s disclosure strategy then the firm’s

stock price, given the history of disclosures Ft, is set as

Pt = Ed(VτM |Ft) (1)

where Ed(·) denotes the expectation operator based on the measure induced by d. Following

Acharya, DeMarzo and Kremer (2011) and Benmelech, Kandel and Veronesi (2010), we

assume the manager chooses a disclosure strategy σ that maximizes the present value of

future prices net of disclosure expenses:

Ut(d, σ) := Ed

[
∫ τM

t

e−ρ(s−t)Psds− C
∑

t≤s<τM

e−ρ(s−t)σs

∣
∣
∣Ft, Vt

]

, (2)

3We make the assumption that the firm generates no cash flows before maturing to abstract away from
the informational role of dividends and focus only on disclosures. Later, in Section 3, we consider the role
of public information as a determinant of the manager’s disclosures.

4Nothing changes if V0 is private information at the start.
5A number of large investors such as Warren Buffett (1996) and analysts such as Candace Browning

(2006), head of global research at Merrill Lynch, have called for managers to give up quarterly earnings
guidance and hence avoid the myopic managerial behavior caused by attempts to meet market expectations.

6This assumption is not necessary for the results; assuming that the cost of disclosue in the low state is
C0 > 0 would generate exactly the same predictions.
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The manager thus cares not only about the short term price implications of his disclosure de-

cisions but also the long term implications. This concern for future stock prices is supported

by the evidence. There is indeed ample evidence that managers’ wealth is affected by the

evolution of their firms’ stock price.7 This link between managerial wealth and future stock

prices may arise from the manager’s compensation (e.g., when equity grants have vesting

periods) or reputation being linked to the evolution of the firm’s stock price (as in career

concern models). The above representation of the manager’s objective function implicitly

assumes that disclosure costs are borne by the manager. As it turns out, this assumption is

innocuous. The results would not change if, instead, we assumed the disclosure cost is borne

by the firm’s shareholders, thus having a direct impact on stock prices.

Definition 1. An equilibrium is a disclosure strategy d = {dt}t≥0 and a price process

P = {Pt}t≥0 such that, for all t ≥ 0,

1. The market price is Pt = Ed(VτM |Ft)

2. The disclosure strategy maximizes the manager’s utility given the market beliefs, that

is d ∈ argmaxσ Ut(d, σ)

Both conditions are standard. At every point in time, the price is set according to Bayes’

rule, given the manager’s strategy and the history of the game. Similarly, the manager’s

disclosure strategy maximizes the manager’s expected utility at each point in time, and for

all histories of the game.

As a preliminary analysis, we consider how the market belief about Vt evolves in the

absence of disclosures. Using standard results (Karlin and Taylor, 1981), the probability

that Vt = 1 evolves according to

dpt = κ(p̄− pt)dt (3)

where

p̄ :=
λ1

λ0 + λ1

is the stationary probability that the value of the asset is 1 and κ := λ0 + λ1 represents the

asset’s mean reversion, namely the speed at which market belief reverts to the stationary

point p in the absence of disclosure. Let

φt(p) = p̄+ e−κt (p− p̄) .

7For example, Graham, Harvey and Rajgopal (2005) note, in their famous survey, that because of the
severe market reaction to missing an earnings target, firms are willing to sacrifice economic value in order to
meet a short-run earnings target. They find that managers make voluntary disclosures to reduce information
risk associated with their stock but try to avoid setting a disclosure precedent that will be difficult to maintain.
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be the solution to equation (3) given an initial condition p0 = p. Then, the price of the firm

at time t is given by

Pt =

∫ ∞

t

φs−t(pt)γe
−γ(s−t)ds =

κ

γ + κ
p̄+

γ

γ + κ
pt. (4)

The price Pt is affine in beliefs pt. By virtue of this relation, in the following we use the terms

“price” and “beliefs” interchangeably. Moreover, defining r := ρ+γ and the normalized cost

c := (γ + κ)C/γ, the manager’s objective function can be re-written as

Ut(d, σ) := E

[
∫ ∞

t

e−r(s−t)psds− c
∑

s≥t

e−r(s−t)σs

∣
∣
∣Ft, Vt

]

, (5)

where Ut and Ut satisfy the following relation

Ut =
κ

r(γ + κ)
p̄+

γ

γ + κ
Ut.

The manager’s disclosure strategy σ maximizes (5) given the asset value Vt and the market

belief.

We begin by considering what would the manager’s payoff be if the equilibrium entailed

no disclosure. Since no disclosue expense would ever be incurred, the manager’s payoff,

given any initial belief p0, would be equal to the present value of future prices. By the law

of interated expectations this can be computed as

UND(p0) =

∫ ∞

0

e−rtφt(p0)dt =
p̄

r
+

p0 − p̄

r + κ
.

We can now consider the actual equilibrium. We study Markov equilibria. Markov

equilibria are characterized by a disclosure threshold p∗ such that

dt = 1{p
t−

≤p∗}Vt.

That is, the manager discloses at time t if and only if both the price is lower than or equal

to p∗ and the value of asset is high. The idea that the propensity of disclosure is negatively

correlated with the level of stock prices is natural, and has some empirical support. For

example, Sletten (2009) argue that ”stock price declines prompt managers to voluntarily

disclose firm-value-related information (management forecasts) that was withheld prior to

the decline because it was unfavorable but became favorable at a lower stock price.

Anticipating this strategy, the market expects no disclosure when the price is above p∗.
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As a consequence, for any pt > p∗ the price evolves according to (3). By contrast, for pt ≤ p∗,

we have that pt = dt. That is, if the manager does not disclose his information when the

price hits the threshold p∗, then the market infers the asset must be low. As a result, the

price falls sharply from p∗ to zero and remains there until the manager discloses good news

(i.e., Vt = 1), which happens immediately after the asset value returns to the high state.

The dynamics of market beliefs are noteworthy: at the beginning of the game, the mar-

ket belief drifts downwards until disclosing the asset value may become profitable for the

manager. At that point, the price jumps upward if high value is disclosed or downwards if

no disclosure is observed. Kothari, Shu and Wysocki (2009) empirically document a similar

pattern. They find evidence consistent with the view that managers withhold bad news to

investors and that prices tend to drift downward absent disclosure, and jump upward once

the firm announces good news. Note that the failure to disclose at pt = p∗ is followed by

a period where (i) the price remains flat up until a disclosure is observed and (ii) the informa-

tion becomes symmetric. By contrast, the period following a disclosure is characterized by

the price (mean) reverting towards its stationary level p, and by the manager being privately

informed about the true asset value.

pt

t0 T1 T2

1

p∗

p̄

dT1 = 1
dT2 = 1

Figure 1: Example of a sample path of the share price.

The market’s conjecture d must be consistent with the manager’s optimal strategy σ.

With some abuse of notation, let Uv(p) be the manager’s payoff given that the market belief

is pt = p and the asset value is Vt = v ∈ {0, 1}. The manager’s payoff in equilibrium can be

represented by the Hamilton-Jacobi-Bellman (HJB) equation:

rUv(p) = p+
1

dt
E [dUv] .
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when p > p∗. On the other hand,

1

dt
E [dU1] = λ0[U0 (p)− U1 (p)] + U ′

1 (p)
dp

dt
1

dt
E [dU0] = λ1[U1 (p)− U0 (p)] + U ′

0 (p)
dp

dt

The interpretation of the value function is standard; we can think of the manager’s job

as an asset, whose cost of capital in a competitive market rUv (p) must equal the rate of

return on the asset, as given by its instantaneous flow p, and its expected capital gains

E [dUv] /dt. The latter may come in two forms: the deterministic evolution of investors’

beliefs, as described by (3), and the possibility the asset experiences an impairment.

We obtain the following HJB equations:

rU1(p) = p+ κ(p̄− p)U ′
1(p) + λ0[U0(p)− U1(p)] (6)

rU0(p) = p+ κ(p̄− p)U ′
0(p) + λ1[U1(p)− U0(p)] (7)

with boundary conditions

U1(p∗) = U1(1)− c (8)

U0(p∗) =
λ1

r + λ1
[U1(1)− c]. (9)

Moreover the following parametric restrictions are required for an equilibrium where the

probability of disclosure is positive:

U1(1)− c ≥ 0

U1(p) ≥ U1(1)− c for p > p∗

U1(p) ≤ U1(1)− c for p ≤ p∗.

In essence, the manager must solve an optimal stopping problem where the stopping time

must be consistent with the market’s rational expectations.

The following proposition provides the solution in closed form.

Proposition 1. Suppose that p∗ ∈ (p̄, 1) satisfies

U1 (1)− c ≥ 0 (10)

and

U ′
1 (p∗) ≥ 0 (11)
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Then, there exists an equilibrium with threshold p∗. The manager’s payoff is given by

U0(p) = U1(p)−
r

r + λ1

(
p∗ − p̄

p− p̄

)1+ r
κ (

U1(1)− c
)

(12)

U1(p) =

∫ T (p)

0

e−rtφt(p)dt+ δ(p)
(

U1(1)− c
)

, (13)

where

U1(1) = UND(1)−
δ(1)

1− δ(1)
c

and

δ(p) :=

(
p∗ − p̄

p− p̄

) r
κ
[
rp̄+ κp̄

r + κp̄
+

r(1− p̄)

r + κp̄

p∗ − p̄

p− p̄

]

,

T (p) = −
1

κ
log

(
p∗ − p̄

p− p̄

)

.

It is instructive to consider the manager’s payoff at the start of the game, namely when

the market beliefs are p = 1. Let’s define

C(c) :=
δ(1)

1− δ(1)
c.

Hence, the manager’s payoff at the outset is given by

U1(1) = UND(1)− C(c).

The first component, UND(1), is the payoff the manager would obtain had he been able to

commit to never disclose.8 The second component C(c) is the present value of the disclosure

expense the manager expects to bear over his lifetime, given his lack of commitment.9 The

manager’s payoff is thus bounded from above by the non disclosure payoff UND (1) . This is

natural: in our setting information has no (social) value, hence the disclosure expense is a

deadweight loss, which the manager bears ex-post only because he cannot avoid disclosing

asset values when market beliefs are severely depressed. But ex-ante, the average trajectory

of future prices is not affected by the manager’s disclosure policy: although in equilibrium

the event of disclosure drives the price up, the failure to disclose drives it down.

Observe that there are multiple equilibria, given the discrete support of Vt. In particular,

8Weak commitments are sometimes observed in the real world. On December 13, 2002, the Coca Cola
Company announced that it would stop providing quarterly earnings-per-share guidance to stock analysts,
stating that the company hopes the move would focus investor attention on long-run performance.

9As a mirror image, one can think of this term as the profits of a certifier who, at the outset, commits to
sell his certification services for a fee c
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when the cost of disclosure is not so high, there exists a continuum of thresholds p∗ satisfying

conditions (10) and (11). The following proposition characterizes the set of equilibrium

thresholds. We refer to an equilibrium in which disclosure happens with probability zero (at

any point in time and for any history) as a non disclosure equilibrium.

With some abuse of notation, we let Uv(p|p∗) be the manager’s expected payoff in an

equilibrium with disclosure threshold p∗, when the state is v and the market belief is p.

Proposition 2. Let

c :=
λ1 + r

r (r + κ)
.

If c < (1− p̄)c̄, then any equilibrium has a positive probability of disclosure. In particular:

1. If c < (1− p̄)c, there are disclosure thresholds p−∗ < p+∗ satisfying the boundary condi-

tions

U1

(
1|p+∗

)
− c = 0 (14)

U ′
1

(
p−∗ |p

−
∗
)
= 0, (15)

such that, for any p∗ ∈ [p−∗ , p
+
∗ ], there is an equilibrium with disclosure threshold p∗.

2. If (1 − p̄)c ≤ c < c, then for any p∗ ∈ [p̄, p+∗ ], where p+∗ satisfies (14), there is an

equilibrium with disclosure threshold p∗.

3. If c ≥ c, the only equilibrium entails no disclosure.

Hence, the most transparent equilibrium, in terms of the probability of disclosure, arises

when condition (10) is binding. By contrast, the most opaque equilibrium arises when

condition (11) is binding. Confronted with this multiplicity of equilibria, it is natural to

focus on the Pareto dominant one.

Definition 2. The equilibrium threshold p†∗ is Pareto dominant if and only if Uv(p|p
†
∗) ≥

Uv(p|p∗) for all p ∈ [0, 1], p∗ ∈ [p−∗ , p
+
∗ ] and v ∈ {0, 1}.

This selection criterion is natural but somewhat arbitrary because in practice there is no

guarantee the manager and the market will coordinate in any particular equilibrium. On

the other hand, one can think of the Pareto dominant equilibrium as the natural outcome

when, at the outset, the manager informally announces his firm’s disclosure policy to the

market. Though the manager cannot fully commit to disclose information regularly he can
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issue a cheap talk message along the lines of “we will try to provide guidance on a quarterly

basis”.10

Indeed, this type of announcement is common in practice: firms often announce what

their disclosure policy will be. Of course these announcements are non-binding, but they

still help set market’s expectations about the firm’s disclosure policy.

Proposition 3. Suppose that c < (1− p̄)c, then the Pareto dominant equilibrium is the least

transparent equilibrium, that is, p†∗ = p−∗ . On the other hand, if c ≥ (1− p̄)c, then the Pareto

dominant equilibrium has no disclosure.

This result is intuitive. Given that disclosure is a deadweight cost, the most efficient

equilibrium and the one the manager prefers ex-ante, is the equilibrium that minimizes

the frequency of disclosure, since this equilibrium also minimizes the present value of the

disclosure expense. In this model, disclosure reduces the firm’s long term value and is driven

by the manager’s short term incentives to manager the stock price.11

Notice that the least transparent equilibrium is the preferred equilibrium for the manager

for any initial belief p, and any asset value. Hence the manager’s incentives to coordinate in

the least transparent equilibrium will remain the same for all the histories of the game.

Reputational Equilibrium

Graham, Harvey and Rajgopal (2005) argue that managers limit their voluntary disclosures

to avoid setting a disclosure precedent that will be difficult to fulfill. This type of disclosure

precedent effect would arise if investors formed their expectations about the frequency of

disclosures based on the firm’s history. Such phenomenon cannot arise in Markov equilibria

which, by definition, are independent of the game’s history.

In this section we consider whether the phenomenon described by Graham, Harvey and

Rajgopal (2005) can take place in non-Markov equilibrium. The main result presented here

is that there is a non-Markov equilibrium with no disclosure for any positive but arbitrarily

10For example, Chen, Matsumoto and Rajgopal (2011) note that on December 13, 2002, the Coca Cola
Company announced that it would stop providing quarterly earnings-per-share guidance to stock analysts,
stating that the company hopes the move would focus investor attention on long-run performance. Shortly
thereafter, several other prominent firms such as AT&T and McDonalds made similar announcements re-
nouncing quarterly earnings guidance.

11In 2007, the Commission on the Regulation of U.S. Capital Markets in the 21st Century (the 21st Cen-
tury Commission) — an independent, bipartisan commission established by the U.S. Chamber of Commerce
— recommended that public companies stop issuing earnings guidance or, at a minimum, move away from
providing quarterly earnings per share guidance as a point estimate to providing annual guidance as a range
of earnings per share numbers. The 21st Century Commission believed that quarterly earnings per share
guidance caused companies to focus too much on short-term performance and the pressure for companies
to meet short-term estimates created “adverse incentives to forgo value-added investments in long-term
projects.”
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small disclosure cost c. Moreover, a direct implication of Proposition 1 is that this equilibrium

yields the maximum profit for the manager.

Proposition 4 (Folk Theorem). For all c > 0, there is a non-Markov equilibrium with no

disclosure.

Proof. If c ≥ c, then the only equilibrium involves no disclosure and there is nothing to

prove. If c < c, consider the following trigger strategy: the firm never discloses unless it

has disclosed in the past, in which case it uses a disclosure strategy with threshold p+∗ .

Accordingly, the market expectations are that the firm never disclose private information

unless it has disclosed in the past. Then, for any pt ≥ 0 we have

UND(pt) ≥ U(1|p+∗ )− c = 0.

Hence, there is no incentive to deviate and disclose. Moreover, from Proposition 1, U(1|p+∗ )

is the equilibrium payoff in the continuation game following disclosure.

Proposition 4 shows the existence of a discontinuity with respect to c in the disclosure

game. If disclosure is costless, then there is unraveling and full disclosure obtains. However,

for any arbitrarily small cost of disclosure, there exists an equilibrium without disclosure.

The previous result shows that the manager’s concern for setting a disclosure prece-

dent can be a powerful deterrent of disclosure, and may eliminate the incentives to disclose

altogether, as if the manager could commit ex ante to a non disclosure policy.

A major limitation of the previous equilibrium is the degree of coordination required

to sustain the no-disclosure equilibrium.12 For this reason, we focus on Markov equilibria

hereafter.

2.1 The Frequency of Disclosure

There is considerable variation in the frequency of voluntary disclosures across different

industries. In fact, there is even variation within industries (see e.g., Chen, Subramanyam,

Zhang, 2007). The purpose of this section is to understand why some firms disclose more

often than others, even when their managers seem to face similar incentives.13 We focus,

12This is a standard critiques in the dynamic games literature to the use of non-Markov equilibria.
13Cheng, Subramanyam and Zhang (2007) note that firms in the wholesale and retails industries have the

highest guidance frequency with mean of 5.93 (median of 7) quarters—out of 12 quarters—having at least
one earnings forecast. In addition, firms in the industries of chemicals, consumer non-durables and business
equipment provide relatively frequent quarterly earnings guidance as well. On the other hand, firms in the
energy sector have the lowest guidance frequency with mean of 1.98 (median of 0) quarters, followed by
telecommunications and healthcare industries. The within-industry standard deviations range from 3.00 to
4.12, suggesting that there is also within-industry variation in guidance frequency.
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particularly, on the role of mean reversion as a determinant of the frequency of disclosure.

We argue that mean reversion plays a key role insofar as it captures the extent to which

information has a permanent effect on asset values.

Given the Markov structure of the problem, the sequence of disclosure times is a renewal

process. Hence, it suffices to focus on the expected time of the first disclosure to derive the

frequency of disclosure. If we let T = inf{t > 0|dt = 1} be the timing of the first disclosure,

we are interested in computing T v(p) := E(T |p0 = p, v). Given T v (·), the frequency of

disclosures is simply given by 1/T 1(1).

Note that T is a random variable with support [T (1; p∗) ,∞) where T (1; p∗) > 0. Here,

T (1; p∗) is then the minimum time that must elapse until the first disclosure is observed.

We find T (p; p∗) by solving φT (p) = p∗, which yields

T (p; p∗) = −
1

κ
log

(
p∗ − p̄

p− p̄

)

. (16)

Before time T (1; p∗), disclosure has probability zero. On the other hand, if the manager

does not disclose the value of the asset at time T (1; p∗), then the expected time spell before

the next disclosure is released has an exponential distribution with mean 1/λ1, that is,

T 0(p∗) = 1/λ1. Noting that T 1(p∗) = 0, we can compute T v(·) directly. The frequency of

disclosures is given by 1/T 1(1) where

T 1(1) = T (1; p∗) +
1− p∗
λ1

. (17)

For a given threshold p∗, the frequency of disclosure increases in cash flows’ mean reversion

κ. This is natural: a higher mean reversion exacerbates the downward drift in market beliefs

which in turn shortens the time until the market beliefs hits p∗. Of course, this is only part

of the story because the disclosure threshold also depends on κ. The following proposition

studies how κ affects the disclosure threshold p†∗.

Proposition 5. The equilibrium threshold p†∗ decreases in the cash flows’ mean reversion κ.

The price benefit of disclosure is weaker when mean reversion is stronger, since then the

effect of a disclosure on the future prices is shorter lived which creates an incentive for the

manager to reduce the frequency of disclosure. The effect of a higher κ on the frequency

of disclosure could therefore be ambiguous: on the one hand, the manager has an incentive

to stop the price drift by disclosing good news earlier. On the other hand, the effect of

disclosures on the stock price is less permanent, which reduces the benefit of disclosing good

news. This makes the overall effect ambiguous: indeed, Figure 2 shows that the duration of

the blackout period, in which no disclosures are expected, T (p; p∗), is non monotonic in κ.
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Yet, the frequency of disclosure increases monotonically in κ.
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(b) Pareto dominating equilibrium disclosure threshold, p†∗
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Figure 2: Effect of cash flow persistence, κ, on disclosures in the baseline model. A higher value of κ
is associated with less persistent cash flows. Parameters: r = 0.1, p̄ = 0.5 and c = 0.5.

It is interesting to analyze the long run behavior of the beliefs pt. This will allow us to

quantify the amount of asymmetric information in the market. The process pt has limiting

distribution F . Let p0 = 1 and define τ := inf{t > 0|pt = 1}, then Theorem 1.2 in Asmussen

(2003, p. 170) implies that F is given by

F (p) =
E
[∫ τ

0
1{pt≤p}dt

]

E[τ ]
. (18)

The next proposition provides an explicit expression for F .

Proposition 6. For any disclosure threshold p∗ > p̄, the limiting distribution of pt exists

and is given by

F (p) =







1−p∗
1−p∗+p̄(log(1−p̄)−log(p∗−p̄))

if p < p∗

1−p∗+p̄(log(p−p̄)−log(p∗−p̄))
1−p∗+p̄(log(1−p̄)−log(p∗−p̄))

if p ≥ p∗.
(19)
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Figure 3: Effect of cash flow persistence, κ, on the long-run average mean square prediction error
∫ 1

p∗

p(1−p)dF (p). A higher value of κ is associated with less persistent cash flows. Parameters: r = 0.1,
p̄ = 0.5 and c = 0.5

Now, we can quantify the amount of asymmetric information in the market. One possible

measure is the market expected prediction error, which is given by Et[(Vt−pt)
2] = pt(1−pt).

In the long run, we have14

lim
t→∞

E[pt(1− pt)] =
E
[∫ τ

0
pt(1− pt)dt

]

E[τ ]
=

∫ 1

p∗

p(1− p)dF (p).

Note that the mean error made in the long-run also corresponds to the average error made

by the market over time.

In the next section, we add a public information process to the baseline setting as an

intermediate step toward analyzing the case of litigation costs in Section 4.

3 Public Information

In practice, managers’ incentives to disclose private information, at any point in time, depend

on the velocity the information will leak into the market via external sources (e.g., media

coverage, analysts’ recommendations, peer firms’ disclosures) and the way the market inter-

prets the absence of public information. An interesting question in this context is whether

14The fact that
E[

∫
τ

0
pt(1−pt)dt]
E[τ ] =

∫ 1

p∗

p(1− p)dF (p) is a consequence of the Renewal Theorem (Asmussen,

2003, p. 170)
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the presence of more public information reduces the frequency of managerial disclosures or,

on the contrary, exacerbates it. Despite the enormous flow of public information that char-

acterizes the US market some commentators argue that american CEO’s are particularly

inclined to providing earnings’ guidance.

We model the interaction between public information and managerial disclosures as fol-

lows. The public information is represented by a Poisson process N = {Nt}t≥0 with the

following characteristics. If the value of assets is low, N has arrival rate µ, whereas if the

value of assets is high, then N has arrival rate 0. Hence, observing an arrival is perfect

evidence of low asset value.15

This information process has intuitive features. As a preliminary analysis, consider how

the market belief evolves during periods where the probability of disclosure is perceived to

be zero. Using Bayes’ rule, the evolution of beliefs –in the absence of news arrivals– (i.e.,

the drift) must obey

dpt = f(pt)dt, (20)

where

f(p) = κ(p̄− p) + µp(1− p). (21)

In the absence of disclosures and news, beliefs experience a downward drift toward the

stationary level p̂ as defined by f(p̂) = 0, where

p̂ =
1

2

(

1−
κ

µ

)

+

√

1

4

(

1−
κ

µ

)2

+
κ

µ
p̄.

From these conditions, we can see that the mere presence of the news process affects

not only the drift but also the stationary belief p̂. The stationary belief p̂ increases in the

intensity of news arrivals µ. Since arrivals can only take place when the underlying state is

low, the absence of arrivals is perceived by the market as good news. It is easy to verify that

for p ≥ p̂ we have f(p) < 0, and vice versa. Of course, in the event of a news arrival, beliefs

drop down abruptly to zero.

Consider how the presence of the public news process affects the manager’s incentives to

disclose his information. Assuming that the cost of disclosure is not too high, there exists a

15When public information is noisy, managerial disclosures may be triggered by a news arrival, and be used
by the manager as a means to counteract the sometimes adverse price effect of noisy news. This reactive-like
disclosures generate clustering of disclosure in bad times (see Acharya, DeMarzo and Kremer (2011)). For
simplicity, we abstract away from this effect and instead focus on the the case where a news arrival reveal
the underlying state perfectly, without noise.
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disclosure threshold, above the stationary point, i.e., p∗ > p̂. The HJB equations are

rU1(p) = p+ f(p)U ′
1(p) + λ0[U0(p)− U1(p)] (22)

rU0(p) = p+ f(p)U ′
0(p) + λ1[U1(p)− U0(p)] + µ[U0(0)− U0(p)] (23)

with boundary conditions

U1(p) = U1(1)− c, p ≤ p∗ (24)

U0(p) =
λ1

r + λ1
[U1(1)− c], p ≤ p∗. (25)

Unfortunately, it is no longer possible to solve the HJB equation in closed form. The following

proposition characterizes the equilibrium.

Proposition 7. For any p∗ ∈ (p̂, 1) satisfying

U1 (1)− c ≥ 0 (26)

and

U ′
1 (p∗) ≥ 0 (27)

there is an equilibrium with threshold p∗.

We can also establish the converse of Proposition 2.

Proposition 8. Suppose there are equilibrium disclosure thresholds p̂ ≤ p−∗ < p+∗ such that

U1

(
1|p+∗

)
− c = 0 (28)

U ′
1

(
p−∗ |p

−
∗
)
= 0, (29)

then, p∗ is an equilibrium disclosure threshold if and only if p∗ ∈ [p−∗ , p
+
∗ ]. Moreover, the

least transparent equilibrium, p−∗ , is the Pareto dominant equilibrium.

The public news process adds uncertainty to the manager’s payoff, specially in the low

state. By revealing the asset value in the low state the news triggers a significant drop in

market beliefs thus reducing the manager’s payoff in the low state. Of course, ex-ante, the

news process can only affect the manager’s payoff if it modifies the disclosure expense by

changing the disclosure frequency.

The presence of public news has the following two effects on the manager’s disclosure

incentives. First, both the drift f (p) and the stationary belief p̂ are altered by the presence
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of a public news process. A higher intensity of news arrivals µ generally leads to a slower

drift and to more favorable market beliefs. This reduces the manager’s disclosure incentives.

Hence, even in the absence of news arrivals, the mere presence of the news process may

affect the frequency of disclosures. Second, a news arrival results in a sharp price drop which

of course stimulates disclosure as soon as the asset returns to the high state. The former

effect dominates though: more public information, represented by a higher µ, reduces the

frequency of disclosures. One can thus say that public information substitutes managerial

disclosures. In the following section we examine whether this result holds in the presence of

litigation costs.

4 Legal Liability and Disclosure of Bad News

The empirical literature argues that litigation costs are an important driver of firm’s volun-

tary disclosures. For example, Lev (1992) and Skinner (1994) document that managers can

reduce stockholder litigation costs by voluntarily disclosing adverse earnings news “early”,

namely before the mandated release date. Consistent with this view, Skinner (1994) finds

that managers use voluntary disclosures to preempt large, negative earnings surprises more

often than other types of earnings news. 16

In this section, we analyze the effect of litigation on the manager’s disclosure incentives.

We show that the presence of litigation costs fundamentally alters the structure of the equi-

librium. Technically, litigation costs introduce a signaling motive to the decision to withhold

information: the firm can signal high value by not disclosing its private information.17 We

also show that the presence of litigation costs crowds-out good news disclosures. This effect

may be so strong that higher litigation costs may increase the manager’s payoff by reducing

the firm’s expected disclosure costs.

As in the previous sections, here we assume that there is a public news process Nt that

arrives with intensity µ1{Vt=0}. That is, arrivals only take place when the firm is in the low

state, being thus bad news. The manager is subject to legal liability. If bad news arrive and

the manager has not yet disclosed that the asset value is low, then the manager is penalized

with positive probability. Let ℓt be a random variable that takes the value one in the event

the manager is found liable of withholding information, and zero otherwise. The manager’s

16Also, Skinner (1997) finds that voluntary disclosures occur more frequently in quarters that result in
litigation than in quarters that do not, because managers’ incentives to predisclose earnings news increase
as the news becomes more adverse, presumably because this reduces the cost of resolving litigation that
inevitably follows in bad news quarters.

17See Bar-Isaac (2003); Kremer and Skrzypacz (2007); Daley and Green (2012); Gul and Pesendorfer
(2012) for examples of situation in which delaying some intervention may be a positive signal.
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personal cost of legal liability is denoted cℓ while the probability of experiencing this cost

is q if the last time the manager disclosed information he disclosed good news and zero

otherwise.18 Hence, if the manager’s latest disclosure was bad news, then the manager is

safe from the legal liability as he can claim he already disclosed the bad news. We denote

by θ := cℓq the expected legal cost of not disclosing negative information, conditional on a

news arrival.

Consequently, the manager’s expected payoffs, given a market’s conjectured disclosure

strategy, d, and manager’s disclosure strategy, σ, can be written as

Ut(d, σ) := E

[
∫ ∞

t

e−r(s−t)psds− c
∑

s≥t

e−r(s−t)σs − cℓ

∫ ∞

t

e−r(s−t)ℓsdNs

∣
∣
∣Ft, Vt

]

(30)

where the first term inside the expectation is the present value of stock prices, the second

term captures the present value of the expected disclosure expense, and the third component

represents the present value of litigation costs.

4.1 Equilibrium Description

We restrict attention to interior equilibria where the probability of both good and bad news’

disclosures is positive. Depending on the cost of disclosure c, three types of equilibria may

emerge. All of them are characterized by a threshold, p∗, for the market belief such that

whenever the market belief hits the threshold the manager may disclose some of his informa-

tion.19 Whether he discloses good or bad news depends, nonetheless, on the magnitude of the

disclosure cost relative to the litigation cost. First, if the disclosure cost is sufficiently low,

then the manager discloses his information when the price reaches p∗ ∈ (µθ, 1) regardless of

the value of assets (and, off equilibrium, the market assumes the manager is withholding low

asset values if no disclosure is observed). In essence, this is the equilibrium characterized in

the previous section, except that sometimes the firm must pay the litigation cost.

Second, at the opposite extreme, when the cost of disclosure is very high (i.e., c > c+ =
µθ

r+λ0+λ1
) the manager may disclose low asset values with positive probability, whenever the

market beliefs hit the threshold p∗, but he never discloses high asset values because such

disclosures are unaffordable. One can think of this case as arising when certification costs

are too expensive or the highly proprietary nature of the information means that it is too

18Strictly speaking cℓ is the normalized legal cost. If Cℓ is the cost then cℓ := (γ + κ)Cℓ/γ.
19Throughout, we assume that the cost of litigation is neither too low nor too high, so that the threshold

p∗ is interior, namely it belongs to (p̂, 1).
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costly for the firm to disclose good news.

For intermediate disclosure costs the manager discloses bad news with positive probability

when the price hits the threshold p∗ but he discloses good news only when beliefs are severely

depressed (when pt = 0). This is the equilibrium we focus on in the sequel. Interestingly,

the presence of litigation costs results in a unique equilibrium, so no equilibrium selection

criterion is necessary.

One might think that the presence of litigation costs will induce the manager to “spon-

taneously” disclose bad news, even when prices are relatively high. But on closer inspection,

the equilibrium is not so clear: if the market expected the manager to disclose bad news

at a particular point in time, then missing such announcements would be perceived as clear

evidence of good news. This would lead to a sharp positive jump in the stock price. This

in turn would destroy the manager’s incentives to disclose the bad news in the first place:

the temptation to not disclose bad news so as to benefit from the jump would offset the

litigation benefits of disclosing the bad news. This suggests that the manager’s disclosure

strategy must entail some randomization.

We conjecture and verify that the equilibrium is given by

1. If Vt = 1, then dt = 1{pt<p∗}.

2. If Vt = 0, then:

(a) If pt > p∗ we have dt = ∅.

(b) If pt = p∗ then the manager discloses with a mean arrival rate

ζ = κ
p∗ − p̄

p∗(1− p∗)
− µ.

(c) If pt < p∗ then the manager discloses immediately with probability20

pt
1− pt

1− p∗
p∗

.

Figure 4 shows a sample path of the stock price in this equilibrium. At the beginning, the

price experiences a downward drift up until it hits the threshold p∗. This downward drift is

caused purely by the increased likelihood of an undisclosed impairment. Given bad news, the

manager starts randomizing between disclosing and not disclosing his private information.

The price remains flat up until the manager reports bad news, at time T1. Naturally, this

20This is an out-off-equilibrium event as with perfect bad news beliefs never enter the interval (0, p∗) on
the equilibrium path.
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Figure 4: Example of a sample path of the share price with litigation cost.

disclosure causes the price to drop to zero and stay there until the situation of the firm

improves, at time T2, and the manager discloses good news.

Unlike the case without litigation costs analyzed in Sections 2, the manager strictly prefers

not to disclose good news, unless the price experiences the most severe undervaluation (i.e.,

when pt = 0). The reason why the manager becomes less prone to disclosing good news

is that, in this setting, the absence of good news disclosures becomes a positive sign: since

disclosures are expected to sometimes convey bad news, withholding information is often

perceived as a good sign about the asset value. Though the price still drifts downward,

it does it more slowly than without litigation costs; in fact the drift stops when the price

reaches the threshold.

As previously mentioned, the equilibrium must entail randomization. If, at any point,

the manager disclosed bad news with probability one, then the absence of such disclosures

would be interpreted by investors as an indication that the asset value was high, which would

cause an immediate upward jump in the stock price. This would destroy the manager’s

incentives to disclose bad news in the first place: witholding bad news would totally offset

the risk of litigation. The manager’s disclosure randomization allows the price not to jump

upward when the price reaches the threshold, but either to remain constant, in the absence

of disclosure, or to drop down to zero in the presence of a disclosure (see Figure 4). Of

course, for randomization to be the manager’s optimal response, he must be indifferent

between disclosing low values (so as to avoid the risk of litigation) and not disclosing it (so

as to enjoy inflated prices). This indifference condition allows us to pin down uniquely the

disclosure threshold.

The threshold p∗ characterizes an optimal disclosure strategy if the manager’s payoff
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satisfy the following HJB equation. For pt > p∗,

rU1(p) = p+ f(p)U ′
1(p) + λ0[U0(p)− U1(p)] (31)

rU0(p) = p− µθ + f(p)U ′
0(p) + λ1[U1(p)− U0(p)] + µ[U0(0)− U0(p)]. (32)

These equations are analogous to those encountered in previous settings, except that in

the low state the manager’s instant payoff is given by the price net of expected litigation

costs.

The manager is exposed to two types of shocks. First, the asset value may experience a

“real shock” which even when not observed by the market will affect the trajectory of prices

and the expected litigation costs. Second, the manager may experience a ”news shock”: a

news arrival may reveal the manager withheld information which would trigger both a drop

in the stock price and potential litigation costs.

The manager’s decision to disclose bad news has the flavor of the real options problem

analyzed by Dixit (1989), where a firm has the option, at any point in time, to shut-down a

project (i.e., disclose bad news) or restart it (i.e., disclose good news), based on the project’s

observed profitability. The difference is that the payoffs are endogenous here, because they

are linked to the market’s equilibrium belief about asset values. When the stock price is low

(and the value of the asset is low), disclosing bad news becomes profitable for the same reason

shutting down a project that is making losses is optimal in Dixit’s model. Also, as in Dixit’s

problem, here the decision to disclose bad news today is linked to the option to disclose

good news future: if the likelihood of disclosing good news in the future goes down (perhaps

because λ1 is smaller, or the proprietary costs are higher), then the manager’s incentive to

disclose bad news today weaken. Consequently, he further delays such disclosures. This

speaks to a certain complementarity between disclosure of bad news and disclosure of good

news: the higher the propensity of the manager to disclose good news, the higher will be his

propensity to disclose bad news.

To complete the characterization of the equilibrium, we need to derive the boundary

conditions. When pt = p∗, we have

U0(p∗) = E

[∫ τN∧τD∧τ1

0

e−rt(p∗ − µθ)dt+ e−rτN∧τD∧τ1(U0(0)1{τN∧τD<τ1} + U1(p∗)1{τN∧τD>τ1}
)
]

,

where τN is the first arrival of public (bad) news, τD is the time at which the manager

voluntarily discloses bad news, and τ1 is the time at which the value of assets jump from 0
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to 1. We can solve for the expected payoff of a low type manager, as given by

U0(p∗) =

∫ ∞

0

e−(r+µ+ζ+λ1)t
(
p∗ − µθ + (µ+ ζ)U0(0) + λ1U1(p∗)

)
dt

U0(p∗) =
p∗ − µθ

r + µ+ λ1 + ζ
+

µ+ ζ

r + µ+ λ1 + ζ
U0(0) +

λ1

r + µ+ λ1 + ζ
U1(p∗). (33)

Following similar steps as the ones above we get the boundary condition for a high type

manager as given by

U1(p∗) =
p∗ + λ0U0(p∗)

r + λ0
. (34)

In addition, we have the following conditions when pt = 0:

U0(0) =
λ1

r + λ1

U1(0) (35)

U1(0) = U1(1)− c. (36)

As the manager is using a mix strategy when pt = p∗, he must be indifferent between

disclosing negative information and not disclosing it, otherwise he would not be willing to

randomize. Hence, we can determine the threshold p∗ using the indifference condition for a

mixed strategy:

U0(p∗) = U0(0). (37)

We can solve for U0(p∗) by combining equations (33) and (37), which give us

U0(p∗) =
p∗ − µθ + λ1U1(p∗)

r + λ1
. (38)

Then combining (34) with (38) we get

U0(p∗) =
p∗
r
−

µθ

r

r + λ0

r + κ
(39)

U1(p∗) =
p∗
r
−

µθ

r

λ0

r + κ
. (40)

The value of p∗ can thus be obtained from

U0(p∗) =
λ1

r + λ1
[U1(1)− c] . (41)

The strategies above constitute an equilibrium as long as the following conditions are

satisfied
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1. U1(1)− c ≥ 0.

2. U1(p) ≥ U1(1)− c for p ≥ p∗.

3. U0(p) ≥ U0(0) for p > p∗.

A necessary condition for optimality of the disclosure strategy above is that U1(p) ≥

U1(1)− c for p ≥ p∗. If U1 is increasing in p∗, then this condition is satisfied if and only if

U1(p∗) ≥ U1(1)− c =

(

1 +
r

λ1

)

U0(p∗), (42)

where we have used the equilibrium condition (41). Combining (39), (40) and (42) we get

the following upper bound for the disclosure threshold p∗

p∗ ≤ µθ.

The disclosure threshold is lower than the myopic threshold (namely the threshold that a

manager exclusively concerned with his instantaneous payoffs would select). This is natural:

the more the manager cares about future prices, the weaker is his incentive to reveal infor-

mation that will cause a price drop. When the price has reached the level of the litigation

costs µθ the manager has an incentive to wait even further and ”bet for resurrection”: since

the asset may recover its value, the manager has the option to wait and see if this event

realizes thus avoiding the need to disclose bad new. Of course, this bet only makes sense

if there is a positive probability of “resurrection” (i.e., λ1 > 0). This idea is borne out by

the survey evidence in Graham, Harvey, and Rajgopal (2005). Some CFOs claim that they

delay bad news disclosures in the hope that they may never have to release the bad news if

the firm’s status improves. This is, in essence, Verrecchia (1983)’s alternative explation.21

The condition U1(1) − c ≥ 0 is satisfied if and only if U0(p∗) ≥ 0. Thus, using (39) we

obtain a lower bound for p∗ given by

p∗ ≥
r + λ0

r + κ
µθ.

This lower bound reveals an intuitive feature of the model: if litigation costs are too high

the bound will hit 1 which means that no asymmetry of information can ever be experienced

21“An alternative to my explanation for why a manager delays the reporting of ‘bad news’ is that he hopes
that during the interim some ‘good news’ will occur to offset what he has to say.’ The disadvantage of this
explanation is that it ignores the fact that rational expectations traders will correctly infer ‘bad news’ as
soon as it becomes apparent that the information is being withheld” Verrecchia (1983)
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in equilibrium: negative information must be revealed immediately when litigation costs are

prohibitively high.

Proposition 9. For any p∗ ∈ [µθ(r+ λ0)/(r+ κ), µθ], let Uv(p) be the solution to equations

(31) and (32), with initial conditions (39) and (40). Suppose that Uv(p) are non-decreasing

functions satisfying

U0(p∗) =
λ1

r + λ1

[U1(1)− c] ,

where U0(p∗) is given by the initial condition (39). Then, there exist an equilibrium such

that

1. If Vt = 1, then dt = 1{pt<p∗}.

2. If Vt = 0, then:

• dt = ∅ for pt > p∗.

• If pt = p∗, then the manager discloses with intensity

ζ = κ
p∗ − p̄

p∗(1− p∗)
− µ.

• If pt < p∗, then the manager discloses immediately with probability

pt
1− pt

1− p∗
p∗

.

4.1.1 A tractable example: permanent shocks

A particularly tractable example arises when λ1 = 0, namely when negative shocks are

permanent. Since in that case the asset never recovers its value after an adverse shock, we

must have

U0 (0) = 0.

Using this condition along with (37) and (39) we get

p∗ = µθ.

Hence, the optimal disclosure strategy is the myopic policy. This is natural: since the option

to wait for the asset’s recovery has no value, there is no point in further delaying disclosures

of bad news when the current payoffs are non positive.
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When the price reaches p∗ the manager discloses low value of assets with intensity

ζ = max

(
λ0

1− µθ
− µ, 0

)

.

Notice that ζ = 0 if and only if µ ∈
[
1−

√
1−4θλ0

2θ
, 1+

√
1−4θλ0

2θ

]

. When µ is in this interval,

there is no disclosue. The manager always prefers to bear the risk of litigation, instead of

revealing that the asset value is low. This shows that the frequency of disclosure may be

non-monotonic in the intensity of public news µ. This result is perhaps surprising because a

higher µ leads to higher costs of litigation, other things equal. One would think that when

µ is higher, the manager should become more inclined to disclosing his information so as

to avoid the (more likely) litigation costs. There is nontheless another effect going in the

opposite direction. Observe that

p̂ = 1−
λ0

µ

also increases in µ. Hence, the price tends to drift slower and stay at higher level, absent

disclosure and news arrivals. This effect naturally reduces the incentive to disclose bad news,

and may offset litigation costs effect, explaining the non-monotonicity of the frequency of

disclosure with respect to the intensity of public news.

4.2 The Frequency of Disclosure

In order to find the frequency of disclosure we must compute the expected time at which

the manager will disclose his information. As before, the Markov structure of the problem

allows us to focus on the expected time of the first disclosure. Let T = inf{t > 0|dt = 1}.

We want to compute T v(p) := E(T |pt = p, Vt = v). By standard arguments, T v satisfies:

−1 = f(p)T
′
1(p) + λ0[T 0(p)− T 1(p)] (43)

−1 = f(p)T
′
0(p) + λ1[T 1(p)− T 0(p)] + µ[T 0(0)− T 0(p)] (44)

In order to find the right boundary conditions, we note that

T 1(p∗) =
1

λ0

+ T 0(p∗) (45)

T 0(p∗) =
1

µ+ ζ + λ1

+
λ1

µ+ ζ + λ1

T 1(p∗) +
µ

µ+ ζ + λ1

T 0(0). (46)

A high type manager never disclose when pt = p∗. Equation (45) simply says that the
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expected time until the next disclosure equals the expected time that it takes for the value

of the firm to jump down to zero plus the expected time that it takes for a low type manager

to disclose. Equation (46) has a similar interpretation. The expected time that it takes

for a low type firm to disclose consider three possible events: 1) the firm disclose negative

information, 2) the value of the assets jumps up to one, 3) there are negative public news

that take beliefs down to zero. In addition, as in the case without litigation, we have that

T 1(0) = 0

T 0(0) =
1

λ1

.

The solution to these differential equations characterize the frequency of disclosure as a

function of market beliefs and asset values. Figure 5 studies the determinants of the frequency

of disclosure. Intuitively, the frequency of disclosure decreases in the cost of disclosure c. A

higher disclosure cost delays the disclosure of bad news by making the disclosure of good

news more costly hence less attractive to the manager. If the manager anticipates that

overcoming a possible undervaluation by disclosing good news will be too costly, he might

as well delay the bad news in the first place.

By contrast, the frequency of disclosure increases in the cash flows’ mean reversion κ.

A higher mean reversion means the shocks are more transitory. This means that disclosing

bad news will have a weaker impact on the trajectory of future stock prices.

5 Concluding Remarks

This paper studies a model of dynamic costly disclosure. We make the following contribution

to the literature. To our knowledge, this is the first dynamic model of disclosure with the

realistic feature that private and public information flows happen in an ongoing (continuous)

basis. We characterize the dynamics of disclosure, and derive its implications for the time-

series of stock returns. Our analysis is consistent with a number of stylized facts such

as the clustering of announcements in bad times, the downward drift of stock prices prior

to a disclosure, the negative market reaction to firm’s breaking their disclosure (implicit)

commitments, the higher volatility of prices given no disclosure.

Our model has several limitations. First, the state of nature is binary. One could consider

the possibility of asset values that are continuously distributed. This is not just for the sake

of elegance but because some properties of the equilibrium —such as the blackout period

where no disclosure is observed– are purely an artifact of the binary setting. Moreover the

multiplicity of equilibria is also driven by the discontinuous nature of the distribution of the
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Figure 5: The Frequency of Disclosure (1/T 1(1))

asset value process.

Second, we have modeled the public information process as a Poisson process. An in-

teresting but difficult extension is to consider the idea that the public information process

follows a Brownian motion whose drift depends on the state of nature, along the lines of the

information structure considered by Daley and Green (2012). Again, this would allow for a

more realistic characterization of stock returns.
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A Proofs of Section 2

Proof of Proposition 1

Proof. We divide the proof of Proposition 1 in two steps. In step 1, we show that the

functions in the proposition solve the HJB equation with the required boundary conditions.

In step 2, we show that the solution constitutes an equilibrium.

Step 1:

In the absence of any disclosure, the beliefs at time t are given by

φt(p0) = p̄+ e−κt(p0 − p̄).

Let’s define T (p; p∗) as the time that it takes the beliefs to reach p∗ give that current beliefs

are p. That is,

T (p; p∗) = −
1

κ
log

(
p∗ − p̄

p− p̄

)

,

where ∂T (p;p∗)
∂p

> 0 and ∂T (p;p∗)
∂p∗

< 0. The results in Davis (1993, pp. 92-93) imply that the

solution to the HJB equation (6)-(7) satisfies

U0(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)
[

Pr(VT (p;p∗) = 0|V0 = 0)U0(p∗|p∗)

+Pr(VT (p;p∗) = 1|V0 = 0)U1(p∗|p∗)
]

U1(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)
[

Pr(VT (p;p∗) = 0|V0 = 1)U0(p∗|p∗)

+Pr(VT (p;p∗) = 1|V0 = 1)U1(p∗|p∗)
]

.

Replacing Pr(VT (p;p∗) = j|V0 = i) for i, j ∈ {0, 1}, and using the boundary conditions, we

can write the manager’s expected payoff as
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U0(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)

[
rp̄+ λ1

r + λ1
−

rp̄

r + λ1
e−κT (p;p∗)

](

U1(1|p∗)− c
)

(47)

U1(p|p∗) =

∫ T (p;p∗)

0

e−rtφt(p)dt+ e−rT (p;p∗)

[
rp̄+ λ1

r + λ1

+
r(1− p̄)

r + λ1

e−κT (p;p∗)

](

U1(1|p∗)− c
)

.

(48)

Using equation (48) we can write U1(1|p∗) as

U1(1|p∗, κ) =

∫ T (1;p∗)

0
e−rtφt(1)dt

1− δ(1)
−

δ(1)

1− δ(1)
c, (49)

where

δ(1) = e−rT (1;p∗)
[rp̄+ κp̄

r + κp̄
+

r(p∗ − p̄)

r + κp̄
︸ ︷︷ ︸

r(1−p̄)
r+κp̄

e−κT (1;p∗)

]

.

The first term in (49) can be written as

UND(1)

1−δ(1)
︷ ︸︸ ︷

1− e−rT (1;p∗)
UND(p∗)

UND(1)

1− δ(1)
= UND(1).

Hence,

U1(1|p∗) = UND(1)−
δ(1)

1− δ(1)
c, (50)

Step 2:

The only step left is to show that (10) and (11) imply U1(p) ≥ U1(1)− c for all p > p∗ so a

threshold policy is optimal. We first show that (10) and (11) imply U ′
1(p) ≥ 0 for all p > p∗.

The derivative of U1 is given by

U ′
1(p) = e−rT (p;p∗)Φ(p)

∂T (p; p∗)

∂p
+

∫ T (p;p∗)

0

e−(r+κ)tdt (51)

where

Φ(p) := p∗ − re−rT (p;p∗)

[
rp̄+ λ1

r + λ1

+
(1− p̄)(r + κ)

r + λ1

e−κT (p;p∗)

](

U1(1)− c
)

.
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From here we get that U ′
1(p∗) ≥ 0 if and only if Φ(p∗) ≥ 0. Moreover, U1(1)− c > 0 implies

Φ′(p) > 0, which means that Φ(p) ≥ 0 for all p > p∗. Accordingly, U
′
1(p) ≥ 0 for all p > p∗,

and

U1(p) = U1(p∗) +

∫ p

p∗

U ′
1(y)dy = U1(1)− c+

∫ p

p∗

U ′
1(y)dy > U1(1)− c.

Proof of Proposition 2

We begin proving two lemmas.

Lemma 1. Suppose that conditions (10) and (11) are satisfied, then ∂
∂p∗

U1(p|p∗) < 0.

Proof. Differentiating (48) with respect to p∗ we get

∂

∂p∗
U1(p|p∗) = e−rT (p;p∗)Φ(p; p∗)

∂T (p; p∗)

∂p∗
+e−rT (p;p∗)

[
rp̄+ λ1

r + λ1
+

r(1− p̄)

r + λ1
e−κT (p;p∗)

]
∂

∂p∗
U1(1|p∗).

(52)

From here we get

∂

∂p∗
U1(1|p∗) =

e−rT (1;p∗)Φ(1; p∗)

1− e−rT (1;p∗)
[
rp̄+λ1

r+λ1
+ r(1−p̄)

r+λ1
e−κT (1;p∗)

]
∂T (p; p∗)

∂p∗

∣
∣
∣
p=1

< 0,

so ∂
∂p∗

U1(p|p∗) ≤ 0 as Φ(p; p∗) ≥ 0 (see proof of Proposition 1).

Lemma 2. Suppose that conditions (10) and (11) are satisfied, then U ′
1(p∗|p∗) = 0 ⇒

∂
∂p∗

U ′
1(p∗|p∗) > 0.

Proof. Rearranging the HJB equation (6) we can write

U ′
1(p|p∗) =

rU1(p|p∗)− p− λ0[U0 (p|p∗)− U1(p|p∗)]

κ(p− p)

Evaluating at p = p∗ and using the boundary conditions, equations (8) and (9), yields

U ′
1(p∗|p∗) =

rU1(p∗|p∗)− p∗ + U1(p∗|p∗)
rλ0

r+λ1

κ(p− p∗)

=

r(r+κ)
r+λ1

U1(p∗|p∗)− p∗

κ(p− p∗)
(53)

Now, we can show that

U ′
1(p∗|p∗) = 0 ⇒

∂

∂p∗
U ′
1(p∗|p∗) > 0.
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Differentiating equation (53) with respect to p∗ yields

∂

∂p∗
U ′
1(p∗|p∗) =

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

κ(p− p∗)
+

κ

κ(p− p∗)
U ′
1(p∗|p∗)

=

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

κ(p− p∗)
> 0

But from Lemma 1 we know that ∂U1(p|p∗)
∂p∗

< 0. This along with κ(p− p∗) < 0 proves the

lemma.

Proof of Proposition 2. Suppose there exist p−∗ < p+∗ such that

U ′
1

(
p−∗ |p

−
∗
)

= 0

U1

(
1|p+∗

)
− c = 0

A direct consequence of Lemma 2 is that U ′
1 (p∗|p∗) crosses 0 only once. Thus, U ′

1 (p∗|p∗) ≥ 0

for p∗ ≥ p−∗ , and U ′
1 (p∗|p∗) < 0 for p∗ < p−∗ . Moreover, from Lemma 1 we have that

U1 (p∗|p∗)− c ≥ 0 for all p∗ ≤ p+∗ . Hence, p∗ satisfies conditions (10) and (11) if and only if

p∗ ∈ [p−∗ , p
+
∗ ].

The only step left is to show that if the cost of disclosure satisfy the conditions in the

proposition then exist p−∗ , p
+
∗ ∈ (p̄, 1) with the required properties.

Claim 1: If c < r+λ1

r(r+κ)
, then there is a threshold p+∗ ∈ (p̄, 1) such that U1 (1|p

+
∗ )− c = 0.

First, from equation (48) we have that U(1|p̄) = UND(1). Hence, U(1|p̄)− c > 0 if and

only if

c <
λ1 + r

r(r + κ)
.

Second, U(1|1− ǫ)− c < 0 for ǫ close to zero. Let

β(ǫ) := e−rT (1;1−ǫ)

[
rp̄+ λ1

r + λ1

+
r(1− p̄)

r + λ1

e−κT (1;1−ǫ)

]

.

Using equation (48) we get that

(1− β(ǫ))
[
U(1|1− ǫ)− c

]
< T (1; 1− ǫ)− β(ǫ)c,

where T (1; 1−ǫ)−β(ǫ)c < for ǫ close to zero. Hence, by continuity there exist p+∗ ∈ (p̄, 1)

such that U1 (1|p
+
∗ )− c = 0. Moreover, equation (51) implies U ′

1 (p
+
∗ |p

+
∗ ) > 0.
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Claim 2: If c < r+λ1

r(r+κ)
(1− p̄), then there there is p−∗ < p+∗ such that U ′(p−∗ |p

−
∗ ) = 0.

First, we verify that limp∗↓p̄ U
′
1(p∗|p∗) < 0. Using the HJB equation

U ′
1(p∗|p∗) =

r(r+κ)
r+λ1

U1(p∗|p∗)− p∗

κ(p− p∗)

Noting that limp∗↓p̄ U1(p∗|p∗) = UND
1 (1)− c, it suffices to show that

r(r + κ)

r + λ1

(
UND
1 (1)− c

)
− p̄ > 0,

which, after straightforward algebra, is satisfied if and only if c < r+λ1

r(r+κ)
(1− p̄). Second,

we verify that limp∗↑1 U
′
1(p∗|p∗) > 0. When p∗ ↑ 1 the firm starts disclosing infinitely

often. Hence, the cost of disclosure grows without bound. Moreover, the benefit of

disclosing is bounded. Accordingly

lim
p∗↑1

r(r + κ)

r + λ1
U1(p∗|p∗)− p∗ < 0

so, from the HJB equation, limp∗↑1 U
′
1(p∗|p∗) > 0. By continuity there is p−∗ ∈ (p̄, 1)

with the required properties. Moreover, U ′
1 (p

+
∗ |p

+
∗ ) > 0 implies that p−∗ < p+∗ .

Proof of Proposition 3

Proof. From Lemma 1, ∂U1(p|p∗)/∂p∗ < 0. Hence, it only remains to show that ∂U0(p|p∗)/∂p∗ <

0. Differentiating (47) with respect to p∗, we get

∂

∂p∗
U0(p|p∗) = e−rT (p;p∗)Γ(p; p∗)

∂T (p; p∗)

∂p∗
+e−rT (p;p∗)

[
rp̄+ λ1

r + λ1
−

rp̄

r + λ1
e−κT (p;p∗)

]
∂

∂p∗
U1(1|p∗),

(54)

where

Γ(p; p∗) = p∗ − re−rT (p;p∗)

[
rp̄+ λ1

r + λ1
−

p̄(r + κ)

r + λ1
e−κT (p;p∗)

] (

U1(1)− c
)

= p∗ − re−rT (p;p∗)

[
rp̄+ λ1

r + λ1
+

(1− p̄)(r + κ)

r + λ1
e−κT (p;p∗) −

(r + κ)

r + λ1
e−κT (p;p∗)

](

U1(1)− c
)

= Φ(p; p∗) +
r(r + κ)

r + λ1
e−(r+κ)T (p;p∗)

(

U1(1)− c
)

≥ 0.
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Thus, ∂U0(p|p∗)/∂p∗ < 0 as both ∂U1(1|p∗)/∂p∗ < 0 and ∂T (p; p∗)/∂p∗ < 0.

Proof of Proposition 5

We are interested in p′∗(κ) for p∗ solving U ′
1(p∗) = 0. Using the HJB equation and the

boundary conditions we have that

r(r + κ)U1(p∗) = (r + λ1)p∗.

We we want to change κ keeping p̄ constant. Noting that λ1 = κp̄ we have that p∗ solves

r(r + κ)U1(p∗) = (r + κp̄)p∗.

The proof is going to be by contradiction. We are going to assume that p′∗(κ) > 0 and then

arrive to a contradiction.

Lemma 3. Suppose that p′∗(k) > 0, then dU1(1|p∗(κ), κ)/dκ < 0.

Proof. Let U1(1|p∗, κ) be the manager’s expected utility given an equilibrium p∗ and mean

reversion κ. Then

d

dκ
U1(1|p∗(κ), κ) =

∂

∂p∗
U1(1|p∗(κ), κ)p

′
∗(κ) +

∂

∂κ
U1(1|p∗(κ), κ).

Lemma 1 and p′∗(κ) > 0 imply that the first term is negative. With some abuse of notation

let’s define δ(κ, p∗) := δ(1) for δ(1) in Proposition 1 as a function of κ and p∗. Thus, we

have from Proposition 1 that

U1(1|p∗, κ) = UND(1)−
δ(κ, p∗)

1− δ(κ, p∗)
c. (55)

Finally,

δκ(κ, p∗) = −rTκ(1; p∗)
︸ ︷︷ ︸

>0

δ(κ, p∗) +
re−rT (1;p∗)p̄(1− p∗)

(r + κp̄)2
> 0

implies that ∂
∂κ
U1(1|p∗, κ) < 0 completing the proof of the Lemma.

Lemma 4. Suppose that p′∗(k) > 0, then ∂
(
κU1(1)

)
/∂κ > 0.

Proof. Using the HJB equation and the boundary conditions we get

κU1(1) = (r + κ)c+ (1 + κp̄/r)p∗(κ)− rU1(1)
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By Lemma 3, given the hypothesis p′∗(κ) > 0, we have that U1(1) is decreasing in κ. Hence,

κU1(1) is increasing in κ.

Proof of Proposition 5. We prove the proposition by contradiction. Take κ̃ > κ and let Ũθ

and Uθ be the respective solutions. Suppose that p′∗(κ) > 0 so p̃∗ > p∗. Using the HJB

equation and the boundary conditions we get

r(r + κ)U1(p∗)− r(r + κ̃)Ũ1(p̃∗) = (r + κp̄)p∗ − (r + κ̃p̄)p̃∗ (56)

= (r + κ̃p̄)(p∗ − p̃∗) + p̄(κ− κ̃)p∗ < 0. (57)

In order to establish the contradiction we need to show that

r(r + κ)U1(p∗)− r(r + κ̃)Ũ1(p̃∗) > 0 (58)

We can rewrite the right hand side in (56) as

r(r+κ)(U1(1)−c)−r(r+ κ̃)(Ũ1(1)−c) = r2(U1(1)− Ũ1(1))+r(κU1(1)− κ̃Ũ1(1))+r(κ̃−κ)c.

(59)

By Lemma 4 we have that

κ̃(U1(1)− Ũ1(1)) ≥ κU1(1)− κ̃Ũ1(1) ≥ 0. (60)

Equation (60) together with (59) give us (58) and yields the desired contradiction.

Proof of Proposition 6

Proof. {pt}t≥0 is a regenerative process with right continuos sample paths and nonlattice

cycle length distribution.22 By applying Theorem 1.2 in Asmussen (2003, p. 170) we get

that pt has a limiting distribution which is given by

F (p) =
E
[∫ τ

0
1{pt≤p}dt

]

E[τ ]
. (61)

Let S(p) = 1− F (p), then we have that

S(p) =
E
[∫ τ

0
1{pt>p}dt

]

E[τ ]
. (62)

22A distribution is lattice if it is concentrated on a set of the form {δ, 2δ, . . .} (Asmussen, 2003, p. 153)
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For p ≥ p∗ we have that

S(p) =
T (1; p)

T 1(1)
=

p̄ (log(1− p̄)− log(p− p̄))

1− p∗ + p̄ (log(1− p̄)− log(p∗ − p̄))
,

where T (1; p) and T 1(1) are given by equations (16) and (17), respectively. Accordingly, for

all p ≥ p∗ we have

F (p) =
1− p∗ + p̄ (log(p− p̄)− log(p∗ − p̄))

1− p∗ + p̄ (log(1− p̄)− log(p∗ − p̄))
.

Finally, for p < p∗ we have Pr (pt ∈ (0, p∗)) = 0 for all t, and F has an atom at p = 0 given

by

F (0) =

1−p∗
λ1

T 1(1)
=

1− p∗
1− p∗ + p̄ (log(1− p̄)− log(p∗ − p̄))

.

B Proofs of Section 3

Proof of Proposition 7

Let ∆(p) := U1(p)− U0(p), which satisfies

(r + κ)∆(p) = f(p)∆′(p) + µ[U0(p)− U0(0)]. (63)

Differentiating the HJB equation we get

rU ′
0(p) = 1 + f ′(p)U ′

0(p) + f(p)U
′′

0 (p) + λ1∆
′(p)− µU ′

0(p) (64)

rU ′
1(p) = 1 + f ′(p)U ′

1(p) + f(p)U
′′

1 (p)− λ0∆
′(p). (65)

The proof is a direct consequence of the following two lemmas.

Lemma 5. Suppose there is p1 ≥ p∗ such that U ′
1(p

1) = 0, then U ′
0(p

1) > 0.

Proof. Evaluating (63) at p∗ we get that U ′
0(p∗) > 0. If U0 is nondecreasing for p > p∗

we are done. Suppose that U ′
0(p) is decreasing for some p > p∗, then there must be some

p > p∗ such that U ′
0(p) = 0. Let p0 = inf{p ≥ p∗ : U ′

0(p) < 0}. We have two possibilities,

p0 ≥ p1 or p0 < p1. Suppose that p0 < p1, if this is the case, using equation (64), we get

−f(p0)U ′′
0 (p

0) = 1 + λ1U
′
1(p

0) > 0. This means that U ′′
0 (p

0) > 0 which contradicts the fact

that p0 = inf{p > p∗ : U
′
0(p) < 0} so it must be the case that p0 ≥ p1. But then, by definition

of p0, we have U ′
0(p

1) > 0.
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Lemma 6. Suppose that U ′
1(p∗) ≥ 0, then U1 is nondecreasing for all p ≥ p∗.

Proof. Suppose that U1(p) is decreasing in some interval, then there is p such that U ′
1(p) = 0.

Let’s define p1 = inf{p > p∗ : U
′
1(p) < 0}. Then, by (65) we have that

−f(p1)U ′′
1 (p

1) = 1 + λ0U
′
0(p

1).

By lemma 5 we have U ′
0(p

1) > 0. This means that U ′′
1 (p

1) > 0 which is a contradiction with

p1 = inf{p > p∗ : U
′
1(p) < 0}.

Proof Proposition 7. From the boundary condition we have U1(p) = U1(1)− c; moreover, U1

is nondecreasing by lemma 6. Hence, U1(p) ≥ U1(1)− c for all p > p∗.

Proof of Proposition 8

Lemma 7. Let p1∗ < p2∗ be two equilibrium thresholds, then U1(1|p
1
∗) > U1(1|p

2
∗).

Proof. The solution to the HJB equation satisfies (Davis, 1993, Theorem 32.10, p. 94)

U1(1) = E

[
∫ ∞

0

e−rtptdt− cdt
∑

t≥0

e−rt

]

= E

[
∫ ∞

0

e−rtE(Vt

∣
∣Ft)dt− cdt

∑

t≥0

e−rt

]

=

∫ ∞

0

e−rtE(Vt)dt− cE

[

dt
∑

t≥0

e−rt

]

=

∫ ∞

0

e−rtE(Vt)dt−
δ

1− δ
c,

where δ := E(e−rτd) and τd := inf{t ≥ 0 : dt = 1}. Let τ 1d and τ 2d be the first disclosure

times for p1∗ and p2∗, respectively. To show that U1(1|p
1
∗) > U1(1|p

2
∗) it is sufficient to show

that τ 1d ≥ τ 2d and that τ 1d (ω) > τ 2d (ω) for a positive measure set of states ω.

Let τN := inf{t ≥ 0 : dNt = 1} and let T i
∗, i = 1, 2 be given by φT i

∗
= pi∗ where φt is the

solution to the differential equation

dpt
dt

= κ(p̄− pt) + µpt(1− pt), p0 = 1.

By construction we have T 2
∗ < T 1

∗ . We consider several cases:

1. If τN < T 2
∗ then τ 2d = τ 1d .
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2. If τN > T 2
∗ and VT 2

∗
= 1 then τ 2d = T 2

∗ < τ 1d .

3. If τN > T 2
∗ and VT 2

∗
= 0 we have several sub-cases. Let σ = inf{t > T 2

∗ : Vt = 1}.

(a) If τN < T 1
∗ then τ 2d = τ 1d = inf{t ≥ τN : Vt = 1}.

(b) If τN > T 1
∗ and σ < T 1

∗ then τ 2d = σ < T 1
∗ ≤ τ 1d .

(c) If τN > T 1
∗ and σ > T 1

∗ then τ 2d = τ 1d = σ.

According, τ 1d ≥ τ 2d a.s. and Pr(τ 1d > τ 2d ) > 0 which means that E(e−rτ1
d ) < E(e−rτ2

d ) and

U1(1|p
1
∗) > U1(1|p

2
∗).

Lemma 8. Suppose that U ′
1(p∗|p∗) ≥ 0 and U1(1|p∗)−c ≥ 0,, then U1(p|p∗) is non increasing

in p∗.

Proof. Following the same computation as in (Davis, 1993, Theorem 32.10, p. 94) we can

integrate the HJB equation to get

U0(pt) =

∫ T∗

t

e−(r+λ1+µ)(s−t)
(

ps + λ1U1(ps) + µU0(0)
)

ds+ e−(r+λ1+µ)(T∗−t)U0(0)

U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)
(

ps + λ0U0(ps)
)

ds+ e−(r+λ0)(T∗−t)[U1(1)− c].

where T∗ is the time it gets for beliefs to reach p∗ in absence of any shock. Differentiating

with respect to p∗ we get

∂

∂p∗
U0(pt) =

∫ T∗

t

e−(r+λ1+µ)(s−t)
(

λ1
∂

∂p∗
U1(ps) + µ

∂

∂p∗
U0(0)

)

ds+ e−(r+λ1+µ)(T∗−t) ∂

∂p∗
U0(0)

+
[

e−(r+λ1+µ)(T∗−t)
(

p∗ + λ1U1(p∗) + µU0(0)
)

− (r + λ1 + µ)e−(r+λ1+µ)(T∗−t)U0(p∗)
] ∂T∗
∂p∗

∂

∂p∗
U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)λ0
∂

∂p∗
U0(ps)ds+ e−(r+λ0)(T∗−t) ∂

∂p∗
U1(1)

+
[

e−(r+λ0)(T∗−t)
(

p∗ + λ0U0(p∗)
)

− (r + λ0)e
−(r+λ0)(T∗−t)U1(p∗)

] ∂T∗
∂p∗
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Noting that U1(p∗) = U1(1)− c and U0(p∗) = U0(0) = λ1[U1(1)− c]/(r + λ1)

∂

∂p∗
U0(pt) =

∫ T∗

t

e−(r+λ1+µ)(s−t)
(

λ1
∂

∂p∗
U1(ps) + µ

∂

∂p∗
U0(0)

)

ds+ e−(r+λ1+µ)(T∗−t) ∂

∂p∗
U0(0)

+ e−(r+λ1+µ)(T∗−t)p∗
∂T∗
∂p∗

(66)

∂

∂p∗
U1(pt) =

∫ T∗

t

e−(r+λ0)(s−t)λ0
∂

∂p∗
U0(ps)ds+ e−(r+λ0)(T∗−t) ∂

∂p∗
U1(1)

+ e−(r+λ0)(T∗−t)

[

p∗ −
r(r + λ1 + λ0)

r + λ1
U1(p∗)

]
∂T∗
∂p∗

. (67)

Evaluating the HJB equation at p∗ we get

p∗ −
r(r + λ1 + λ0)

r + λ1

U1(p∗) = −f(p∗)U
′
1(p∗)

which is greater or equal than zero if U ′
1(p∗) ≥ 0. Evaluating (66) and (67) at T∗ we get

∂

∂p∗
U0(p∗) =

λ1

r + λ1

∂

∂p∗
U1(1) + p∗

∂T∗
∂p∗

∂

∂p∗
U1(p∗) =

∂

∂p∗
U1(1) +

[

p∗ −
r(r + λ1 + λ0)

r + λ1
U1(p∗)

]
∂T∗
∂p∗

Hence, using that U1(1) is decreasing in p∗ (Lemma 7) and ∂T∗/∂p∗ < 0, we get that

U0(p∗) = U0(0) and U1(p∗) are also decreasing in p∗. Then, by working backward from

t = T∗, it is straightforward that (66) and (67) must be negative for all t ≤ T∗ and hence for

all p ≥ p∗.

Lemma 9. Suppose that U ′
1(p∗|p∗) ≥ 0 and U1(1|p∗) − c ≥ 0, then U ′

1(p∗|p∗) = 0 ⇒
∂

∂p∗
U ′
1(p∗|p∗) > 0.

Proof. Rearranging the HJB equation we can write

U ′
1(p|p∗) =

rU1(p|p∗)− p− λ0[U0 (p|p∗)− U1(p|p∗)]

f(p)

Evaluating at p = p∗ and using the boundary conditions, equations (24) and (25), yields

U ′
1(p∗|p∗) =

rU1(p∗|p∗)− p∗ + U1(p∗|p∗)
rλ0

r+λ1

f(p∗)

=

r(r+κ)
r+λ1

U1(p∗|p∗)− p∗

f(p∗)
(68)
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Now, we can show that

U ′
1(p∗|p∗) = 0 ⇒

∂

∂p∗
U ′
1(p∗|p∗) > 0.

Differentiating equation (68) with respect to p∗ yields

∂

∂p∗
U ′
1(p∗|p∗) =

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

f(p∗)
+

f ′(p∗)

f(p∗)
U ′
1(p∗|p∗)

=

r(r+κ)
r+λ1

∂U1(p|p∗)
∂p∗

∣
∣
∣
p=p∗

− 1

f(p∗)
> 0

But from Lemma 8 we know that ∂U1(p|p∗)
∂p∗

< 0. This along with f(p∗) < 0 proves the

lemma.

Proof of Proposition 8. Suppose there exist p−∗ < p+∗ such that

U ′
1

(
p−∗ |p

−
∗
)

= 0

U1

(
1|p+∗

)
− c = 0

The proof is identical to Proposition 2. A direct consequence of Lemma 9 is that U ′
1 (p∗|p∗)

crosses 0 only once. Thus, U ′
1 (p∗|p∗) ≥ 0 for p∗ ≥ p−∗ , and U ′

1 (p∗|p∗) < 0 for p∗ < p−∗ .

Moreover, from Lemma 8 we have that U1 (p∗|p∗)− c ≥ 0 for all p∗ ≤ p+∗ . Hence, p∗ satisfies

conditions (26) and (27) if and only if p∗ ∈ [p−∗ , p
+
∗ ].

C Proofs of Section 4

Proof of Proposition 9

Proof. First, we verify that the disclosure strategy is optimal whenever Vt = 0. By construc-

tion U0(p∗) = U0(0) so the manager is indifferent between disclosing negative information or

not when pt = p∗. Moreover, given that U0(p) is non-decreasing, the manager does not have

incentives to deviate and disclose if pt > p∗.

Next, we verify that the disclosure strategy is also optimal when Vt = 1. The manager

disclosure strategy is optimal if the following two conditions are satisfied

(1) U1(1) ≥ c.

(2) U1(p) ≥ U1(1)− c for p ≥ p∗.
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For (1) note that, by construction (equation (41)),

U1(1)− c =

(

1 +
r

λ1

)

U0(p∗) =

(

1 +
r

λ1

)(
p∗
r
−

µθ

r

r + λ0

r + κ

)

,

which is always positive given the assumption that

p∗ ≥ µθ
r + λ0

r + κ
.

For (2), note that as U1 is increasing (2) is satisfied if and only if U1(p∗) ≥ U1(1)− c. This

happens if and only if

(

1 +
r

λ1

)(
p∗
r

−
µθ

r

r + λ0

r + κ

)

≤
p∗
r

−
µθ

r

λ0

r + κ
,

which is true for all p∗ ≤ µθ.
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