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1 Introduction

As the finance profession moved beyond the simplistic Black-Scholes (1973) model, the impor-

tance of volatility has been widely accepted, e.g., in the GARCH models, e.g. Bauwens, Laurent,

and Rombouts (2006), and in stochastic volatility models starting with Heston (1993). Surpris-

ingly little is however known about the bivariate distribution of returns and volatility. GARCH

models view postulate a deterministic dependence, and stochastic volatility models work with

the assumptions of a fixed instantaneous correlation, which is then assumed to be the same

under the risk-neutral and the actual distribution. That latter assumption then leaves no room

for a price of correlation risk between returns and volatility, contrary to our empirical findings.

We contribute to the understanding of the dependence between returns and volatilities by work-

ing out the risk-neutral bivariate distribution from option prices on the index and on volatility.

Song and Xiu (2013) deemed this feat impossible as there are no cross-asset options written on

both market index and its volatility, but we use information from longer dated index options

to achieve just that. Figure 1 explains our approach in a simplified risk-neutral setting. The

first period return distribution (1.3 and 0.7 with 50% probability each) is given by the index

options. The second period volatility distribution (�
high

= 0.4 and �

low

= 0.1) is given by the

options on volatility. We now vary the dependence from perfect positive correlation (Panel A)

to perfect negative correlation (Panel B). It emerges that the two-period distribution is a↵ected

by the dependence structure (namely, the skewness changes sign), and we use market prices of

long-dated index options to calibrate this dependence.

[Figure 1 about here]

In practice, we use one- and two-month maturity options on the S&P 500 and one-month

options on VIX plus the relevant futures and interest rates data. We assume that the second

period return distributions inherit the shape of the first period distribution but for its volatility

that is drawn from the option implied volatility distribution. The dependence structure is mod-

eled by a Frank copula, which is particularly well-suited for the typically negative dependence
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we find in the data. We obtain in the end an option-implied measure of index-to-volatility cor-

relation as well as complete information about the bivariate distributions for each month from

May 2006 to January 2013. We also compute implied index-to-volatility correlation under the

actual distribution and further the correlation premium as the di↵erence between risk-neutral

and actual values; this quantity will typically be negative.

Our findings contribute in four main ways to our understanding of index returns and volatil-

ities. First, we add to our understanding of the interaction between returns and volatilities.

The index-to-volatility correlation is always negative and varies considerably over time. More

negative implied index-to-volatility correlations lead to more left-skewed two-month returns

distributions (more precisely, they lead to a fatter left tail in the second-month distribution

compared to the first-month one), and hence to more crash-o-phobic investor attitudes and a

steeper two-month implied volatility smile. Thus, negative market returns translate into a pro-

longed fear of a continuing crash. A less negative implied correlation suggests less left-skewed

two-month distributions and a lower fear of a continuing crash. Alternatively, we express this

mechanism as steepening of the pricing kernel (projected onto the index returns) from the first

month to the second month. Such steepening also goes hand-in-hand with more pessimistic

investor attitudes about market down turns.

Second, the index-to-volatility correlation premium is statistically significant and predicts

future index returns. This predictive power is a new finding, and it is an additional predictive

component, not to be confounded with the variance risk premium. The predictive power is about

half of the variance risk premium and survives in joint predictive regressions. Interestingly, while

our implied index-to-volatility correlation measure picks up investor attitudes towards left-tail

events, adding option-implied skewness does not improve the predictive regressions.

Third, we provide information on the factors driving the index-to-volatility correlation pre-

mium, namely autocorrelation in VIX. High autocorrelation in VIX leads to a significantly more

negative index-to-volatility correlation premium, which means a more pessimistic investor out-

look onto the future. Volatility (option implied or historical), volatility of historical variance,
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and forward-looking implied correlation among the equities of the S&P 500 do not explain the

index-to-volatility correlation premium by themselves, but when autocorrelation in VIX and

an interaction term are added, results turn strongly significant. The economics of this find-

ing are that assessments of risk need to be combined with autocorrelation in order to explain

investor attitudes to future down turns, as measured by the implied index-to-volatility correla-

tion premium. In particular, the high risk measures lead to a more negative index-to-volatility

correlation premium, the same holds for the autocorrelation of VIX. However, the interacted

terms are significant and positive, thus making the index-to-volatility correlation premium less

negative. This new finding suggests that joint negative e↵ects on investor attitudes of high

risk and high autocorrelation are less than the sum of the individual e↵ects. The interaction

term then compensates for this di↵erence. We thus find some mean reversion in the combined

pessimist outlook due to high risk and high VIX autocorrelation: each fact dims the investors

view of the future but taken together, the future outlook reverts somewhat back towards a more

optimistic view.

Fourth, knowledge about the bivariate distribution of returns and volatilities matters for risk

management and option pricing. In particular the time-varying nature of the finding suggests

a time-varying and priced role for index-to-volatility correlation risk.

Section 2 relates the paper to the literature. All data are presented in Section 3. The paper

develops the methodology in Section 4. Hypotheses and results follow in Section 5. Section 6

concludes. Technical details are left for appendix.

2 Literature

We investigate in this paper the relationship of returns and volatility, and we back out in-

formation thereabout from option prices and historical prices. This relates us directly to two

large areas of research. First, the asymmetric volatility area on the interaction of returns and

volatility and, second, the recovery of market price implied information.
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2.1 Asymmetric volatility and return predictability

A current, state-of-the-art account of asymmetric volatility is Bekaert and Wu (2000) with the

main modeling choice that returns and volatility are inverse related to each other, as empirically

found in the data. This informs for example on trading of volatility, which can serve as a hedge

to return exposure. Whaley (2013) is a nice account of trading in volatility products. Closely

related is the literature on the variance risk premium, which is defined as the risk-neutral

expectation of index variance minus the actual index variance. It measures fear of crashes,

of high volatility, and of tail risks. Select contributions to this field are Bekaert and Hoerova

(2012), Bollerslev, Tauchen, and Zhou (2009), Bollerslev and Todorov (2011), and Carr and

Wu (2009). Some of these papers then go on to predicting future returns using the variance

risk premium within an ICAPM framework. Alternative factors used in this setting are market

skewness by Chang, Christo↵ersen, and Jacobs (2012), jump (crash) risk by Cremers, Halling,

and Weinbaum (2012), and rare disasters by Gabaix (2012).

2.2 Recovery of market price implied information

We are interested in recovering the implied correlation between returns and volatility. This is

not to be confused with the implied correlation among stocks within the index. We do not

relate to that literature other than that we share the word correlation.

We touch on recovering marginal densities of S&P 500 returns and of future VIX values,

separately. While we go on to analyzing the joint distribution, there is a large literature on the

extraction of marginal densities, see the surveys of Jackwerth (2004) or Christo↵ersen, Jacobs,

and Chang (2012) for the risk-neutral aspect and any number of time-series investigations on

estimating actual distributions. Song and Xiu (2013) infer risk-neutral S&P 500 and VIX

risk-neutral distributions, separately, while stating that the bivariate distribution cannot be

obtained; a point that we see di↵erently. Allen, McAleer, Powell, Singh (2012) estimate actual

S&P 500 and VIX distributions, separately. Again, no attempt is made to estimate the bivariate
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distribution. Chabi-Yo and Song (2013) go one step further and try to combine the two marginal

distributions with the historical correlation coe�cient. They argue this shortcut by observing

that in continuous time models, the risk-neutral and the actual correlation coe�cients are

instantaneously the same. But the whole point of estimating the bivariate distributions over

longer horizons is that this identity then no longer holds and the index-to-volatility correlation

premium will not be zero any longer.

A number of papers approach the estimation of the risk-neutral correlation between returns

and volatility by resorting to parametric, continuous time models with constant instantaneous

correlation coe�cients. Bardgett, Gourier, and Leippold (2013), Duan and Yeh (2012), Branger

and Voelkert (2013), and Carr and Madan (2013) work along those lines. Fuertes and Papani-

colaou (2012) is an econometric approach to estimating the Heston (1993) model. A common

feature of all these models is the tightly circumscribed parametric model which is estimated.

Also, these models fix the instantaneous correlation while we look at the correlation of one-

month returns with one-month expected volatility.

There exist a parallel literature which estimates the correlations based on the actual returns

and volatilities, often drawing on high-frequency data, e.g. Ishida, McAleer, and Oya (2011).

Zhang, Mykland, and Ait-Sahalia (2005) is a high-frequency estimation of volatilities but, at the

suggestion of one of the authors, can also be used to estimating correlations from high-frequency

time series data.

Shen (2013) does not deal outright with the bivariate distribution of returns and volatility

but estimates two volatility term structures. One he uncovers from the SPX index options and

the other from futures on VIX volatilities. He documents empirical inconsistencies between the

two volatility term structures.
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3 Data

During our sample period from January 2006 to January 2013, we collect information on futures

and options on the S&P 500 and on VIX.

3.1 S&P 500 data

We obtain end-of-day options data on S&P 500 from OptionMetrics. We also obtain tick

data for S&P 500 futures from TickData. We work with midpoint implied volatilities inferred

from raw option prices. We also record the S&P 500 dividend yields and interpolate the zero

certificate of deposit rates from OptionMetrics to match the exact days-to-maturity of our S&P

500 options.

We find the day closest to 25 days before the expiration date of a particular month. This

typically turns out to be a date between the 20th and the 28th day of the previous months; this

filter gives us the most uniform time-to-maturity for the nearest and the second nearest month.

We eliminate options with zero bids and filter for moneyness (=strike price/index level) to lie

between 0.7 and 1.3. We use only out-of-the-money options. Standing on this observation date,

we collect the one-month and two-month index options. We also compute model-free implied

variance from one-month and model-free implied skewness from one- and two-month options

using the results of Bakshi, Kapadia, and Madan (2003).

3.2 VIX data

We obtain end-of-day options data on VIX from OptionMetrics. We also obtain daily VIX

futures data from CBOE. The underlying VIX we collect as daily data from CBOE and as

intraday data from TickData. We work with midpoint implied volatilities. We estimate VIX

implied volatilities from the Black (1976) model using raw option prices and reported VIX
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futures level at the end of the day, as the implied volatilities reported by OptionMetrics are

incorrectly based on the actual VIX level without adjusting for the cost of carry.1

We use the same observation date as for the S&P 500 options. We eliminate zero bids and

filter for moneyness (=strike price/VIX futures level) to lie between 0.2 and 2.2; note that in

the case of VIX we go very far out-of-the-money, and the reason is that VIX has much higher

implied volatility than index options, and the options are liquid farther from the ATM level. We

use only out-of-the-money options. Standing on this observation date, we collect the one-month

VIX options.

3.3 Realized index-to-volatility correlation

We use the second-best method (resampling and averaging) by Zhang, Mykland, and Ait-

Sahalia (2005) to compute realized index-to-volatility correlations from intraday data on S&P

500 futures and VIX levels. Using high-frequency data improves estimates (see e.g. Ander-

sen, Bollerslev, Diebold, and Ebens (2001), and Barndor↵-Nielsen and Shephard (2002)) but

microstructure e↵ects can render these estimates inconsistent. One the one hand, noise e↵ects

arising from bid-ask bounce or discrete trading drive realized variances to infinity, while, on the

other hand, the e↵ect of nonsynchronicity, known as the Epps (1979) e↵ect, drives covariances

to zero. Reducing the sampling frequency can mitigate both problems. To avoid wasting any

data and still having a good estimator we follow a modified version of the second-best method

of Zhang, Mykland, and Ait-Sahalia (2005): we subsample and average first at frequencies of

5, 10, 20, 30, and 60 minutes and then average these five estimators. For each observation date

on which we estimate the risk-neutral densities for S&P 500 and VIX, we compute the realized

index-to-volatility correlation using the data over the past month (30 calendar days). Following

Bollerslev, Tauchen, and Zhou (2009), we also compute the variance risk premium for S&P 500

as a di↵erence between currently observed model-free implied variance and realized variance

over the past month computed from the high frequency data.

1We used the IvyDB OptionMetrics database available through WRDS, and updated on March 11, 2013 (as
noted on WRDS web-site) until 01/2013.
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4 Methodology

We turn to estimating the marginal risk-neutral distributions for the index and the volatility

next. Thereafter we discuss the estimation of the joint distributions before we turn to our

hypotheses.

4.1 Marginal distribution for S&P 500

To estimate the marginal S&P 500 one-month distribution, we use fast and stable method by

Jackwerth (2004), which provides (given a tradeo↵ parameter) a closed form solution for fitting

the implied volatilities of observed options best while at the same time delivering the smoothest

implied volatility smile. The same paper argues that, given some low number of observed option

prices, the exact choice of method matters little in order to obtain risk-neutral distributions.

We require at least eight index option prices to exist at any given observation date. We obtain

implied volatilities over the moneyness (=strike price/index level) range from 0.7 to 1.3 and

interpolate/extrapolate them to fill in a fine grid within 0.5 to 1.5 moneyness range.2 We

improve the fit of the risk-neutral distribution by forcing the mean to be the risk-free rate

minus the expected dividend yield (obtained from OptionMetrics) and the volatility such that

the observed option prices are matched best in a root mean squared error sense. Measuring the

root mean squared error of implied volatilities does not make much di↵erence.

4.2 Marginal distribution for VIX

We also use the method of Jackwerth (2004) to obtain the risk-neutral distributions of one-

month volatility options for dates where we have at least 5 available options. We obtain implied

volatilities for all available out-of-the-money (i.e., with moneyness = strike price/futures level

above one for calls and below one for puts) options, and we interpolate and extrapolate the

implied volatilities to fill in a fine grid within the 0.2 to 2.2 moneyness range. We do not force

2For robustness, we changed the moneyness range from 0.7-1.3 to 0.8-1.2 and results do not change by much.
Also, for increased numerical stability, we multiply all moneyness levels by 1000 before applying the method and
retranslating afterwards.
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the mean as to a particular value, as that value is not predetermined since volatility is not a

traded asset. We improve the fit of the risk-neutral distribution by forcing the volatility such

that the observed option prices are matched best in a root mean squared error sense (and again,

measuring the error for implied volatilities does not change the results). However, both e↵ects

are very small compared to the noise in the VIX options data and hardly a↵ect our fit at all.

[Figure 2 about here]

The original option prices, the resulting risk-neutral densities, and the comparison of market

prices and model prices can be studied in Figure 2 for one particular observation date in our

sample.

4.3 Joint distribution of returns and volatilities

After having the two marginal distributions for returns and future expected volatilities in place,

we model the bivariate distribution via a Frank (1979) copula.3 This copula works best for our

situation of typically sizeable negative correlation between the two variables. The Frank copula

has a single parameter, which controls the correlation between the two variables.

A further degree of freedom lies in the choice of the mean of the risk-neutral volatility

distribution. Since the underlying volatility is not a traded asset, the mean of the distribution

is not determined by the cost of carry and thus not equal to the value of the one-month future

on VIX. We tackle this problem by simply estimating the mean of the risk-neutral volatility

distribution and the parameter of the Frank copula from the fit of the two-month index option

prices. Technical details on the procedure are relegated to an appendix.

In order to obtain the two-month index option prices, we proceed as follows. We pick starting

values for the parameter of the Frank copula and for the mean of the risk-neutral volatility

distribution. That allows us to draw 10,000 bivariate draws from the Frank copula where

3See Patton (2009) on copulas in finance and Trivedi and Zimmer (2007) for a detailed guide which includes
the Frank copula in particular.
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each draw consists of two uniformly distributed values. These we feed into the interpolated

cumulative distribution functions of the risk-neutral returns distribution and the risk-neutral

volatility distribution, where we reset the mean according to our starting value. We now have

10,000 draws of a one-month return and of a second month volatility (i.e. the volatility that

we expect to prevail over the second month).

Next, we construct the second period return distribution for each joint draw of one-month

return and second-month volatility. Here, we make the assumption that the second period

return distribution keeps the shape of the first period return distribution but with changed

mean and volatility. The second period mean is simply the second period risk-free rate minus

the expected dividend yield. The second period volatility we obtain from each draw from the

Frank copula. The first period return distribution has been estimated as a discrete distribution

on a fine grid of return values. We demean the returns and divide by the standard deviation

in order to normalize the distribution, before multiplying by the second period volatility and

adding back the second period mean. Thus, for each draw, we now have a discrete distribution

of second period returns. Multiplication of each of these returns with the first period return

gives a distribution of two period returns with probability equal to the probability of drawing

jointly the first period index return and the respective second period expected volatility times

the probability of the second period return from the discrete distribution.

Repeating the above procedure for each of our draws from the Frank copula, we arrive at

a complete two period risk-neutral return distribution. Our first-period index distribution has

on average 250 realizations, and hence we simulate about 10,000 times 250 = 2,500,000 two-

period returns.4 We can now obtain two-month option prices, one for each observed two-month

out-of-the-money option. As a loss measure, we use the root-mean squared error of the implied

volatilities of model prices and observed prices. We finally calibrate our starting parameter for

4In order to reduce computational demands, we map the two-period marginal distribution of the index onto
a reduced set of 500 values each by aggregating neighboring probabilities.
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the Frank copula and our second period mean of the volatility distribution such that we are

minimizing our loss measure.5

[Figure 3 about here]

[Figure 4 about here]

We depict the bivariate distribution of one-month S&P500 returns and volatilities in Figure

3 for the same observation date which we use in Figure 2 for the marginal distributions. We set

the parameter of the Frank copula such that we obtain a correlation of -0.87 between returns

and volatilities. The parameter and the mean of the second period volatility have been chosen

so that the root mean squared error of the implied volatilities for the two-month index options

(model vs. observed within a 0.8 to 1.2 moneyness range) has been minimized. For the same

observation date, we show in Figure 4 the two-month index option prices. We depict the

observed bid and ask prices, as well as the model prices which lie within the bid and ask prices.

5 Hypotheses and Results

Our findings contribute in three main ways to our understanding of index returns and volatili-

ties.

5.1 Interaction between returns and volatilities

First, we add to our understanding of the interaction between returns and volatilities. The

correlation between index returns and volatilities is always negative and varies considerably

over time. As we can see in Figure 5, this holds for the risk-neutral as well as the actual

index-to-volatility correlations. The correlation between the two time-series of correlations is

0.0259.
5Alternative choices of root mean squared error or mean absolute error combined with relative or absolute

measures combined with implied volatilities or prices yield similar results.
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[Figure 5 about here]

The mean of the risk-neutral correlations is -0.8137 and the mean of the actual correlations

is -0.7361. This finding allows us a first hypothesis:

H1: There exists a risk-premium related to the index-to-volatility correlation.

A t-test shows a strongly significant negative risk premium of -0.0776 with a t-statistic of

-3.6744. For an economic interpretation, this means that holding index-to-volatility correlation

risk is being rewarded in the market. We would like to think about the index-to-volatility

correlation risk in terms of a stochastically changing investment opportunity set and argue that

our correlation risk measure tells us something about future crash fears and their duration.

We thus investigate which exact risk it is that is being compensated here. The point

of departure of our analysis is the variance risk premium, which is the payment for a hedge

against negative returns by gaining on increased volatility. Inherently, the variance risk premium

is symmetric and a large up and a large down move (relative to the mean) result in the same

contribution to variance.6 A first indication that the index-to-volatility correlation risk premium

is measuring something di↵erent lies in the low correlation with the variance risk premium of

only 0.03. Our economic intuition is that the index-to-volatility correlation risk premium rather

works asymmetrically in that a more negative risk premium worsens the investment opportunity

set by strengthening the relationship between a negative first period shock and a more volatile

second period return which leads to a more left-skewed second period distribution which in

turns leads to a more left-skewed two-period distribution. We are now ready to formulate our

second hypothesis related to tail fatness:

H2: An increase in the ratio of left tail probability beyond a certain threshold for the second

period over the first period (tail fatness) and a decrease in the slope of the ratio of first period

6Bollerslev and Todorov (2011) claim that the variance risk premium is mostly driven by jumps and not
purely by the di↵usive part of the returns. However, their measures of jumps for the left tail and the right tail
are correlated to a very high degree. Our argument that the variance risk premium is about symmetric tail risks
thus remains valid.
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over second period pricing kernels (shift in pricing kernels) should be negatively related to the

index-to-volatility correlation risk premium.

We first test our hypothesis by creating our measure of tail fatness (tail � fatness

t

) based

on the ratio of left tail probability beyond the 10th percentile return (-7.77% monthly in our

sample) for the second period over the first period.7 We then run the following regression,

including one or more of the regressors:

tail � fatness

t

= ↵+ �

V RP

V RP

t

+ �

CRP

CRP

t

+ �

SKEW

SKEW

t

+ "

t

, (1)

where V RP

t

is the variance risk premium, CRP

t

is the index-to-volatility correlation premium,

and SKEW

t

is the first period implied skewness computed as in Bakshi, Kapadia, and Madan

(2003). Results can be found in Table 1, Panel A.

[Table 1 about here]

We find confirmation for our second hypothesis in model (1) of Table 1, Panel A, where

we regress tail fatness solely on a constant and the index-to-volatility correlation premium.

The coe�cients have zero p-values and the adjusted R-squared is almost 16%. Using only

the variance risk premium with a constant in model (2) gives an insignificant coe�cient for the

variance risk premium and a low adjusted R-squared of 2%. More interesting is model (3) where

we use all variables and add the risk-neutral skewness of the first period return distribution. The

index-to-volatility correlation premium remains important (p-value of zero) and the variance

risk premium is only marginally significant (p-value of 11%). However, implied skewness has

an important negative influence (p-value of zero) on tail fatness. For interpretation recall that

implied skewness for the index is typically negative, and hence a more left-skewed distribution

in the first month, i.e., where the implied skewness is more negative, is associated with a less

pronounced index-to-volatility correlation premium. E↵ectively, the tail fears of investors are

already incorporated in the first-month distribution, and we do not expect the situation to

become even worse next period.

7We base our threshold return on the 10th percentile of first period returns. Results are qualitatively similar
when we use the 5th or 25th percentile instead.
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A more negative implied index-to-volatility correlation premium thus leads to a fatter left

tail in the second-month distribution compared to the first-month distribution. This will in-

crease fears of a crash-o-phobic investor about second period crashes, which in turn leads typ-

ically to a steeper two-month implied volatility smile. Negative market returns then translate

into a prolonged fear of a continuing crash.

Second, we define the slope of the ratio of first period over second period pricing kernels

(shift in pricing kernels). For that we compute the first and second month risk-neutral cumu-

lative probability densities at 20 return points corresponding to the specific percentile of the

first-month return distribution (we use percentiles 5 to 100 with increment of 5). Then we

approximate the probability density function (i.e., dQ) as the probability mass assigned to the

returns within each bin defined by the stipulated percentiles (i.e., returns between percentiles

0 and 5, 5 and 10, and so on). Assuming that the actual distribution does not change from

one month to the next, we compute the ratio of the pricing kernels as the ratio of the second

months to the first months risk-neutral distribution, depicted in Figure 6.

[Figure 6 about here]

We compute the slope between the probability ratio in 0 to 5th percentile bin and the 25th

to 30th percentile bin to be our shift

t

variable. This variable moves exactly opposite to tail

fatness: if tail fatness is high, then slope is lower (more negative). We then run the following

regression, including one or more of the regressors:

shift

t

= ↵+ �

V RP

V RP

t

+ �

CRP

CRP

t

+ �

SKEW

SKEW

t

+ "

t

, (2)

where V RP

t

is the variance risk premium, CRP

t

is the index-to-volatility correlation premium,

and SKEW

t

is the first period implied skewness computed as in Bakshi, Kapadia, and Madan

(2003). Results for estimation of the regression (2) can be found in Table 1, Panel B. The

results are much the same as the ones for tail fatness, except that all sign are flipped. A more

negative implied index-to-volatility correlation premium thus leads a steeper pricing kernel in

the second-month distribution compared to the first-month distribution and thus to a more
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negative slope (shift
t

). This will again increase fears of a crash-o-phobic investor about second

period crashes which in turn leads typically to a steeper two-month implied volatility smile.

Negative market returns then translate into a prolonged fear of a continuing crash.

5.2 Prediction of future index returns

The index-to-volatility risk premium seems to measure time-varying investment opportunities

according to our above analysis. Thus, we are curious to investigate if it also predicts future

index returns. Namely, a worsening of the future investment opportunities (more negative

index-to-volatility risk premium) should lead to a higher required rate of return in order to

compensate the investor for the dimmer outlook.

Again, we start our analysis with the variance risk premium, which is known to predict

index returns, see e.g. Bollerslev, Tauchen, and Zhou (2009). Also, since we found implied

skewness to matter for tail fatness, but the mechanism was very mechanical. In particular,

implied skewness seemed to measure the current shape of the distribution more than the future

investment opportunity set. We are thus skeptical if implied skewness predicts future index

returns. We thus formulate our hypothesis.

H3: Future S&P 500 index returns are being predicted by the variance risk premium and

the index-to-volatility risk premium. Implied skewness does not predict future S&P 500 index

returns

We test our hypothesis by running the following regression:

r

S&P500,t+1 = ↵+ �

V RP

V RP

t

+ �

CRP

CRP

t

+ �

SKEW

SKEW

t

+ "

t

, (3)

where r

S&P500,t+1 are the future 25-day returns on the S&P 500 from observation date until

the maturity of the index options. V RP

t

is the variance risk premium, CRP

t

is the index-to-

volatility correlation premium, and SKEW

t

is the first period implied skewness as computed

by Bakshi, Kapadia, and Madan (2003). Results of the estimation of regression (3) can be

found in Table 2.
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[Table 2 about here]

In model (1), we find that our index-to-volatility correlation risk premium predicts future

index returns. The p-value of the coe�cient is 0.0176 and the adjusted R-squared is almost 4%.

We further confirm in model (2) that the variance risk premium predicts future index returns.

The p-value of the coe�cient is 0.0098 and the adjusted R-squared is just above 8%.

The variance risk premium and the index-to-volatility correlation risk premium both predict

returns, and are almost uncorrelated with a coe�cient of only 0.03 in our sample. To confirm

that the two variables account for di↵erent information, we run the joint model (3) where

we also add implied skewness. Both premiums survive strongly significantly, while implied

skewness has a p-value of 0.5560. The R-squared of the joint regression is almost 12% (some

0.72% higher if we drop implied skewness from the regression), indicating that the joint model

almost adds the explanatory power of models (1) and (2).

5.3 Drivers of the index-to-volatility correlation premium

The index-to-volatility correlation premium expresses market expectation of the future and

hence should to some extent be based on past market information. If a more negative index-to-

volatility correlation premium indicates worsening future investment opportunities (e.g., higher

risk or duration of down markets), then we might capture this e↵ect also by historical variables

such as autocorrelation in VIX, historical volatility, VIX, the volatility of historical variance,

or option implied correlation among the equities of the S&P 500. We compute autocorrelation

in VIX as the sum of the first three lags in the regression of daily VIX values on its lagged

values over the past quarter; historical S&P 500 return volatility is derived as the square root

of the realized variance over the past month computed from high-frequency data, volatility of

historical variance is computed from daily variances of S&P 500 returns over the past week,

where each daily variance is again computed from intraday data using the resampling and
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averaging algorithm discussed in the data section. Implied correlations among the equities of

the S&P 500 index are estimated following Driessen, Maenhout, and Vilkov (2013).

[Table 3 about here]

There is a significant negative dependency between the autocorrelation in VIX and the

index-to-volatility correlation premium in Model (1) of Table 3. Thus, persistence in VIX leads

to worsening future investment opportunities (a more negative index-to-volatility correlation

premium). This finding is intuitive for high levels of VIX, which suggest persistence in volatile

times which is clearly a bad perspective. Less clear is the story for low VIX levels. Thus, we

turn to our risk measures and investigate them in turn.

Historical volatility (PastSP500V olatility

t

) is insignificant by itself in explaining the index-

to-volatility correlation premium; see Table 3, Model (2). But as we are concerned that the

full story about future investment opportunities only emerges once VIX autocorrelation is also

taken into account, we next investigate the following interacted regression:

CRP

t

= ↵+ �

AC

AC

t

+ �

PastSP500V olatility

PastSP500V olatility

t

+

�

interaction

PastSP500V olatility

t

AC

t

+ "

t

, (4)

where CRP

t

is the implied index-to-volatility risk premium. AC
t

is the VIX autocorrelation and

PastSP500V olatility

t

is historical volatility on the index. Results for (4) are in Model (3) of

Table 3 and show that VIX autocorrelation keeps its significant negative e↵ect. Past volatility

also has now a significant negative e↵ect, suggesting that a risky environment leads to worsening

future investment opportunities. However, the interacted term is significant and positive, thus

making the index-to-volatility correlation premium less negative. This novel finding suggests

that the combined negative e↵ects on future investment opportunities of high risk and high

autocorrelation are less than the sum of the individual e↵ects. E↵ectively, investors have faced

bad times characterized by high volatility and steadily high fear index VIX for some time,

and they might expect a slowly decreasing risk over the next months, i.e., some kind of a

mean-reversion that is typical for such risk measures as volatility.
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The same story holds for the remaining risk measures, namely VIX (Models (4 and 5)),

volatility of variance (Models (6 and 7)), and the option implied correlation among the equities

constituting the S&P 500 index (Models (8 and 9)).

5.4 Bivariate distribution of returns and volatilities

As we have estimates of the bivariate distributions of returns and volatilities, we can use the

risk-neutral distributions right away for pricing of exotic options written on a combination of

the two quantities. Such knowledge could also inform the risk management of banks holding

assets linked to either quantity about the risk neutral correlation between the two quantities.

Furthermore, the time-varying nature of the finding suggests a time-varying and priced role for

index-to-volatility correlation risk. This is relevant for the development of stochastic volatility

option pricing models, which mostly model the correlation as constant.

6 Conclusion

Starting with the marginal risk-neutral distributions of the index and its expected volatility,

we describe a way to identify the joint distribution. We achieve identification of the parameter

of a Frank copula (which determines the correlation) by fitting two-month market index op-

tions based on its two-month risk-neutral distribution. This distribution we build up from the

one-month return distribution and rescaled second-month distributions, which incorporate the

information in the expected volatility distribution and the correlation parameter.

The implied index-to-volatility correlation premium turns out to be significantly negative

and time-varying. It predicts future index returns above and beyond the variance risk premium.

It is related to measures of risk and to the persistence of risk in a sub-additive way. That means

that the implied index-to-volatility correlation premium (which we interpret to measure future

investment opportunities and also investor attitude towards market down turns) moves more

negative (worse outlook) as current risk is higher and risk persistence is higher. However, the
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interaction term works the other direction, so high and persistent risk simultaneously leads to

a better outlook that the sum of the two e↵ects separately.

Our work provides new ideas for risk management and pricing of portfolios of index and/or

volatility related securities. In the future, we intend to look at bivariate pricing kernels and

asset pricing tests, which could use index-to-volatility correlation as factors.
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A Technical Appendix

This section provides necessary details for the simulation-based calibration of the index-to-

volatility implied correlation.

1. Preparation of data on S&P 500 and VIX options

(a) Process IvyDB OptionMetrics data using raw options for S&P 500 and VIX. Raw

data includes underlying spot price, bid/ask prices of options, mid-point implied

volatility, date of observation, and days to maturity.

(b) Recompute implied volatilities (IVs) for VIX options. The OptionMetrics database

(version update on WRDS from March 2013) contains an error in computing implied

volatility and Greeks of the VIX options—instead of using the futures level, Option-

Metrics uses current VIX level as the at-the-money reference level without using the

correct cost of carry/ convenience yield. Instead of using cost of carry/ convenience

yield in the Black-Scholes formula one can use the futures level directly and infer the

implied volatility by inverting Black (1976) formula.

We merge options data with end-of-day data on futures (from CBOE) and compute

the implied volatilities by inverting the Black formula:

Call(T, F,K) = e

�rT [F ⇥N(d1)�K ⇥N(d2)],

Put(T, F,K) = e

�rT [K ⇥N(�d2)� F ⇥N(�d1)],

d1 =
log(F/K) + (�2

/2)T

�

p
T

, d2 = d1 � �

p
T ,

where T is the time to maturity, F is the futures level, K is the strike, r is the

prevailing riskfree rate, N(·) is the cumulative standard normal distribution function,

and � is the implied volatility we are looking for.

(c) For each month we take the regular expiration day on the third Friday and find

the observation date in the previous month closest to 25 days before the selected
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expiration day. We select all options observed on the observation date and expiring

on the regular third Friday expiration date in the next month for short-term options

and in the second month for longer term options. We use 25 days to maturity as the

target duration for short maturity options, because (i) it allows to select the option

sample with the most stable days to maturity each month, (ii) we obtain second

maturity (longer-term options) closest to 60 days, and (iii) for 25 days we compute

the estimated index-to-volatility implied correlation closest to the end of the month.

The typical date on which we perform the calibration is between the 20th and the

28th of each month.

(d) On each monthly calibration date, select all observed S&P 500 and VIX options the

next and the second month maturities. For each data point record the S&P 500

continuous dividend yield �

t

and interpolate the zero CD rate (from OptionMetrics)

to the exact days to maturity of the selected S&P 500 options to find the continuously

compounded rate r

f,t

.

(e) Select the short-term options for calibration on a given date. For S&P 500 use out-

the-money (OTM) calls and puts with moneyness (defined as K/S with respect to

the current S&P 500 level S) between 0.7 and 1.3, i.e., filter out puts with K/S > 1

and calls with K/S < 1, and for both types of options filter out K/S < 0.7 and

K/S > 1.3.8 For VIX use all OTM calls and puts, where moneyness is determined

with respect to the futures level (i.e., moneyness is K/F ). For both underlying

securities we normalize option strike by the underlying price (i.e., spot price for

S&P 500, and futures level for VIX), so that each option strike now represents the

gross return (or relative change) for the given underlying on the maturity date. We

estimate the marginal RND from S&P 500 and VIX options for the dates, where we

have at least 8 and 5 available options, respectively.

8For robustness we also apply di↵erent filters on the moneyness of options.
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2. Estimate marginal risk-neutral distributions (RND) for S&P 500 from observed short-

term options using the “fast and stable method” of Jackwerth (2000): the method finds

a smooth risk-neutral distribution that, at the same time, explains the option prices.9

(a) Fit the implied volatility curve as a function of the moneyness with values �

j

at

discrete moneyness grid points m

j

2 [0.5, 1.5], j = 1 . . . N . To fit the implied

volatility function we select the step size � and smoothness parameter � for implied

volatility interpolation to achieve RND, which is smooth. Because the “fast and

stable method” leads to a system of equations, where coe�cients are functions of

the step size on a moneyness grid, and because S&P 500 options are too close to each

other in moneyness, there is not enough machine accuracy to solve the system. To

circumvent the problem, we multiply all moneyness points by 1000 and divide by the

same multiplier when we need raw returns. Output from the procedure: a grid of

raw returns (i.e., moneyness points) m
j

between 0.5 and 1.5, with respective implied

volatilities �

j

for all points on the grid. The risk-neutral probability distribution

q(m
j

) can be written directly as

q(m
j

) = e

rT

"
e

�rT

n(d2
j

)

m

j

�

j

p
T

(1 + 2m
j

d1
j

�

0
j

p
T ) + e

��T

n(d1
j

)
p
T

✓
�

00
j

+
d1

j

d2
j

�

j

(�0
j

)2
◆#

,

(A1)

d1
j

=
� log(m

j

) + (r � �)T + (�2
j

/2)T

�

j

p
T

, d2
j

= d1
j

� �

2
j

/2T,

where T is the time to maturity, m
j

is the moneyness level at grid point j, r is the

prevailing riskfree rate, � is the dividend yield, �
j

is the implied volatility at the

grid point j, �0
j

and �

00
j

are the first and second derivatives of the volatility function

with respect to moneyness at grid point j, and n(·) is the standard normal density

function.

(b) Due to requirements on the smoothness of the resulting risk-neutral distribution,

the interpolated and extrapolated implied volatility curve does not exactly fit the

9See Appendix A in Jackwerth (2000) for technical details.
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initially observed option prices and their implied volatilities. To improve the fit

of the risk-neutral distribution to the observed option prices, while maintaining its

smoothness controlled directly by the parameters of the fast and stable method, we

introduce the second step in RND estimation. After deriving the “fast and stable”

RND, we adjust it in two ways: (*) first, we set the mean of the distribution equal to

the risk-free rate (demean first the resulting distribution from the previous step and

add a new mean = e

rf,t��t (or
1+rf,t

1+�t
as an approximation), adjusted for the time to

maturity T :

m

j

= m

j

�
NX

z=1

q

mz ⇥m

z

+ e

(r��)T
, 8j = 1, . . . , N, (A2)

and (**) second, we set the volatility of the distribution to the value that provides the

best fit of the option prices computed from the derived RND to the observed options

prices. To price an option we compute the payo↵ of a given option for each grid

point, compute the expectation of the payo↵ using the adjusted RND, and discount
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at the riskfree rate.

�̂0 =

vuut
NX

z=1

q

mz ⇥ (m
z

� 1)2 �
 

NX

z=1

q

mz ⇥ (m
z

� 1)

!2

,

mean0 =
NX

z=1

q(m
z

)⇥m

z

,

m

j

= [m
j

�mean0]⇥
�̂0,opt

�̂0
+mean0, 8j = 1, . . . , N,

Prc

est

c

= e

�rT

NX

z=1

q(m
z

)⇥max(0, (m
z

� 1)� K

c

S

), 8c 2 {Observed Calls},

P rc

est

p

= e

�rT

NX

z=1

q(m
z

)⇥max(0,
K

p

S

� (m
z

� 1)), 8p 2 {Observed Puts},

RMSE(Prc) =

vuut
1

#j 2 {c, p}
X

j2{c,p}

⇣
Prc

est

j

� Prc

obs

j

⌘2
,

�̂0,opt = argminRMSE(Prc). (A3)

We guarantee that the sum of all risk-neutral probabilities q

j

, 8j = 1, . . . , N is

equal to one, by normalizing each probability q

j

by the sum of probabilities.

3. Estimate marginal RND for future expected volatility from observed short-term VIX

options using the “fast and stable method.”

(a) Fit the implied volatility curve as a function of the moneyness with values �

j

at

discrete moneyness grid points m

j

2 [0.2, 2.2], j = 1 . . . N . Control the step size

� and smoothness parameter � for implied volatility interpolation to achieve RND,

which is smooth. As in case with S&P 500, we multiply all moneyness points by

1000 and divide by the same multiplier when we need raw returns. Output from the

procedure: a grid of raw VIX returns respective to the futures level (i.e., moneyness

points) m
j

between 0.2 and 2.2, with respective implied volatilities �
j

for all points
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on the grid. The risk-neutral probability distribution q(m
j

) can be written directly

as a function of implied volatilities, option moneyness and maturity, as shown for

the case of S&P 500 in the equation (A1); note that because VIX is not traded, we

set both interest rate r and dividend yield � to zero, using moneyness m

j

defined

with respect to the VIX futures level.

(b) Due to requirements on the smoothness of the resulting risk-neutral distribution, the

interpolated and extrapolated implied volatility curve does not exactly fit the initially

observed option prices and their implied volatilities. To improve the fit of the risk-

neutral distribution to the observed option prices, while maintaining its smoothness

controlled directly by the parameters of the fast and stable method, we introduce

the second step in RND estimation, where we adjust the volatility of the distribution

so that it obtains the best fit of the option prices computed from the derived RND

to the observed options prices. As opposed to S&P 500 RND estimation, where

we apply two adjustments—mean as in the equation (A2), and volatility as in the

system (A3), the drift of the risk-neutral distribution of VIX is not fixed at the level

of riskfree rate, and hence we apply only the volatility adjustment; the mean of the

VIX changes RND is just equal to one, because the changes are defined relative to

VIX futures level. To price the options we compute the payo↵ of a given option for

each grid point, and then compute the expectation of the payo↵ using the adjusted

RND. The procedure is equivalent to the one applied to S&P 500 distribution in

system (A3).

4. Generate a two-period (approximately 60 days, which correspond to the maturity of a

second-maturity options on each calibration date) S&P 500 risk-neutral distribution.

(a) On each calibration day we are given: one-period risk-neutral density qSP for S&P 500

with the support m

SP

j

2 [0.5, 1.5], j = 1 . . . NSP , one-period risk-neutral den-

sity q

V IX for VIX changes from its reference value with the support m

V IX

j

2
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[0.2, 2.2], j = 1 . . . NV IX . We use each density function and the grid points from

the respective support to estimate the interpolated inverse cumulative distribution

function Qinv

SP and Qinv

V IX , s.t.

m

SP = Qinv

SP

 Z
m

SP

�1
q

SP (m)dm

!
,

m

V IX = Qinv

V IX

 Z
m

V IX

�1
q

V IX(m)dm

!
.

We generate 10, 000 draws from a joint distribution of S&P 500 and VIX, where the

joint density is defined by the Frank copula C(· · · ) with a dependency parameter

✓, and marginal distributions of S&P 500 and VIX. Each draw is given by a pair

of uniformly distributed numbers uSP , u

V IX ⇠ U [0, 1], where u

SP is iid, and u

V IX

is drawn conditionally on u

SP and copula parameter ✓. The corresponding values

of S&P 500 and VIX realizations are given by m

SP = Qinv

SP (u1) and m

V IX =

Qinv

V IX(u2), respectively. The risk-neutral joint cumulative distribution function

for a given pair of realizations is given by the copula function:

Q(mSP

,m

V IX) = Q

�
Qinv

SP (uSP ), Qinv

V IX(uV IX)
�
= C(uSP , uV IX ; ✓).

(b) For each pairwise realization i = 1, . . . , 10, 000 of S&P 500 return m

SP

i

and ex-

pected volatility change m

V IX

i

construct the conditional second-period distribution

of S&P 500 return, such that its volatility is equal to the drawn realization of the

future expected volatility. The distribution will have the same probabilities q

SP

j

of

each realization of the gross return for a grid point j as in the first period, but the

grid point value will change from m

SP

j

to m

SP

j,1 to reflect the volatility realization

drawn for this run. To adjust for new volatility, we proceed in three steps: first, we

demean the first-period S&P 500 return distribution:

m

SP,demeaned

j

= m

SP

j

�
N

SPX

z=1

q

SP (m
z

)⇥m

SP

z

, 8j = 1, . . . , NSP

,

second, we normalize all support points mSP

j

by the volatility �̂0,opt, which we esti-

mated by solving the problem described by the system (A3), and multiply all support
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points by the volatility �1,i = m

V IX

i

E[�1], derived from the realization of volatility

change mV IX

i

for a given draw i and future expected volatility level E[�1], estimated

jointly with the copula parameter ✓ as described below, and third, we add the mean

of the initial S&P 500 distribution back. The changes in the mean and volatility of

the distribution are certainly adjusted to reflect the di↵erences in the length of the

first T0 and the second T1 period (expressed as fractions of the year).

m

SP

j,1 = m

SP,demeaned

j

⇥ m

V IX

i

E[�1]

�̂0,opt
+

N

SPX

z=1

q

SP (m
z

)⇥m

SP

z

, 8j = 1, . . . , NSP

.(A4)

(c) Construct 10, 000 two-period distributions of S&P 500 gross return for respective

draws of S&P 500 return and VIX. The support of each two-period distribution

of S&P 500 gross return conditional on the draw {mSP

i

,m

V IX

i

} is given by the

product of the first period draw of the gross return realizationm

SP

i

and each adjusted

realization of second-period S&P 500 gross return m

SP

j,1 from (A4):

m

SP

j,i,2 = m

SP

i

⇥m

SP

j,1 , 8j = 1, . . . , NSP

.

Each of such conditional distributions has the same probability density function

q

SP

i

, 8j = 1, . . . , NSP , but a di↵erent support depending on the realization of the

random copula-based draw. We can stop here and use 10, 000 resulting conditional

distributions in a Monte-Carlo procedure to price the 2-period (60-day) options on

S&P 500. Because we want to analyze the properties of the two-period and of the

second-period distributions, we go one step further and construct an unconditional

two-period distribution of S&P 500 gross return with the support consisting of 500

realizations of two-period return.

We proceed as follows: (i) collect all 10,000 realizations m

SP

i

of the first-period

S&P 500 gross return from the copula simulation procedure and allocate them to

the 500 equally spaced bins within the limits that cover all realizations; find the

probabilities of generating each pairwise draw u

SP

, u

V IX from the copula simula-

tion procedure (i.e., from the copulapdf in Matlab); and normalize the probabilities
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of the return draws falling into each bin so that within each bin the probabilities of

all observations sum up to one. Multiply the probability of each draw in a bin by the

probability of observing a given S&P 500 draw obtained from the marginal S&P 500

distribution density q

SP to get the probability of observing each S&P 500 return in

the first period and a drawn value of the future expected volatility.

(ii) collect all the realizations of the conditional two-period distributions mSP

j,i,2, 8j =

1, . . . , NSP

, i = 1, . . . , 10, 000 and allocate them to 500 equally spaced bins, trun-

cating any realizations below 0 and above 2; from the allocated realizations compute

the average realization (gross return) m

SP

2,j in each bin j = 1, . . . , 500, and allocate

to this moneyness a probability density q

SP

2,j equal to the sum of the product of the

probabilities of the first-period S&P 500 return realizations and probabilities of the

second-period realizations from each conditional distribution, such that the pair of

first- and second-period returns lead to the given two-period S&P 500 realizations

in a given bin.

(d) Use the two-period S&P 500 distribution to price two-period (approximately 60-day)

S&P 500 options. Before using the RND to price options, adjust the two-period

S&P 500 return distribution the same way as we did in equation (A2) for the first-

period RND, i.e., set its drift equal to the e

(rf��)T2 , where T2 is the length of the

two periods. Then compute the payo↵ for an option with a given strike price and

maturity for each of the 500 grid points, compute the expectation of the payo↵ using

the adjusted RND, and discount at the riskfree rate:

Prc

est

c

= e

�rT2

500X

z=1

q

SP

2 (mSP

2,z )⇥ ((mSP

2,z � 1)� K

c

S

)+, 8c 2 {Obserbed Calls},(A5)

Prc

est

p

= e

�rT2

500X

z=1

q

SP

2 (mSP

2,z )⇥ (
K

p

S

� (mSP

2,z � 1))+, 8p 2 {Observed Puts}.(A6)

(e) Invert the Black and Scholes (1973) option pricing formula to get the implied volatil-

ities from the observed two-period option prices IV

obs, and from the option prices
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for the same strikes estimated in equations (A5) and (A6), i.e., IV est. Calibrate

the copula parameter ✓ and future expected volatility level E[�1] to minimize the

pricing error in terms of implied volatilities in two-period (60-day) S&P 500 options

(we minimize the RMSE of IV

est relative to the observed IV

est for all available

out-the-money options within moneyness range of [0.8,1.2]):

{✓, E[�1]} = argmin

vuut
1

#j 2 {c, p}
X

j2{c,p}

⇣
IV

est

j

� IV

obs

j

⌘2
.

5. Estimate the index-to-volatility correlation directly from drawn 10,000 pairwise realiza-

tions of S&P 500 gross return and VIX changes.
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Table 1: Explanations of tail fatness and pricing kernel shifts.

In Panel A, we define our dependent variable of tail fatness to be the ratio of left tail probability
beyond the 10th percentile return (-7.77% monthly in our sample) for the second period over the
first period. In Panel B, we define the slope of the ratio of first period over second period pricing
kernels (shift in pricing kernels). Assuming that the actual distribution does not change from one
month to the next, we compute the ratio of the pricing kernels as the ratio of the second months
to the first months risk-neutral distribution. We compute the slope between the 5th and the 30th
percentile to be our shiftt variable. We regress tail fatness on a constant, the index-to-volatility
correlation risk premium, the variance risk premium, and the implied skewness of the first period
risk-neutral distribution.

Panel A: Tail Fatness
(1) (2) (3)

Intercept 1.1179 1.1316 0.8363
p-val 0.0000 0.0000 0.0000

Index-to-vol Corr Prem -0.4001 - -0.4349
p-val 0.0000 - 0.0000

Variance Risk Premium - 1.2271 1.1317
p-val - 0.2303 0.1069

Implied Skewness, 30d - - -0.1282
p-val - - 0.0002

Rbar 0.1558 0.0241 0.3635

Panel B: Shift in Pricing Kernels
(1) (2) (3)

Intercept -1.0231 -1.1097 1.0059
p-val 0.0000 0.0000 0.0677

Index-to-vol Corr Prem 3.0225 3.2787
p-val 0.0000 0.0000

Variance Risk Premium -10.4934 -9.8529
p-val 0.1785 0.0715

Implied Skewness, 30d 0.9117
p-val 0.0004

Rbar 0.1593 0.0354 0.3619
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Table 2: Return predictability.

We define our dependent variable as the 25 day return on the S&P 500, i.e., the return from the day of
calibration until the maturity of the nearest maturity options used in calibration. We regress future
returns on a constant, the index-to-volatility correlation risk premium, the variance risk premium,
and the implied skewness of the first period risk-neutral distribution.

(1) (2) (3)
Intercept -0.0016 -0.0047 -0.0212
p-val 0.7937 0.4521 0.3581

Index-to-vol Corr Prem -0.0636 - -0.0676
p-val 0.0176 - 0.0181

Variance Risk Premium - 0.5692 0.5753
p-val - 0.0098 0.0027

Implied Skewness, 30d - - -0.0054
p-val - - 0.5560

Rbar 0.0384 0.0822 0.1194
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Figure 1: The bivariate dependence of returns and volatility for di↵erent correlation levels.

We depict in Panel A a two-period binomial tree where volatility and returns have perfect positive
correlation. The high (low) return is followed by a second period high (low) volatility return. In
Panel B, the correlation is perfectly negative. Moments are for the two period distributions.
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Figure 4: Prices of two-month S&P500 index options.

For one observation date in our sample (August 23, 2011), we show the (bid and ask) prices of two-
month S&P 500 index options. We use a Frank (1979) copula with correlation -0.87 between returns and
volatilities. The parameter of the Frank copula and the mean of the second period volatility have been
chosen so that the root mean error of the implied volatilities for the two month index options (model
vs. observed) has been minimized. We also show the model prices which lie in between the observed bid
and ask prices.
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