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1 Introduction

We consider the following semiparametric factor model

yit = α(zit) + β(zit)
′ft + εit, i = 1, . . . , N, t = 1, . . . , T, (1)

where ft is a K×1 vector of unobserved factors, β(·) is a K×1 vector of unknown factor

loading functions, α(·) is an unknown intercept function, εit is the idiosyncratic compo-

nent that cannot be explained by the common component, and yit and zit—an M × 1

vector of covariates—are observed. Our main focus is on cross-sectional asset pricing,

where yit are asset return realizations while zit are pre-specified asset characteristics (i.e.

they are known at the beginning of period t).1 In this case (1) describes a conditional

factor model, in the sense that it captures time-variation in asset return exposures to

the common factors (i.e., β(zit)) as well as the pricing errors (i.e., α(zit)), which are

both functions of characteristics (i.e., zit). As emphasized by (Cochrane, 2011), this

model is central to empirical asset pricing, since it potentially allows for distinguishing

between “risk” and “mispricing” explanations of the role of characteristics in predict-

ing asset returns.2 Pooling the information in a multitude of stock characteristics and

summarizing the common variation using a small number of factors would amount to

“taming the zoo” of factors that proliferate in empirical asset pricing. The challenge to

doing so is threefold: first, the identities of the common factors ft are unknown since the

factors are latent; second, the functional forms of the alpha and beta functions are also

generally unknown; finally, the cross-sectional dimension N is typically much larger than

the time-series length T , which renders standard tools of factor analysis inapplicable,

especially when conditional covariances are time-varying.

We introduce a simple and tractable estimation method to recover both the latent

factors and the functional parameters of the model, as well as develop formal inference

procedures. First, we develop an easy-to-compute estimator for α(·), β(·) and ft based

on a sieve approximation to the nonparametric functions α(·) and β(·). The estimators

can be easily obtained by first running the regression of yit on sieves of zit for each t and

then applying principle component analysis (PCA) to the estimated coefficient matrix.

Throughout the paper, we refer to the two-step procedure as the regressed-PCA. The

first step of our procedure is a cross-sectional regression (Fama and MacBeth, 1973).

Thus, in asset pricing settings the regressed-PCA boils down to applying PCA to a rela-

tively small set of characteristic-managed portfolios constructed via the Fama-MacBeth

regressions. Second, we establish large sample properties of the estimators including

1Other potential applications include modelling the implied volatility of options (Park et al., 2009)
and describing consumer demand system (Lewbel, 1991), among others.

2While useful, it might not be sufficient to resolve the debate, since distinguishing between the
different explanations requires understanding the economic nature of the latent factors - e.g., see (Kozak
et al., 2018) .
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consistency, rate of convergence, and asymptotic normality under mild conditions. In

particular, we establish a strong approximation for the distribution of the estimator

of the large dimensional coefficient matrix in the sieve approximation of α(·) and β(·).
These asymptotic results have several attractive properties: (i) they do not require large

T ; (ii) they allow zit to vary over time in a potentially non-stationary manner; (iii) they

are applicable to unbalanced panels (which is useful since individual securities have vary-

ing life spans). Third, we provide two consistent estimators for the number of factors

K, which are also easy to compute. This enables us to conduct regressed-PCA without

specifying the number of factors a priori.

In asset pricing, testing the restriction that α(·) is equal to zero for a given set

of factors ft is central for evaluating and comparing factor models. We show that

linear specifications of α(·) and β(·) that are widely used in existing literature may

adversely influence estimation of ft when the true underlying functional relationships

are nonlinear. Therefore, along with the flexible nonparametric estimators we provide a

specification test for the shape of α(·) and β(·) functions. We develop a simple bootstrap

inference procedure for testing significance of pricing error α(·) as well as for linearity

of α(·) and β(·). First, we propose a weighted bootstrap procedure to approximate

the distribution of the estimator of the large-dimensional coefficient matrix in the sieve

approximation of α(·) and β(·) as well as construct a Wald-type test for examining

the significance of α(·). The main challenge to developing a valid bootstrap is that the

asymptotic distribution usually involves a rotational transformation matrix, which could

be different under the bootstrap distribution, invalidating the procedure. In order to

solve this problem we enforce the same factor estimator in the bootstrap samples as in

the actual data. Second, we develop an LR-type test for examining the linearity of α(·)
and β(·). Specifically, we construct the test statistic by comparing estimators under the

null hypothesis and the alternative hypothesis. The novelty of our construction is that

we use the unrestricted factor estimator from the alternative to obtain the estimators

of α(·) and β(·) under the null. This ensures the same rotational transformation matrix

under the null and the alternative and thus the consistency of our test. Both of these

tests also enjoy the aforementioned attractive features of our estimators: our Monte

Carlo simulations show that the finite sample performance of our estimators and tests

is satisfactory and encouraging for large N , even when T is small.

We apply our new methodology to analyze the cross section of individual stock

returns in the US market. We use the same data set as in Kelly et al. (2019), which is

the closest study to ours in terms of its empirical aims, although both our econometric

approach and empirical findings are quite different. First, in contrast to Kelly et al.

(2019, 2020) we allow for α(·) and β(·) functions to be non-linear. In fact, we are able

to test – and reject – the validity of the linear specifications. Second, we are able to

conduct rolling small sub-sample analyses to accommodate changing factor dynamics as
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our methods do not require large sample length T . Third, we are able to consistently

estimate the number of latent factors. Our empirical findings reveal that only one latent

factor is detected by the formal tests when we consider linear dependence of alpha and

beta functions on characteristics, and two factors when we allow for nonlinearity - this is

also in contrast to Kelly et al. (2019), who advocate a five-factor model. Still, our tests

reject the risk-based model, since the pricing errors associated with many characteristics

are statistically different from zero. Their economic magnitudes are also substantial, as

we are able to construct pure-alpha arbitrage portfolios with annualized Sharpe ratios

typically above 3. These Sharpe ratios tend to rise with the number of factors (we

consider up to ten), indicating that adding factors does not improve the asset pricing

properties of the model, even though it might help capture more time-series variation in

returns. This result provides strong empirical evidence that the characteristics contain

information about both risk exposures and mispricing. In addition, the nonlinear models

often produce more reasonable estimated relationships between the risk exposures and

characteristics than the linear model. For instance, the estimates from our nonlinear

models show that firms with higher book-to-market ratios bear more systematic risk

and hence have higher expected returns, whereas the estimates from the linear model

often give the opposite result. The importance of nonlinearity is highlighted by several

empirical studies (Connor et al., 2012; Kirby, 2020), and has also been addressed by

machine learning methods in recent studies (Gu et al., 2021; Chen et al., 2020). By

emphasizing the importance of nonlinearity our method also relates to the method of

characteristic-sorted portfolios.

Our paper relates to several strands of literature. Several studies estimate models

similar to (1) under the assumption that zit are time-invariant, at least over subsamples.

Connor and Linton (2007) develop a two-step kernel estimation procedure for the case

with α(·) = 0. Connor et al. (2012) propose an alternating least squares procedure

based on kernel smoothing for a given consistent initial estimator. Fan et al. (2016a)

consider a sieve estimation which facilitates global inference, and propose a projected-

PCA approach for the case with α(·) = 0. Kim et al. (2020) extend the projected-

PCA to allow for nonzero α(·), and use it to construct an arbitrage portfolio. We

contribute to this literature by introducing a robust sieve estimation to allow for zit

to vary over time and developing global inference for α(·) and β(·). Despite some

similarities, our regressed-PCA is genetically different from the projected-PCA. The

regression in the former serves to extract zit from the common component for a consistent

estimation, whereas the projection in the latter serves to remove the noise part of the

factor loadings for a more efficient estimation. Therefore, the projected-PCA may fail

to obtain consistent estimators when zit is time-varying. In contrast, our regressed-PCA

is consistent even when zit is nonstationary.

Our study also contributes to the literature on time-varying factor models. Motta
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et al. (2011) and Su and Wang (2017) consider the time-varying factor model with fac-

tor loadings being smooth functions of t/T and propose local versions of PCA based

on kernel smoothing.3 Pelger and Xiong (2021) assume that factor loadings are smooth

functions of state variables and study a similar estimation procedure. Gagliardini and

Ma (2019) study a time-varying factor model with no arbitrage and extract local factors

from conditional variance matrices. However, none of them are directly suitable for

testing asset pricing models, since they all impose α(·) = 0. Many empirical findings

suggest that characteristics contain information about both pricing errors and risk ex-

posures, which can be distinguished in our approach. There are numerous studies of

conditional models with observed factors. For example, Gagliardini et al. (2016) specify

factor loadings as linear functions of both time-varying characteristics and state vari-

ables in a model imposing α(·) = 0. We may refer to Gagliardini et al. (2020) for a

comprehensive review.

The literature on the cross section of asset returns is vast; here we focus on multi-

factor models motivated by the arbitrage pricing theory of Ross (1976) and its gen-

eralizations (Chamberlain and Rothschild, 1982; Connor and Korajczyk, 1986, 1988;

Reisman, 1992). Empirical analysis that exploits the ability of stock characteristics to

predict asset returns typically follows either the portfolio-sorting approach (Fama and

French, 1993; Daniel and Titman, 1997; Fama and French, 2015) or the characteristic-

based approach (Rosenberg and McKibben, 1973; Jacobs and Levy, 1988; Lewellen,

2015; Green et al., 2017; Freyberger et al., 2020; Kirby, 2020; Giglio and Xiu, 2019).

The central issue with both of these approaches is that they are unable to distinguish

between the two roles played by characteristics: capturing time-varying risk exposures

and representing mispricing. We complement the literature by introducing a semipara-

metric time-varying characteristic-based factor model that provides a simple, tractable

and robust method for estimation and inference. Briefly, the new methodology enables

us to estimate conditional (dynamic) behavior of a large set of individual assets from a

number of characteristics exhibiting nonlinearity without the need to pre-specify factors,

while allowing us to disentangle the risk and mispricing explanations, as least from the

standpoint of arbitrage-based models.

The remainder of the paper is organized as follows. Section 2 presents three relevant

application examples. Section 3 introduces the estimation method—the regressed-PCA.

Section 4 establishes large sample properties of the estimators, including consistency,

rate of convergence, and asymptotic distribution. Section 5 introduces a weighted boot-

strap and develops two tests. Section 6 provides two consistent estimators of the number

of factors. Section 7 presents simulation studies. Section 8 applies our new methodol-

ogy to analyze the cross section of individual stock returns in the US market. Section 9

3There is a large literature on conditional models that considers time-varying factor loadings that are
functions of aggregate variables rather than firm-specific characteristics, e.g. Ferson and Harvey (1999)
use a linear formulation while Roussanov (2014) considers nonparametric kernel-based specifications.
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briefly concludes. Proofs are collected in the appendices.

2 Application Examples

Example 2.1 (Asset return). Connor and Linton (2007), Connor et al. (2012), Kelly

et al. (2019), and Kim et al. (2020) use the model (1) to study the cross section of

asset returns. Here, yit is the excess return of asset i (e.g., stock i) in time period

t, and zit is the vector of asset characteristics (e.g., book-to-market ratio and market

capitalization). The model assumes that the pricing error (i.e., α(zit)) and the risk

exposures to factors (i.e., β(zit)) are associated with characteristics (i.e., zit), unifying

the characteristic-based model (Rosenberg and McKibben, 1973; Daniel and Titman,

1997) and the risk-based model (Fama and French, 1993, 2015). This modeling not

only provides a way to disentangle alpha and (multi-factor) betas, but also allows us to

estimate a model for a large set of individual stocks. Another advantage of the model is

that one does not need to rely on ex ante knowledge of the factors, allowing them to be

latent. The first paper above develops a two-step kernel estimation procedure when zit is

not time-varying and α(·) = 0. The second paper proposes an alternating least squares

procedure based on kernel smoothing for a given consistent initial estimator. The third

paper allows for time-varying zit and considers the least squares estimation, assuming

that α(·) and β(·) are linear. The authors use the model to describe the realized return

variation (i.e., systematic risks) and the cross-sectional differences in average returns

(i.e., risk compensation). The fourth paper assumes time-invariant zit and extends Fan

et al. (2016a)’s projected-PCA to allow for nonzero α(·). The authors use the extended

method to construct arbitrage portfolios.

Example 2.2 (Implied volatility). Fengler et al. (2007) and Park et al. (2009) use the

model (1) to describe the dynamics of the implied volatility from traded options. Here,

yit is the log-implied volatility where t is an index of day and i is an intra-day numbering

of the option traded on day t, and zit is the two-dimensional vector of moneyness and

time-to-maturity. Their main interest is the estimation of ft and its dynamics. The first

paper considers a kernel estimation, and the second paper considers the least squares

estimation based on sieve approximations. It is noted that the ith traded option on day

t and the ith traded option on day s are different options for t 6= s (abuse of notation),

so the data does not necessarily exhibit a panel data structure. However, our results are

also applicable for such data structure, as long as the imposed assumptions are satisfied.

Example 2.3 (Consumer demand). Lewbel (1991) uses the model (1) to describe a

consumer’s demand system. Here, yit represents the budget share of good t for house-

hold i, and zit = zi represents household i’s total expenditure. The main interest is the

number of factors K, which is referred to as the rank of the demand system. Estimation

6



of the rank of the demand system is important, because it provides evidence on consis-

tency of consumer behaviors with utility maximization and has implications for welfare

comparisons and aggregation across goods and across consumers.

3 Estimation Method

Before we proceed we need introduce some notation that is used throughout the paper.

For a symmetric matrix A, we denote its kth largest eigenvalue by λk(A), and its smallest

and largest eigenvalues by λmin(A) and λmax(A). For a matrix A, we denote its operator

norm by ‖A‖2, its Frobenius norm by ‖A‖F , and its vectorization by vec(A). The

Euclidian norm of a column vector x is denoted ‖x‖. For matrices A and B, we use

A⊗B to denote their Kronecker product.

We begin by illustrating the idea behind our regressed-PCA method by assuming

that α(·) is null and β(·) is linear: α(·) = 0 and β(zit) = Γ′zit for some M ×K matrix

Γ. Let Yt ≡ (y1t, . . . , yNt)
′, Zt ≡ (z1t, . . . , zNt)

′, and εt ≡ (ε1t, . . . , εNt)
′. Then we may

write (1) in a matrix form

Yt = ZtΓft + εt. (2)

The main challenge of applying the standard PCA for estimating Γ and ft is the presence

of Zt in the first term on the right-hand side of (2). To circumvent it, we regress (2) on

Zt. Thus, we obtain

(Z ′tZt)
−1Z ′tYt = Γft + (Z ′tZt)

−1Z ′tεt. (3)

Heuristically, the variation of the common component ZtΓft over t has two sources: Zt

and ft, and regressing Yt on Zt can easily isolate the two sources or extract Zt from

the common component. Given the factor structure on the right-hand side of (3), we

may apply the standard PCA to the regressed data—{(Z ′tZt)−1Z ′tYt}t≤T—to obtain

estimators of Γ and ft. We call the two-step procedure the regressed-PCA.

We next consider the general case with nonzero α(·) and address how to estimate α(·)
and β(·) = (β1(·), . . . , βK(·))′ nonparametrically. To estimate α(·) and βk(·) without the

curse of dimensionality when zit is multivariate, we assume α(·) and βk(·) to be separable.

Specifically, we assume that there are {αm(·)}m≤M and {βkm(·)}m≤M such that

α(zit) =

M∑
m=1

αm(zit,m) and βk(zit) =

M∑
m=1

βkm(zit,m), (4)

where zit,m is the mth entry of zit. To estimate αm(·) and βkm(·), we adopt the sieve

method. Let {φj(·)}j≥1 be a set of basis functions (e.g., B-spline, Fourier series, poly-
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nomials), which spans a dense linear space of the functional space for αm(·) and βkm(·).
Then we may write

αm(zit,m) =
J∑
j=1

am,jφj(zit,m) + rm,J(zit,m), (5)

βkm(zit,m) =

J∑
j=1

bkm,jφj(zit,m) + δkm,J(zit,m). (6)

Here, {am,j}j≤J and {bkm,j}j≤J are the sieve coefficients; rm,J(·) and δkm,J(·) are “re-

maining functions” representing the approximation errors; J denotes the sieve size. The

basic assumption for the sieve method is that supz |rm,J(z)| → 0 and supz |δkm,J(z)| → 0

as J → ∞. Let φ̄(zit,m) ≡ (φ1(zit,m), . . . , φJ(zit,m))′, φ(zit) ≡ (φ̄(zit,1)′, . . . , φ̄(zit,M )′)′,

a ≡ (a1,1, . . . , a1,J , . . . , aM,1, . . . , aM,J)′ which is a JM × 1 vector of the sieve coeffi-

cients, bk ≡ (bk1,1, . . . , bk1,J , . . . , bkM,1, . . . , bkM,J)′, and B ≡ (b1, · · · , bK) which is a

JM × K matrix of the sieve coefficients. Let r(zit) ≡
∑M

m=1 rm,J(zit,m) and δ(zit) ≡
(
∑M

m=1 δ1m,J(zit,m), . . . ,
∑M

m=1 δKm,J(zit,m))′. Then

α(zit) = a′φ(zit) + r(zit) and β(zit) = B′φ(zit) + δ(zit). (7)

Thus, α(zit) and β(zit) can be well approximated by a′φ(zit) and B′φ(zit) under the

basic sieve assumption, and estimating α(·) and β(·) reduces to estimating a and B.

We now introduce the estimation of a, B and ft based on the above sieve ap-

proximation in (7) by adapting the regressed-PCA. Let Φ(Zt) ≡ (φ(z1t), . . . , φ(zNt))
′,

R(Zt) ≡ (r(z1t), . . . , r(zNt))
′ and ∆(Zt) ≡ (δ(z1t), . . . , δ(zNt))

′. Using the sieve approx-

imation in (7), we may write (1) in a matrix form

Yt = Φ(Zt)a+ Φ(Zt)Bft +R(Zt) + ∆(Zt)ft + εt. (8)

Under the basic sieve assumption, the term “R(Zt)+∆(Zt)ft” is negligible, so the main

challenge for applying the standard PCA to estimate a, B and ft is the presence of

Φ(Zt) in the first two terms on the right-hand side of (8). To solve the challenge, we

use the regressed-PCA. Specifically, we may regress (8) on Φ(Zt) to obtain

Ỹt = a+Bft + (Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′(R(Zt) + ∆(Zt)ft + εt), (9)

where Ỹt = (Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Yt. Thus, we may estimate a, B and ft as follows.

First, we may remove a by subtracting ¯̃Y =
∑T

t=1 Ỹt/T from Ỹt and estimate B by

applying the standard PCA to {Ỹt − ¯̃Y }t≤T . Second, we may impose a′B = 0 and

estimate a from ¯̃Y , since a+Bf̄ is approximated by ¯̃Y where f̄ =
∑T

t=1 ft/T .

The estimators of a, B, α(·), β(·) and F = (f1, . . . , fT )′ are defined as follows. Denote

the estimators by â, B̂, α̂(·), β̂(·) and F̂ . Let MT ≡ IT − 1T 1′T /T , where 1T denotes
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a T × 1 vector of ones. We use the following normalization: B′B = IK and F ′MTF/T

being diagonal with diagonal entries in descending order. Let Ỹ ≡ (Ỹ1, . . . , ỸT ). Then

the columns of B̂ are the eigenvectors corresponding to the first K largest eigenvalues

of the JM × JM matrix Ỹ MT Ỹ
′/T , â = (IJM − B̂B̂′) ¯̃Y , and

α̂(z) = â′φ(z), β̂(z) = B̂′φ(z) and F̂ = (f̂1, . . . , f̂T )′ = Ỹ ′B̂. (10)

The intuitions for â and F̂ are as follows. First, since a+Bf̄ is approximated by ¯̃Y and

a′B = 0, B′Bf̄ is approximated by B′ ¯̃Y . Thus, we may estimate f̄ by (B′B)−1B′ ¯̃Y , and

a by [IJM −B(B′B)−1B′] ¯̃Y . Second, from (9), we may estimate ft by (B′B)−1B′(Ỹt −
a) = (B′B)−1B′Ỹt since a′B = 0. Here, we assume that K—the number of factors—is

known, and conduct asymptotic analysis and develop inference method in Sections 4

and 5. In Section 6, we develop two consistent estimators of K, so all the results carry

over to the unknown K case using a conditioning argument.

Remark 3.1. Our estimation procedure is applicable for unbalanced panels. The key

step is to obtain Ỹt. To this end, we may write Ỹt = [
∑N

i=1 φ(zit)φ(zit)
′]−1

∑N
i=1 φ(zit)yit.

In the presence of unbalanced panels, we may obtain Ỹt by taking the two sums over i’s,

for which both zit and yit are observed in time period t. This is equivalent to replacing

missing data with zeros and proceeding as balanced panels. The asymptotic results

established in the following sections continue to hold as mint≤T Nt → ∞, where Nt is

the sample size in time period t.

Remark 3.2. The approximated model in (8) can be alternatively viewed as a panel

data model with time-varying slope coefficients a + Bft, which exhibit a factor struc-

ture. The regressed-PCA first estimates the time-varying slope coefficients by period-

by-period cross-sectional regressions, and then exploits the factor structure by using

PCA. The period-by-period cross-sectional regressions are known as Fama-MacBeth

regressions (Fama and MacBeth, 1973). In asset pricing applications, Ỹt can be inter-

preted as the time t realization of returns on a set of JM managed portfolios. Thus, the

regressed-PCA boils down to applying PCA to a set of characteristic-managed portfolios

constructed via the Fama-MacBeth regressions. The `th entry of Ỹt is a weighted average

of asset returns with weights determined by the `th row of (Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′, which

is a standardized version of Φ(Zt). If Φ(Zt)
′Φ(Zt) is diagonal, the portfolios are normal-

ized by the second moment of Φ(Zt). If the polynomial basis functions are used, Φ(Zt)

consists of powers of Zt. This allows us to investigate nonlinearity of characteristics in

pricing errors and risk exposures.

To end this section, we compare our regressed-PCA with existing methods. First,

the regressed-PCA is different from projected-PCA of Fan et al. (2016a). The projected-

PCA applies the standard PCA to the projected data—{Φ(Zt)(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Yt}t≤T .

The regression in the regressed-PCA is designed to extract Zt from the common compo-
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nent for a consistent estimation, whereas the projection in the projected-PCA is designed

to remove the noise part of the factor loadings for a more efficient estimation. Therefore,

the projected-PCA may fail to provide consistent estimators when Zt is time-varying.

Indeed, as discussed in Appendix G of Fan et al. (2016b), one may need to impose

certain smoothness conditions of Zt over t to ensure the consistency of the projected-

PCA; the regressed-PCA does not require such conditions (see below). In view of this,

our regressed-PCA is more robust. Second, the regressed-PCA is superior to the least

squares estimation (Park et al., 2009) that is the core of the instrumented PCA (IPCA)

of Kelly et al. (2019) in terms of computation and asymptotic properties. The least

squares estimation may not be explicitly solved because the problem is nonconvex, so

Park et al. (2009) develop a Newton-Raphson algorithm to numerically find the esti-

mators, and Kelly et al. (2019) propose to use the alternating least squares procedure.

However, both numerical methods may require a good choice of initial values4, and their

asymptotic properties have not been well understood. Our estimators can always be ex-

plicitly solved for, and their computation is easy since it involves only regression and

PCA.

4 Asymptotic Analysis

In this section, we conduct asymptotic analysis for our estimators. Specifically, we

establish consistency, rate of convergence, and asymptotic distribution.

4.1 Consistency

To establish consistency, we impose the following assumptions.

Assumption 4.1 (Basis functions). (i) There are positive constants cmin and cmax such

that: with probability approaching one (as N →∞),

cmin < min
t≤T

λmin(Q̂t) ≤ max
t≤T

λmax(Q̂t) < cmax,

where Q̂t = Φ(Zt)
′Φ(Zt)/N ; (ii) maxm≤M,j≤J,i≤N,t≤T E[φ2

j (zit,m)] <∞.

Note that Q̂t =
∑N

i=1 φ(zit)φ(zit)
′/N is an JM ×JM matrix with JM much smaller

than N . Thus, Assumption 4.1(i) can follow from the law of large numbers for finite

T and its uniform variant for T → ∞; see Proposition I.1 for its justification when

{zit}i≤N,t≤T are independent across i. The assumption can be easily verified for com-

monly used basis functions such as B-spline, Fourier series, and polynomials. Since Zt
4Kelly et al. (2019) do not provide proofs for the convergence of the alternating least squares pro-

cedure; as noted by (Park et al., 2009), “it is not guaranteed to converge to a solution of the original
problem.”
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is allowed to change over t, we need the well-conditionedness of Q̂t for all t. We allow

Zt to be nonstationary over t. When Zt is not changing over t, Assumption 4.1 reduces

to Assumptions 3.3 of Fan et al. (2016a).

Assumption 4.2 (Loading functions and factors). There are positive constants dmin and

dmax such that: (i) dmin < λmin(B′B) ≤ λmax(B′B) < dmax; (ii) maxt≤T ‖ft‖ < dmax;

(iii) λmin(F ′MTF/T ) > dmin; (iv) maxm≤M supz |rm,J(z)| = O(J−κ) and maxk≤K,m≤M

supz |δkm,J(z)| = O(J−κ) for some constant κ > 1/2.

Assumption 4.2(i) is similar to the pervasive condition on the factor loadings in

Stock and Watson (2002). Similar assumptions also are imposed in Assumption B of Bai

(2003) and Assumption 4.1(ii) of Fan et al. (2016a). For simplicity of proof, we assume

that ft is nonrandom. All the results continue to hold, when {ft}t≤T are random and

independent of {Zt, εt}t≤T . Since the dimension of B is JM × K, Assumption 4.2(i)

requires JM ≥ K. Since the rank of MT is T−1, Assumption 4.2(iii) requires T ≥ K+1,

which implies T ≥ 2. These two requirements are reasonable, since we assume K to

be fixed throughout the paper. Assumption 4.2(iv) is standard in the sieve literature.

It can be easily satisfied by using B-spline or polynomials basis functions under certain

smoothness of α(·) and β(·); see, for example, Lorentz (1986) and Chen (2007).

Assumption 4.3 (Data generating process). (i) {εt}t≤T is independent of {Zt}t≤T ; (ii)

E[εit] = 0 for all i ≤ N and t ≤ T ; (iii) there is 0 < C1 <∞ such that

max
i≤N,t≤T

N∑
j=1

|E[εitεjt]| < C1 and
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]| < C1.

Assumption 4.3 is standard in the literature. In particular, Assumption 4.3(iii)

requires {εit}i≤N,t≤T to be weakly dependent over both i and t, and is commonly imposed

for high-dimensional factor analysis; see, for example, Stock and Watson (2002), Bai

(2003), and Fan et al. (2016a). When Zt is not changing over t, Assumption 4.3 reduces

to Assumptions 3.4 (i) and (iii) of Fan et al. (2016a).

Assumption 4.4 (Intercept function). a′B = 0 and ‖a‖ < C0 for some 0 < C0 <∞.

Assumption 4.4 is imposed for the identification of α(·). Similar assumption is im-

posed in Connor et al. (2012) and Assumption 3.1(i) of Kim et al. (2020).

To proceed, let H ≡ (F ′MT F̂ )(F̂ ′MT F̂ )−1, which is a rotational transformation

matrix that is needed to define the convergence limits of B̂ and F̂ . The first result is

established as follows.

Theorem 4.1. Suppose Assumptions 4.1-4.4 hold. Let â, B̂, F̂ , α̂(·) and β̂(·) be given

in (10). Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with

11



J = o(
√
N). Then

‖â− a‖2 = Op

(
1

J2κ
+
J2

N2
+

J

NT

)
,

‖B̂ −BH‖2F = Op

(
1

J2κ
+
J2

N2
+

J

NT

)
,

1

T
‖F̂ − F (H ′)−1‖2F = Op

(
1

J2κ
+
J

N

)
,

sup
z
|α̂(z)− α(z)|2 = Op

(
1

J2κ−1
+
J3

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2,

sup
z
‖β̂(z)−H ′β(z)‖2 = Op

(
1

J2κ−1
+
J3

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2.

Theorem 4.1 implies that a and α(·) can be consistently estimated by â and α̂(·), and

B, F and β(·) can be consistently estimated by B̂, F̂ and β̂(·) up to a rotational transfor-

mation. We have two interesting findings. First, the consistency does not require T →
∞, as similar to Fan et al. (2016a). To quickly see this, let us return to the illustrative

model (2) and assume that T is finite, F ′MTF is diagonal, and Γ′Γ = IK . Let Θ and Θ̂

be M×T matrices with Θ = ΓF ′MT and Θ̂ = ((Z ′1Z1)−1Z ′1Y1, . . . , (Z
′
TZT )−1Z ′TYT )MT .

Then
√
N(Θ̂ − Θ) = Op(1) by the central limit theorem. Since the columns of Γ and

B̂ are eigenvectors of ΘΘ′ and Θ̂Θ̂′, the consistency of B̂ thus can be easily understood

from the matrix perturbation theorem; see, for example, Yu et al. (2014).

Second, the consistency of F̂ requires J → ∞, as different from Fan et al. (2016a).

This is because a large sieve approximation error of α(·) and β(·) may cause inconsistent

estimation of F . To quickly see this, let us look at the following simple linear models

Yt = WtΠ + ZtΓft + εt, (11)

Yt = (ZtΓ +WtΠ)ft + εt, (12)

where Zt and Wt are N ×1 vectors, ft is a scalar factor, and εt is independent of Zt and

Wt. Let us further assume Π = Γ and Wt = Ztgt + vt, where gt is a scalar coefficient,

and vt is independent of Zt. Then (11) and (12) can be rewritten as

Yt = ZtΓf
?
t + ε?t , (13)

Yt = ZtΓf
??
t + ε??t , (14)

where f?t = ft + gt, ε
?
t = vtΓ + εt, f

??
t = ft(1 + gt), and ε??t = vtΓft + εt. Thus,

if only Zt is used in (11) (the sieve approximation error of α(·) is large), then F̂ can

consistently estimate F ? = (f?1 , . . . , f
?
T )′ up to a scalar; if only Zt is used (12) (namely,

the sieve approximation error of β(·) is large), then F̂ can consistently estimate F ?? =

(f??1 , . . . , f??T )′ up to a scalar. In both cases, F̂ fails to consistently estimate the space

12



spanned by F , unless gt is proportional to ft in the former case and is not changing

over t in the latter case. See Appendix G for a formal analysis for the general model

under α(·) = 0. The result also implies that misspefication of α(·) and β(·) may cause

inconsistent estimation of F . This motivates us to develop a specification test for α(·)
and β(·); see Section 5.2.

4.2 Rate of Convergence

Theorem 4.1 also gives a preliminary convergence rate of â, B̂, F̂ , α̂(·) and β̂(·). How-

ever, the rate is not optimal, which may create challenge for deriving the asymptotic

distribution. To improve the rate, we impose the following assumption.

Assumption 4.5 (Rate of convergence). (i) maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)] <∞; (ii)

0 < mini≤N,t≤T λmin(Qit) ≤ maxi≤N,t≤T λmax(Qit) < ∞, where Qit = E[φ(zit)φ(zit)
′];

(iii) {zit}i≤N,t≤T are independent across i ≤ N ; (iv) there is 0 < C2 <∞ such that

max
t≤T

1

N2

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|E[εitεjtεktε`t]| < C2

and

1

N2T

T∑
t=1

 T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεjs]|

2

< C2.

Assumption 4.5 is also standard in the literature, though not required by Fan et al.

(2016a). Assumption 4.5(i) strengthens Assumption 4.1(ii). Assumption 4.5(ii) requires

that the second moment matrix E[φ(zit)φ(zit)
′] is bounded and nonsingular for all i and

t, which is standard in the sieve literature; see, for example, Newey (1997) and Huang

(1998). Assumption 4.5(iii) is also standard in the sieve literature, which is used to jus-

tify the asymptotic convergence of Q̂t. Assumption 4.5(iv) allows for weak dependence

of {εit}i≤N,t≤T over both i and t, which is standard in the literature as Assumption

4.3(iii). The second condition is similar to the second condition in Assumption 4.3(iii);

both are satisfied if maxt≤T
∑T

s=1

∑N
i=1

∑N
j=1 |E[εitεjs]/N is bounded.

To proceed, let ξJ ≡ supz ‖φ̄(z)‖, which plays an important role in justifying the

asymptotic convergence of Q̂t. In particular, ξJ = O(
√
J) for B-spline and Fourier

series, and ξJ = O(J) for polynomials; see Section 3 of Belloni et al. (2015) for more

discussions on ξJ . The second result is established as follows.

Theorem 4.2. Suppose Assumptions 4.1-4.5 hold. Let â, B̂, F̂ , α̂(·) and β̂(·) be given

in (10). Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with
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J2ξ2
J log J = o(N). Then

‖â− a‖2 = Op

(
1

J2κ
+

J

N2
+

J

NT

)
,

‖B̂ −BH‖2F = Op

(
1

J2κ
+

J

N2
+

J

NT

)
,

1

T
‖F̂ − F (H ′)−1‖2F = Op

(
1

J2κ
+

1

N

)
,

sup
z
|α̂(z)− α(z)|2 = Op

(
1

J2κ−1
+
J2

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2,

sup
z
‖β̂(z)−H ′β(z)‖2 = Op

(
1

J2κ−1
+
J2

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2.

Theorem 4.2 shows that the rates of B̂, F̂ and β̂(·) are equal to the rates in Fan

et al. (2016a). The requirement J2ξ2
J log J = o(N) is standard in the sieve literature; see,

for example, Belloni et al. (2015). See Appendix H for a special case analysis without

Assumption 4.5 and the requirement. It is worthwhile to discuss the rate of F̂ . Assume

J−2κN = O(1), which can be satisfied for sufficiently large κ under the restriction

J2ξ2
J log J = o(N). Then F̂ attains the optimal rate 1/N , which is the fastest rate that

one can obtain when α(·) and β(·) were known. This implies that the nonparametric

specification of α(·) and β(·) does not deteriorate the optimal rate for estimating F as

long as α(·) and β(·) are sufficiently smooth (i.e., κ is sufficiently large), or the linear

specification of α(·) and β(·) does not necessarily improve the estimation of F . This

implication is important in developing specification test for α(·) and β(·) in Section 5.2.

Remark 4.1. Our proofs for the consistency and rate of convergence are not trivial

relative to Fan et al. (2016a) for several reasons. First, the regressed-PCA is different

from the projected-PCA, as mentioned in Section 3. Second, we allow for nonzero α(·),
and need to additionally study the properties of α̂(·). Third, the presence of zit varying

over t makes the proofs challenging. In particular, the proof for the rate of convergence

relies on LLNs for matrices derived from the Khinchin inequality.

4.3 Asymptotic Distribution

We focus on deriving the asymptotic distributions of â and B̂, since our main concern

is the inference on α(·) and β(·). To this end, we impose the following assumption.

Assumption 4.6 (Asymptotic distribution). (i) The eigenvalues of (F ′MTF/T )B′B

are distinct; (ii) {εit}i≤N,t≤T are independent across i ≤ N ; (iii) there is 0 < C3 < ∞
such that

max
i≤N

1

T 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

|E[εitεisεiuεiv]| < C3.
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The distinct eigenvalue condition in Assumption 4.6(i) is necessary to establish the

asymptotic normality, as known in the literature; see, for example, Bai (2003) and Chen

and Fang (2019). Assumption 4.6(ii) imposes independence of {εit}i≤N,t≤T across i for

simplicity.5 Assumption 4.6(iii) allows for weak dependence of {εit}i≤N,t≤T over t, which

is standard in the literature as Assumptions 4.3(iii) and 4.5(iv).

To proceed, let Ω ≡
∑N

i=1

∑T
t=1

∑T
s=1 f

†
t f
†′
s ⊗ Q−1

t E[φ(zit)φ(zis)
′]Q−1

s E[εitεis]/NT ,

where f †t = (1, (ft − f̄)′)′ and Qt = E[Q̂t] =
∑N

i=1Qit/N . It is a variance-covariance

matrix, which will appear in the asymptotic distributions of â and B̂. The third result

is established as follows.

Theorem 4.3. Suppose Assumptions 4.1-4.6 hold. Let â and B̂ be given in (10). As-

sume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with J2ξ2
J log J =

o(N). Then there exists a JM × (K + 1) random matrix N with vec(N) ∼ N(0,Ω) such

that

‖
√
NT (â− a)−Ga‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
NT (B̂ −BH)−GB‖F = Op

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)
,

where Ga = (IJM − BHH′B′)(N1 − GBH−1f̄) − BHG′Ba and GB = N2B
′BM, H and

M are nonrandom matrices given in Lemma C.3, and N1 and N2 are the first column

and the last K columns of N.

Theorem 4.3 establishes a strong approximation: (
√
NT (â − a),

√
NT (B̂ − BH))

can be well approximated by a normal random matrix (Ga,GB), in the sense that their

difference converges in probability to zero when T = o(N), J = o(min{N1/5, N/T}),
and NTJ−2κ = o(1). Therefore, (

√
NT (â− a),

√
NT (B̂ − BH)) behaves like a normal

random matrix. Here,
√
NT (â − a) and

√
NT (B̂ − BH) exhibit growing dimensions,

so the classical central limit theorem does not apply. Instead, we use the Yurinskiis

coupling (which is collected in Lemma C.5 for ease of reference) to establish the strong

approximation. We stress that the strong approximation allows for weak dependence of

{εit}i≤N,t≤T over t. Similar results are not available in Fan et al. (2016a).

5This assumption allows us to use the Yurinskiis coupling. In fact, we may relax this assumption
and alternatively use Li and Liao (2019)’s coupling, so that the dependence across i can be allowed.
However, it is challenging to develop an inference procedure allowing the dependence over both i and t.
Therefore, we stick with this assumption.
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5 Bootstrap Inference

In this section, we develop a weighted bootstrap to estimate the distribution of (Ga,GB)

in Theorem 4.3, and a specification test for linearity of α(·) and β(·).

5.1 Weighted Bootstrap

It seems straightforward to estimate the distribution of (Ga,GB) by estimating its un-

known components. However, it may be challenging to estimate Ω, especially since we

allow for weak dependence of {εit}i≤N,t≤T over t. To circumvent the challenge, we de-

velop a weighted bootstrap, which additionally may have computational advantage. To

this end, we impose the following assumption.

Assumption 5.1 (Bootstrap). (i) {wi}i≤N is a sequence of independently and iden-

tically (i.i.d.) positive random variables with E[wi] = 1 and var(wi) = ω0 > 0, and

is independent of {Zt, εt}t≤T ; (ii) there are positive constants emin and emax such that:

with probability approaching one (as N →∞),

emin < min
t≤T

λmin(Q̂∗t ) ≤ max
t≤T

λmax(Q̂∗t ) < emax,

where Q̂∗t = Φ(Zt)
∗′Φ(Zt)/N and Φ(Zt)

∗ = (φ(z1t)w1, . . . , φ(zNt)wN )′; (iii) λmin(Ω) > 0.

Assumption 5.1(i) defines the bootstrap weight wi for each i. Specifically, we assign

wi to all observations over t for each i to maintain the dependence of {εit}i≤N,t≤T over

t. Note that Q̂∗t =
∑N

i=1 φ(zit)φ(zit)
′wi/N is a JM×JM matrix with JM much smaller

than N . Thus, Assumption 5.1(ii) can follow from the law of large numbers for finite T

and its uniform variant for T → ∞, similar to Assumption 4.1(i). Assumption 5.1(iii)

requires nonsingularity of the variance-covariance matrix Ω.

To define the bootstrap estimators of a and B, let Ỹ ∗t ≡ (Φ(Zt)
∗′Φ(Zt))

−1Φ(Zt)
∗′Yt,

Ỹ ∗ ≡ (Ỹ ∗1 , . . . , Ỹ
∗
T ), and ¯̃Y ∗ ≡

∑T
t=1 Ỹ

∗
t /T . The bootstrap estimators are given by

B̂∗ = Ỹ ∗MT F̂ (F̂ ′MT F̂ )−1 and â∗ = (IJM − B̂∗(B̂∗′B̂∗)−1B̂∗′) ¯̃Y ∗, (15)

which mimic B̂ and â following the formulas B̂ = Ỹ MT F̂ (F̂ ′MT F̂ )−1 and â = (IJM −
B̂B̂′) ¯̃Y = (IJM − B̂(B̂′B̂)−1B̂′) ¯̃Y . We propose to estimate the distribution of (Ga,GB)

by the distribution of (
√
NT/ω0 (â∗ − â),

√
NT/ω0(B̂∗ − B̂)) conditional on the data.

The validity of the bootstrap for B̂ can be quickly seen when T = 2 and K = 1.6

6In this case, B̂ = (Ỹ1− Ỹ2)/‖Ỹ1− Ỹ2‖, BH = B(f1− f2)/‖Ỹ1− Ỹ2‖ and B̂∗ = (Ỹ ∗1 − Ỹ ∗2 )/‖Ỹ1− Ỹ2‖.
Thus, the distribution of

√
NT (B̂−BH) =

√
NT (Ỹ1− Ỹ2−B(f1− f2))/‖Ỹ1− Ỹ2‖ can be estimated by

the distribution of
√
NT/ω0(Ỹ ∗1 − Ỹ ∗2 − (Ỹ1 − Ỹ2))/‖Ỹ1 − Ỹ2‖ =

√
NT/ω0(B̂∗ − B̂) conditional on the

data by the weighted bootstrap in Belloni et al. (2015).
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Remark 5.1. The bootstrap can be easily adapted for unbalanced panels. The key step

is to obtain Ỹ ∗t . To this end, we may write Ỹ ∗t = [
∑N

i=1 φ(zit)φ(zit)
′wi]

−1
∑N

i=1 φ(zit)yitwi.

In the presence of unbalanced panels, we may obtain Ỹ ∗t by taking the two sums over i’s,

for which both zit and yit are observed in time period t. This is equivalent to replacing

missing data with zeros and proceeding as balanced panels. Prior to this, we need to

generate {wi}i≤Nmax once, where Nmax is the number of all observation unit i’s. The

asymptotic results established below continue to hold as mint≤T Nt → ∞, where Nt is

the sample size in time period t.

To proceed, let p∗ denote the probability measure with respect to {wi}i≤N condi-

tional on {Yt, Zt}t≤T . The fourth result is established as follows.

Theorem 5.1. Suppose Assumptions 4.1-4.6 and 5.1 hold. Let â, B̂, â∗ and B̂∗ be

given in (10) and (15). Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii)

J →∞ with J2ξ2
J log J = o(N). Then there exists a JM × (K + 1) random matrix N∗

with vec(N∗) ∼ N(0,Ω) conditional on {Yt, Zt}t≤T such that

‖
√
NT/ω0(â∗ − â)−G∗a‖ = Op∗

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
NT/ω0(B̂∗ − B̂)−G∗B‖F = Op∗

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)
,

where G∗a = (IJM − BHH′B′)(N∗1 − G∗BH−1f̄) − BHG∗′Ba and G∗B = N∗2B′BM, H and

M are nonrandom matrices given in Lemma C.3, N∗1 and N∗2 are the first column and

the last K columns of N∗.

Theorem 5.1 implies that the distribution of (Ga,GB), which is equal to the dis-

tribution of (G∗a,G∗B), can be well approximated by the distribution of (
√
NT/ω0(â∗ −

â),
√
NT/ω0(B̂∗−B̂)) conditional on the data, when T = o(N), J = o(min{N1/5, N/T})

and NTJ−2κ = o(1). We reiterate that the result is appealing in the sense that it allows

for the same weak dependence of {εit}i≤N,t≤T over t as Theorem 4.3.

Remark 5.2. An alternative bootstrap estimator for B is given by B̂∗∗, whose columns

are the eigenvectors corresponding to the first K largest eigenvalues of Ỹ ∗MT Ỹ
∗′/T .

We notice that
√
NT/ω0(B̂∗∗ − B̂) conditional on the data may fail to estimate the

distribution of GB. The key part of the proof is to show that
√
NT (B̂∗ − BH) and√

NT (B̂ −BH) share a similar asymptotic expansion. Specifically, we show∥∥∥∥∥√NT (B̂ −BH)− 1√
NT

T∑
t=1

Q−1
t Φ(Zt)

′εt(ft − f̄)′B′BM

∥∥∥∥∥
F

= Op(δNT )
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and ∥∥∥∥∥√NT (B̂∗ −BH)− 1√
NT

T∑
t=1

Q−1
t Φ(Zt)

∗′εt(ft − f̄)′B′BM

∥∥∥∥∥
F

= Op(δNT ),

where δNT =
√
NTJ−κ +

√
TJ/N +

√
JξJ(log J/N)1/4. Let F̂ ∗ ≡ Ỹ ∗′B̂∗∗ and H∗ ≡

(F ′MT F̂
∗)(F̂

∗′MT F̂
∗)−1. Similarly, we can show∥∥∥∥∥√NT (B̂∗∗ −BH∗)− 1√

NT

T∑
t=1

Q−1
t Φ(Zt)

∗′εt(ft − f̄)′B′BM

∥∥∥∥∥
F

= Op(δNT ).

Thus,
√
NT/ω0(B̂∗∗ − B̂) conditional on the data may fail to estimate the distribution

of GB, since
√
NT/ω0(H∗ − H) is not asymptotically negligible due to the relatively

slow convergence rate of F̂ and F̂ ∗. Since B̂∗∗ = Ỹ ∗MT F̂
∗(F̂ ∗′MT F̂

∗)−1, it is important

to use F̂ rather than F̂ ∗ in (15) to ensure that B̂∗ and B̂ share a common rotational

transformation matrix and are centered around the same quantity BH. Therefore, it is

important to use F̂ rather than F̂ ∗ in (15) to ensure the validity of the bootstrap.

Significance test for α(·) and β(·). We can immediately use Theorems 4.3 and

5.1 to test whether φj(zit,m)’s are jointly significant in β(zit) for some given j’s and

m’s, which is equivalent to whether certain rows of BH are jointly zero. To see this,

let us consider testing the null that the first row of BH is zero. Let b̂′1 and b̂∗′1 be the

first row of B̂ and B̂∗. The distribution of NT b̂′1b̂1 under the null can be estimated

by the distribution of NT (b̂∗1 − b̂1)′(b̂∗1 − b̂1)/ω0 conditional on the data. Thus, we may

construct the test as follows: reject the null if NT b̂′1b̂1 is greater than the 1−α quantile

of NT (b̂∗1 − b̂1)′(b̂∗1 − b̂1)/ω0 conditional on the data for 0 < α < 1. Note that we are

not able to do significance test for each entry of β(zit) due to the lack of identification,

and we cannot use Theorems 4.3 and 5.1 to test whether β(·) = 0 due to the full

rank requirement in Assumption 4.2(i). Similarly, we may test whether φj(zit,m)’s are

significant in α(zit) for some given j’s andm’s. In addition, we may test whether α(·) = 0

by comparing NTâ′â with the 1− α quantile of NT (â∗ − â)′(â∗ − â)/ω0 conditional on

the data for 0 < α < 1.

5.2 Specification Test

To test for linearity of α(·) and β(·), we develop a test by comparing their estimators

under the null and the alternative. Specifically, we consider the following the hypothesis:

H0 : α(zit) = γ′zit and β(zit) = Γ′zit for some γ,Γ and all i ≤ N, t ≤ T v.s.

H1 : inf
i≤N,t≤T

inf
π
E[|α(zit)− π′zit|2] > 0 or inf

i≤N,t≤T
inf
Π
E[‖β(zit)−Π′zit‖2] > 0. (16)
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Estimators of α(·) and β(·) under H1 are already given by α̂(·) and β̂(·) in (10). Let ~Yt ≡
(Z ′tZt)

−1Z ′tYt, ~Y ≡ (~Y1, . . . , ~YT ), and ~̄Y ≡
∑T

t=1
~Yt/T . Estimators of α(zit) and β(zit)

under H0 are given by γ̂′zit and Γ̂′zit, where Γ̂ = ~YMT F̂ (F̂ ′MT F̂ )−1 and γ̂ = ~̄Y − Γ̂B̂′ ¯̃Y .

Three remarks for γ̂ and Γ̂ are as follows. First, we use the unrestricted estimator f̂t

rather than a restricted estimator of ft by imposing H0 to ensure that Γ̂′zit and β̂(zit)

share a common rotational transformation matrix, which is important in justifying the

validity of the test. Second, in γ̂ we use B̂′ ¯̃Y =
∑T

t=1 f̂t/T , which is an unrestricted

estimator of f̄ , rather than the restricted estimator (Γ̂′Γ̂)−1Γ̂′ ~̄Y under H0 to avoid the

full rank requirement of Γ. Third, we note that using f̂t does not cause efficiency loss in

estimating Γ and γ , since f̂t has attained the optimal rate as discussed after Theorem

4.2. Our test statistic is given by

S =
1

J

N∑
i=1

T∑
t=1

|γ̂′zit − α̂(zit)|2 +
1

J

N∑
i=1

T∑
t=1

‖Γ̂′zit − β̂(zit)‖2. (17)

To obtain critical values, we use the bootstrap method. Let ~Y ∗t ≡ (Z∗′t Zt)
−1Z∗′t Yt,

~Y ∗ ≡ (~Y ∗1 , . . . ,
~Y ∗T ), and ~̄Y ∗ ≡

∑T
t=1

~Y ∗t /T , where Z∗t = (z1tw1, . . . , zNtwN )′. It is

shown in Appendix E that under H0, S =
∑N

i=1

∑T
t=1 |(γ̂ − γ)′zit − (â− a)′φ(zit)|2/J +∑N

i=1

∑T
t=1 ‖(Γ̂−ΓH)′zit−(B̂−BH)′φ(zit)‖2/J+op(J

−1/2). Given this, we can estimate

the null distribution of S by the distribution of

S∗ =
1

Jω0

N∑
i=1

T∑
t=1

|(γ̂∗ − γ̂)′zit − (â∗ − â)′φ(zit)|2

+
1

Jω0

N∑
i=1

T∑
t=1

‖(Γ̂∗ − Γ̂)′zit − (B̂∗ − B̂)′φ(zit)‖2 (18)

conditional on the data, where Γ̂∗= ~Y ∗MT F̂ (F̂ ′MTF̂ )−1 and γ̂∗= ~̄Y ∗−Γ̂∗(B̂∗′B̂∗)−1B̂∗′ ¯̃Y ∗.

For 0 < α < 1, let c1−α be the 1 − α quantile of S∗ conditional on the data. Thus, we

construct the test as follows: reject H0 if S > c1−α.

To establish the validity of our test, we impose the following assumption.

Assumption 5.2 (Specification test). (i) There are positive constants gmin and gmax

such that: with probability approaching one (as N →∞),

gmin < min
t≤T

λmin(Z ′tZt/N) ≤ max
t≤T

λmax(Z ′tZt/N) < gmax,

(ii) maxi≤N,t≤T E[‖zit‖4] <∞; (iii) mini≤N,t≤T λmin(E[zitz
′
it]) > 0; (iv) with probability

approaching one (as N →∞),

gmin < min
t≤T

λmin(Z∗′t Zt/N) ≤ max
t≤T

λmax(Z∗′t Zt/N) < gmax;
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(v) supz |α(z)| <∞ and supz ‖β(z)‖ <∞.

Assumptions 5.2(i)-(iv) are analogous to Assumptions 4.1(i), 4.5(i), (ii) and 5.1(ii),

respectively. When zit is included as a part of φ(zit), which is true in the case of

polynomial basis functions, the formers are implied by the latter ones. In this case,

Assumptions 5.2(i)-(iv) are redundant.

The following theorem, as the fifth result of the paper, demonstrates that our test

has size control under H0 and is consistent under H1.

Theorem 5.2. Suppose Assumptions 4.1-4.6, 5.1 and 5.2 hold. Let S be given in (17),

and c1−α be given after (18) for 0 < α < 1. Assume (i) N → ∞; (ii) T → ∞
or T ≥ K + 1 is finite; (iii) J → ∞ with J2ξ2

J log J = o(N). In addition, assume

T = o(N), J = o(min{N1/5, N/T}) and NTJ−2κ = o(1). Then under H0,

P (S > c1−α)→ α.

Furthermore, under H1,

P (S > c1−α)→ 1.

The validity of the test does not require T → ∞, as all above results do. It also

holds when T →∞ but at a slower rate than N , which is usually true in asset pricing.

6 Determining the Number of Factors

We now address the problem of estimating the number of factors K. To solve the

problem, we develop two estimators: one by maximizing the ratio of two adjacent eigen-

values by extending Ahn and Horenstein (2013) and Fan et al. (2016a) and another by

counting the number of “large” eigenvalues similar to Bai and Ng (2002). To define the

estimators, let λk(Ỹ MT Ỹ
′/T ) denote the kth largest eigenvalue of the JM×JM matrix

Ỹ MT Ỹ
′/T . The first estimator of K is given by

K̂ = arg max
1≤k≤JM/2

λk(Ỹ MT Ỹ
′/T )

λk+1(Ỹ MT Ỹ ′/T )
. (19)

Here, K̂ is constrained to between 1 and JM/2. This is not restrictive, since we assume

that K ≥ 1 is fixed and J → ∞ throughout the paper. The second estimator of K is

given by

K̃ = #{1 ≤ k ≤ JM : λk(Ỹ MT Ỹ
′/T ) ≥ λNT }, (20)
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where #A denotes the cardinality of A and 0 < λNT → 0 is a tuning parameter.

Establishing the consistency of K̃ is straightforward. However, to establish the

consistency of K̂, we impose the following assumption.

Assumption 6.1 (Determination of K). (i) 0 < mint≤T λmin(E[εtε
′
t]) ≤ maxt≤T λmax

(E[εtε
′
t]) <∞; ii) there is 0 < C4 <∞ such that

1

N2T + T 2N

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|cov(εitεjt, εksε`s)| < C4.

Assumption 6.1(i) requires that the covariance matrix E[εtε
′
t] is bounded and non-

singular for all t. In particular, maxt≤T λmax(E[εtε
′
t]) <∞ allows for weak dependence

of {εit}i≤N,t≤T across i. When {εit}i≤N,t≤T are independent across i, the condition is

satisfied when mini≤N,t≤T E[ε2
it] > 0 and maxi≤N,t≤T E[ε2

it] < ∞. Assumption 6.1(ii)

allows for weak dependence of {εit}i≤N,t≤T over both i and t, which is standard in the

literature as Assumptions 4.3(iii), 4.5(iv) and 4.6(iii); see Proposition I.2 for its justifi-

cation when {εit}i≤N,t≤T are independent across i. It is noted that Assumption 6.1 is

different from Assumption 6.1 in Fan et al. (2016a) (which is required for the number

of factor estimator); Assumption 6.1 appears less complicated.

Theorem 6.1. (A) Suppose Assumptions 4.1-4.3, 4.5(i) and 6.1 hold. Let K̂ be given

in (19). Assume (i) N →∞; (ii) T →∞; (iii) J →∞ with J = o(min{
√
N,
√
T}) and

NJ−2κ = o(1). Then

P (K̂ = K)→ 1.

(B) Suppose Assumptions 4.1-4.3 hold. Let K̃ be given in (20). Assume (i) N → ∞;

(ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with J = o(
√
N); (iv) 0 < λNT → 0

and λNT min{N/J, J2κ} → ∞. Then

P (K̃ = K)→ 1.

This is the last result of the paper. Theorem 6.1 demonstrates that K̂ and K̃ are

consistent estimators of K. The consistency of K̂ requires T → ∞, as similar to Fan

et al. (2016a). While the consistency of K̃ does not require T → ∞ and Assumption

6.1, it relies on the choice of λNT . In practice, K̂ is recommended when T is large, and

K̃ is recommended when T is small.

Remark 6.1. To sum up, all the estimators except K̂ and the inference procedures do

not require T → ∞, allow zit to vary over t even in a nonstationary pattern, and are

applicable for unbalanced panels. These attractive features shall make our estimators

and inference procedures appealing to researchers in asset pricing, because panels of
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asset returns and characteristics are usually unbalanced, many assets have small T , and

characteristics of assets are often time-varying. Furthermore, the small T properties

of our estimators and tests allow us to conduct rolling small sub-sample analyses to

accommodate changing factor dynamics.

7 Simulation Studies

In this section, we conduct small-scale Monte Carlo simulations to examine the finite

sample performance of our estimators and bootstrap inference methods.

We consider the following data generating process. For θ ≥ 0 and δ ≥ 0, we assume

α(zit) = θzit,1 + δz2
it,1 and β(zit) = (zit,2 + δz2

it,2, 2zit,3 + 2δz2
it,3)′, (21)

so K = 2 and M = 3. Here, α(·) = 0 when θ = δ = 0, and both α(zit) and β(zit) are

nonlinear functions of zit when δ > 0. Let

zit,1 = σt ∗ uit,1, zit,2 = 0.3zi(t−1),2 + uit,2 and zit,3 = uit,3, (22)

where uit = (uit,1, uit,2, uit,3)′ are i.i.d. N(0, I3) across both i and t, σt’s are i.i.d.

U(1, 2) over t, and zi0,2’s are i.i.d. N(0, 1). Here, all the entries of zit are varying

over t but in different ways. Let ft = 0.3ft−1 + ηt, where ηt’s are i.i.d. N(0, IK) and

f0 ∼ N(0, IK/0.91). For 0 ≤ ρ < 1,

εt = ρεt−1 + et, (23)

where et’s are i.i.d. N(0, IN ) and ε0 ∼ N(0, IN/(1 − ρ2)). Note that ρ is a measure of

weak dependence of εit over t. Here, uit’s, σt’s, zi0’s ηt’s, f0, et’s and ε0 are mutually

independent. We generate yit according to the model (1).

To implement the regressed-PCA, we choose φ(zit) = (zit,1, z
2
it,1, zit,2, z

2
it,2, zit,3, z

2
it,3)′,

so J = 2 and the sieve approximation error is zero. We let λNT = 1/ log(N) in the im-

plementation of K̃. To implement the weighted bootstrap, we let wi’s be i.i.d. random

variables with the standard exponential distribution. First, we investigate the perfor-

mance of â, B̂, F̂ , K̂ and K̃ under different (N,T )’s. We run simulations for combina-

tions of θ = 0, 0.1, 0.2, . . . , 1, δ = 0, 0.1, 0.2, . . . , 0.5 and ρ = 0, 0.3, 0.7. Here we report

the results for θ = 1, δ = 0.5 and ρ = 0, 0.3, 0.7, while the results for other values of θ

and δ are similar and available upon request. Specifically, we report the mean square

errors of â, B̂ and F̂ in Table 1, and the correct rates of K̂ and K̃ in Table 2. Second,

we investigate the performance of testing α(·) = 0 and linearity of α(·) and β(·). To

test α(·) = 0, we fix δ = 0. Then α(·) = 0 if and only if θ = 0. We report the rejection

rates for θ = 0, 0.01, 0.02, . . . , 0.1 under ρ = 0.3, while the results under ρ = 0 and 0.7
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are similar and available upon request. To test linearity of α(·) and β(·), we fix θ = 1.

Then α(·) and β(·) are linear if and only if δ = 0. We report the rejection rates for

δ = 0, 0.01, 0.02, . . . , 0.1 under ρ = 0.3, while the results under ρ = 0 and 0.7 are similar

and available upon request. The number of simulation replications is set to 1, 000 and

the number of bootstrap draws is set to 499 for each replication.

The main findings are summarized as follows. First, as shown in Table 1, the mean

square errors of â, B̂ and F̂ decrease as N increases, even for T = 10. This implies

that the estimators are consistent as N → ∞ even for small T . While increasing T

further reduces the mean square errors of â and B̂, it does not reduce the mean square

error of F̂ . Both findings are true regardless of whether ρ = 0, 0.3 or 0.7, so the results

allow for weak dependence of εit over t. They are consistent with Theorems 4.1 and 4.2.

Second, as shown in Table 2, K̂ and K̃ can correctly estimate K in all cases except for

some cases when both N and T are small. This is consistent with Theorem 6.1. Third,

both tests perform well. As shown in Table 3, the rejection rate of the first test may

overreject α(·) = 0 a little bit for θ = 0 when N = 50, but can quickly approach the

significance level 5% when N increases, even for T = 10. This implies that the test has

size control as N → ∞ even for small T . As θ increases, the rejection rate approaches

one, even for T = 10. This implies that the test is consistent as N →∞ even for small

T . We find that increasing T may improve the power of the test (when θ > 0, the

rejection rate increases as T increases for all N), but meanwhile it may hurt the size of

the test (for example, when θ = 0, the rejection rate increases as T increases from 10

to 100 for N = 200.) This can be explained by the requirement T = o(N) in Theorem

5.2 or underlying in Theorem 5.1. As shown in Table 4, the second test has a similar

performance; the details are omitted. The findings of the second test are consistent with

Theorem 5.2. To sum up, the performance of our estimators and bootstrap inference

methods is encouraging for large N , even when T is small.

8 Empirical Applications

A central question in empirical asset pricing is why different assets earn different av-

erage returns. While asset pricing theory attributes cross-sectional differences in asset

returns to risk exposures, there is substantial evidence suggesting a role for mispricing

captured by dependence of returns on asset characteristics, which suggests potential

market inefficiency. Much of the debate centers around multi-factor models that aim to

link average returns to factor loadings following Fama and French (1993), who pursue

a portfolio-sorting approach to constructing asset pricing factors. Since their seminal

paper, hundreds of factors have been proposed, collectively dubbed a “factor zoo” by

Cochrane (2011) and further discussed by Harvey et al. (2016). While some of the

factor models have an explicit justification based on economic theory, many implicitly
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Table 1: Mean square errors of â, B̂ and F̂ when θ = 1 and δ = 0.5†

(N,T)
ρ = 0 ρ = 0.3 ρ = 0.7

â B̂ F̂ â B̂ F̂ â B̂ F̂

(50, 10) 0.0077 0.0154 0.0394 0.0088 0.0170 0.0435 0.0171 0.0295 0.0799

(100, 10) 0.0034 0.0064 0.0168 0.0039 0.0071 0.0186 0.0075 0.0127 0.0336

(200, 10) 0.0016 0.0030 0.0079 0.0018 0.0034 0.0087 0.0033 0.0058 0.0155

(500, 10) 0.0006 0.0012 0.0030 0.0007 0.0013 0.0033 0.0013 0.0022 0.0060

(50, 50) 0.0012 0.0022 0.0423 0.0014 0.0025 0.0466 0.0028 0.0049 0.0842

(100, 50) 0.0005 0.0009 0.0184 0.0006 0.0010 0.0203 0.0012 0.0019 0.0365

(200, 50) 0.0002 0.0004 0.0086 0.0003 0.0004 0.0095 0.0006 0.0008 0.0170

(500, 50) 0.0000 0.0001 0.0033 0.0001 0.0002 0.0037 0.0002 0.0003 0.0065

(50, 100) 0.0005 0.0010 0.0431 0.0006 0.0011 0.0473 0.0013 0.0024 0.0850

(100, 100) 0.0002 0.0004 0.0187 0.0003 0.0004 0.0206 0.0006 0.0008 0.0370

(200, 100) 0.0001 0.0002 0.0087 0.0001 0.0002 0.0096 0.0003 0.0003 0.0172

(500, 100) 0.0000 0.0001 0.0034 0.0000 0.0001 0.0037 0.0001 0.0001 0.0066

† The mean square errors of â , B̂ and F̂ are given by
∑1000

`=1 ‖â(`)−a‖2/1000,
∑1000

`=1 ‖B̂(`)−
BH(`)‖2F /1000 and

∑1000
`=1 ‖F̂ (`) − F (H(`)′)−1‖2F /1000T , where â(`), B̂(`) and F̂ (`) are es-

timators in the `th simulation replication, and H(`) ≡ (F ′MT F̂
(`))(F̂ (`)′MT F̂

(`))−1 is a
rotational transformation matrix.

Table 2: Correct rates of K̂ and K̃ when θ = 1 and δ = 0.5

(N,T)
ρ = 0 ρ = 0.3 ρ = 0.7

K̂ K̃ K̂ K̃ K̂ K̃

(50, 10) 0.999 1.000 0.999 1.000 0.994 1.000

(100, 10) 1.000 1.000 1.000 1.000 0.999 1.000

(200, 10) 1.000 1.000 1.000 1.000 1.000 1.000

(500, 10) 1.000 1.000 1.000 1.000 1.000 1.000

(50, 50) 1.000 1.000 1.000 1.000 1.000 1.000

(100, 50) 1.000 1.000 1.000 1.000 1.000 1.000

(200, 50) 1.000 1.000 1.000 1.000 1.000 1.000

(500, 50) 1.000 1.000 1.000 1.000 1.000 1.000

(50, 100) 1.000 1.000 1.000 1.000 1.000 1.000

(100, 100) 1.000 1.000 1.000 1.000 1.000 1.000

(200, 100) 1.000 1.000 1.000 1.000 1.000 1.000

(500, 100) 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3: Rejection rates of testing α(·) = 0 when δ = 0 and ρ = 0.3†

(N,T)
θ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

(50, 10) 0.089 0.096 0.117 0.150 0.186 0.222 0.283 0.349 0.435 0.512 0.593

(100, 10) 0.096 0.113 0.133 0.184 0.274 0.383 0.502 0.616 0.727 0.827 0.904

(200, 10) 0.057 0.080 0.162 0.270 0.442 0.628 0.790 0.901 0.970 0.990 0.999

(500, 10) 0.048 0.099 0.297 0.573 0.822 0.951 0.994 1.000 1.000 1.000 1.000

(50, 50) 0.094 0.129 0.232 0.415 0.615 0.784 0.915 0.978 0.997 0.998 1.000

(100, 50) 0.085 0.165 0.391 0.691 0.913 0.989 0.998 1.000 1.000 1.000 1.000

(200, 50) 0.073 0.235 0.643 0.941 0.996 1.000 1.000 1.000 1.000 1.000 1.000

(500, 50) 0.052 0.451 0.960 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(50, 100) 0.089 0.151 0.360 0.693 0.901 0.985 0.999 1.000 1.000 1.000 1.000

(100, 100) 0.076 0.256 0.685 0.956 0.997 1.000 1.000 1.000 1.000 1.000 1.000

(200, 100) 0.073 0.381 0.925 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(500, 100) 0.059 0.737 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

† The significance level α = 5%.

Table 4: Rejection rates of testing linearity of α(·) and β(·) when θ = 1 and ρ = 0.3†

(N,T)
δ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

(50, 10) 0.086 0.097 0.158 0.288 0.464 0.641 0.801 0.910 0.963 0.990 0.998

(100, 10) 0.080 0.130 0.309 0.565 0.839 0.962 0.993 1.000 1.000 1.000 1.000

(200, 10) 0.058 0.181 0.555 0.932 0.995 1.000 1.000 1.000 1.000 1.000 1.000

(500, 10) 0.038 0.397 0.963 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(50, 50) 0.093 0.248 0.669 0.965 0.999 1.000 1.000 1.000 1.000 1.000 1.000

(100, 50) 0.100 0.443 0.966 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(200, 50) 0.070 0.771 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(500, 50) 0.047 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(50, 100) 0.096 0.459 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(100, 100) 0.085 0.846 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(200, 100) 0.066 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(500, 100) 0.057 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

† The significance level α = 5%.
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rely on the idea that factors capture common variation in portfolio returns, thus ap-

pealing to arbitrage pricing theory and its extensions (Ross, 1976; Chamberlain and

Rothschild, 1982; Connor and Korajczyk, 1986, 1988). Since implementing the latter

requires knowledge of the conditional covariance matrix of returns, which is infeasible to

estimate when N is larger than T , most studies rely on stock characteristics to proxy for

(imperfectly measured) factor exposures. However, this makes distinguishing between

the two types of explanations virtually impossible, as exemplified by the “characteristics

versus covariances” debate (Daniel and Titman, 1997). Our method is perfectly suited

for resolving this debate, since it allows characteristics to simultaneously appear in both

pricing errors and conditional covariances with unobserved common factors, which they

also help recover.

We consider the following semiparametric characteristic-based factor model

rit = α(zi,t−1) + β(zi,t−1)′ft + εit, i = 1, . . . , N, t = 1, . . . , T, (24)

where rit is the excess return of asset i (e.g., stock i) in time period t, zi,t−1 is a

vector of characteristics in time period t− 1, ft is a K × 1 vector of unobserved latent

factors, the pricing error (i.e., α(zi,t−1)) and the risk exposures to factors (i.e., β(zi,t−1))

are nonparametric functions of characteristics (i.e., zi,t−1). The model falls into the

general framework of model (1), where we need to interpret zit as characteristics in time

period t − 1. This model provides a unified approach for studying the cross section

of asset returns that nests the characteristic-based model and the risk-based model.

The modelling of the pricing error and the risk exposures not only provides a way to

disentangle the alpha versus beta explanations, but also allows us to estimate a model

for a large set of individual stocks. In addition, we do not need to rely on ex ante

knowledge to pre-specify the latent factors. Distinct from the models in Connor and

Linton (2007), Connor et al. (2012), Kelly et al. (2019), and Kim et al. (2020), we allow

for time-varying characteristics, nonzero pricing error, nonlinearity of α(·) and β(·), and

unknown number of factors. These are not intended to complicate the analysis, but are

crucial. For example, as illustrated in Section 4.1, failure to take into account the time-

varying features of characteristics or linear specifications of α(·) and β(·) may result in

misleading estimation of factors and the number of factors.

8.1 Data and Methodology

We use the same dataset used in Kelly et al. (2019), which is originally from Freyberger

et al. (2020). The data set contains monthly returns of 12, 813 individual stocks and 36

associated characteristics with sample periods from July, 1962 to May, 2014. The data is

in the form of an unbalanced panel, for which our methods are applicable. See the above

two papers for the detailed descriptions of the data. For ease of comparison, we also use
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the same 36 characteristics as those authors. By following the same procedure in Kelly

et al. (2019), we transform the values of the characteristics to relative ranking values

with range [−0.5, 0.5]. This can make the contributions of individual characteristic in

pricing error and risk exposures comparable, and can further avoid the distorting effects

from the outliers. To satisfy the large N requirement, we select the sample period

with at least 1, 000 individual stocks that have observations on both returns and the 36

characteristics, which is different from the case with at least 100 individual stocks in

Kelly et al. (2019). This yields a sample from September, 1968 to May, 2014.

To estimate the model, we implement the regressed-PCA by choosing the basis func-

tions φ(zit) as (1, z′it)
′ and linear B-splines of zit. Using (1, z′it)

′ leads to linear specifica-

tions of α(·) and β(·), while using linear B-splines of zit leads to nonlinear specifications

of α(·) and β(·), where α(·) and β(·) are continuous piecewise linear functions.7 To esti-

mate the number of factors K, we use K̂ in (19). To implement the weighted bootstrap,

we let wi’s be i.i.d. random variables with the standard exponential distribution. To

implement the tests of α(·) = 0 and linearity of α(·) and β(·), we set the number of

bootstrap draws to 499.

8.2 Empirical Results

In order to evaluate the performance of the regressed-PCA, we compute several measures

of fit. First, we calculate Fama-MacBeth cross sectional regression R2
Ỹ

, which captures

the variation in individual stock returns explained by “managed portfolios” constructed

from the sieve functions of characteristics. Next, we report the panel regression R2
K

which captures the variations of these managed portfolios explained by different sets

of extracted factors. Then, we consider the following three types of R2 measures that

directly speak to the ability of the factor models to explain the cross-section of individual

stock returns. The first one is total R2 as used in Kelly et al. (2019).The second one

measures the cross-sectional average of time series R2 across all stocks, which reflects

the ability of the extracted factors to capture common variation in asset returns. The

third measures the time series average of cross-sectional goodness of fit measures. As

such, it corresponds to the R2 of the Fama-MacBeth cross-sectional regression, and

is the one of interest for evaluating the model’s ability to explain the cross-section of

average returns. Fama-MacBeth regression slopes can be interpreted as returns on pure-

play characteristic portfolios (corresponding to α(·)) and factor-mimicking portfolios (for

β(·)) - i.e. portfolios that have unit loading on one characteristic/factor and zero on

all the others). Thus, the Fama-MacBeth R2 reflects how much ex post variation in

returns these portfolios can explain, as pointed out by Fama (1976) and emphasized by

7The one dimensional linear B-spline {ψj(z)}Jj=1 is defined on a set of consecutive equidistant knots:
{z1, ..., zJ+1}. For j < J , ψj(z) = (z− zj)/(zj+1− zj) on (zj , zj+1], ψj(z) = (zj+2− z)/(zj+2− zj+1) on
(zj+1, zj+2], and 0 elsewhere. For j = J , ψj(z) = (z − zj)/(zj+1 − zj) on (zj , zj+1] and 0 elsewhere.
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Lewellen (2015).

R2 = 1−
∑

i,t[rit − α̂(zi,t−1)− β̂(zi,t−1)′f̂t]
2∑

i,t r
2
i,t

, (25)

R2
T,N = 1− 1

N

∑
i

∑
t[rit − α̂(zi,t−1)− β̂(zi,t−1)′f̂t]

2∑
t r

2
i,t

, (26)

R2
N,T = 1− 1

T

∑
t

∑
i[rit − α̂(zi,t−1)− β̂(zi,t−1)′f̂t]

2∑
i r

2
i,t

. (27)

Second, we consider a version of these goodness-of-fit measures that zero in on the role

of factors in explaining the time-series as well as the cross-section of stock returns, by

excluding the conditional intercepts:

R2
f = 1−

∑
i,t[rit − β̂(zi,t−1)′f̂t]

2∑
i,t r

2
i,t

, (28)

R2
f,T,N = 1− 1

N

∑
i

∑
t[rit − β̂(zi,t−1)′f̂t]

2∑
t r

2
i,t

, (29)

R2
f,N,T = 1− 1

T

∑
t

∑
i[rit − β̂(zi,t−1)′f̂t]

2∑
i r

2
i,t

. (30)

Third, we assess the out-of-sample prediction. For t ≥ 120, we use the data through

t − 1 to implement the regressed-PCA and obtain estimators, say α̂t−1(·), β̂t−1(·),
F̂ ′t−1 ≡ (f̂

(t−1)
1 , . . . , f̂

(t−1)
t−1 ); and then compute the out-of-sample prediction of rit as

α̂t−1(zi,t−1) + β̂t−1(zi,t−1)′λ̂t, where λ̂t =
∑

s≤t−1 f̂
(t−1)
s /(t − 1), that is, the average of

factor estimators through t − 1. We can define three types of out-of-sample predictive

R2’s analogously by replacing α̂(·), β̂(·) and f̂t with α̂t−1(·), β̂t−1(·) and λ̂t,

R2
O = 1−

∑
i,t≥120[rit − α̂t−1(zi,t−1)− β̂t−1(zi,t−1)′λ̂t]

2∑
i,t≥120 r

2
i,t

, (31)

R2
T,N,O = 1− 1

N

∑
i

∑
t≥120[rit − α̂t−1(zi,t−1)− β̂t−1(zi,t−1)′λ̂t]

2∑
t≥120 r

2
i,t

, (32)

R2
N,T,O = 1− 1

T − 120

∑
t≥120

∑
i[rit − α̂t−1(zi,t−1)− β̂t−1(zi,t−1)′λ̂t]

2∑
i r

2
i,t

. (33)

Finally, we construct an arbitrage portfolio based on a pure-alpha strategy and evaluate

its performance. By (9) and Theorem 4.1, it is easy to see that Ỹ ′t â
p−→ ‖a‖2 for each

t as N → ∞. This allows us to construct an arbitrage portfolio based on an estimate

of a. For t ≥ 120, we use the data through t − 1 to implement the regressed-PCA

and obtain an estimator of a, say ât−1; and then compute the portfolio weights by

ωt = Φ(Zt−1)(Φ(Zt−1)′Φ(Zt−1))−1ât−1 and the excess return of the portfolio by R′tωt,

where Rt = (r1t, . . . , rNt)
′. We evaluate the annualized Sharpe ratio of this portfolio.
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Table 5: Results under linear specifications of α(·) and β(·) with 36 characteristics†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1∗ 26.55 2.54 1.37 0.36 2.07 0.59 0.11 0.54 0.64 0.21 1.72 0.54 3.18

2 36.42 4.52 2.43 1.76 4.08 1.75 1.37 0.54 0.64 0.21 1.74 0.52 3.36

3 45.03 5.70 3.70 2.70 5.24 2.95 2.31 0.54 0.64 0.21 1.77 0.50 3.56

4 52.55 11.69 8.55 9.27 11.28 7.92 8.69 0.54 0.64 0.21 1.77 0.47 3.74

5 58.65 11.90 8.73 9.48 11.49 7.99 8.90 0.54 0.64 0.21 1.70 0.44 3.84

6 64.20 13.90 10.30 11.80 13.53 9.79 11.24 0.54 0.64 0.21 1.68 0.44 3.78

7 69.15 15.59 12.23 13.76 15.23 11.71 13.23 0.54 0.64 0.21 1.63 0.44 3.73

8 72.84 15.93 12.59 13.98 15.56 12.00 13.44 0.54 0.64 0.21 1.61 0.42 3.79

9 76.26 16.08 12.67 14.19 15.72 12.15 13.64 0.54 0.64 0.21 1.61 0.42 3.80

10 79.15 16.23 12.82 14.35 15.87 12.34 13.80 0.54 0.64 0.21 1.60 0.42 3.82

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1∗ 26.62 NA NA NA 2.14 0.58 0.06 0.20 0.09 0.07 NA NA NA

2 36.48 NA NA NA 4.18 1.72 1.37 0.28 0.34 0.02 NA NA NA

3 45.10 NA NA NA 5.32 2.98 2.30 0.26 0.31 0.01 NA NA NA

4 52.62 NA NA NA 11.45 8.03 8.86 0.31 0.39 -0.01 NA NA NA

5 58.72 NA NA NA 11.69 8.18 9.10 0.36 0.47 -0.04 NA NA NA

6 64.28 NA NA NA 13.85 10.06 11.58 0.38 0.47 -0.11 NA NA NA

7 69.26 NA NA NA 15.20 11.71 13.17 0.40 0.50 -0.13 NA NA NA

8 72.98 NA NA NA 15.53 11.99 13.44 0.41 0.53 -0.13 NA NA NA

9 76.40 NA NA NA 15.73 12.15 13.68 0.40 0.53 -0.08 NA NA NA

10 79.29 NA NA NA 15.90 12.37 13.85 0.41 0.51 -0.06 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 20.89%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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Table 6: Results under continuous piecewise linear specifications of α(·) and β(·) with
18 characteristics and one internal knot†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 41.61 5.94 3.47 3.60 5.52 2.99 3.11 0.59 0.64 0.28 2.46 0.69 3.54

2∗ 59.05 9.56 6.17 6.91 9.18 5.67 6.33 0.59 0.64 0.28 2.39 0.57 4.22

3 64.47 10.42 6.78 7.96 10.03 6.27 7.38 0.59 0.64 0.28 2.36 0.57 4.17

4 68.99 13.83 10.26 11.52 13.40 9.80 10.90 0.59 0.64 0.28 2.19 0.53 4.12

5 72.33 14.32 10.73 11.98 13.91 10.29 11.38 0.59 0.64 0.28 2.19 0.51 4.26

6 75.35 14.71 10.97 12.40 14.29 10.55 11.86 0.59 0.64 0.28 1.95 0.49 3.96

7 77.63 15.28 11.78 12.99 14.84 11.27 12.42 0.59 0.64 0.28 1.90 0.48 3.93

8 80.83 15.44 11.98 13.16 15.10 11.59 12.73 0.59 0.64 0.28 1.73 0.47 3.66

9 82.88 15.84 12.33 13.49 15.48 11.87 13.05 0.59 0.64 0.28 1.31 0.40 3.26

10 85.61 16.39 12.89 13.93 15.71 11.80 13.14 0.59 0.64 0.28 0.88 0.28 3.14

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 41.75 NA NA NA 5.61 3.00 3.14 0.30 0.34 -0.12 NA NA NA

2∗ 59.20 NA NA NA 9.14 5.56 6.26 0.34 0.30 -0.38 NA NA NA

3 65.00 NA NA NA 9.80 6.24 7.12 0.60 0.76 0.29 NA NA NA

4 70.17 NA NA NA 10.79 7.23 8.37 0.60 0.80 0.19 NA NA NA

5 74.44 NA NA NA 14.28 10.57 11.98 0.52 0.66 0.29 NA NA NA

6 77.39 NA NA NA 14.58 10.88 12.18 0.52 0.63 0.22 NA NA NA

7 80.12 NA NA NA 14.91 11.07 12.61 0.53 0.58 0.22 NA NA NA

8 82.36 NA NA NA 15.43 11.93 13.17 0.54 0.57 0.27 NA NA NA

9 84.34 NA NA NA 15.80 12.28 13.45 0.53 0.54 0.27 NA NA NA

10 86.23 NA NA NA 15.94 12.37 13.59 0.53 0.54 0.27 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 21.11%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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Table 7: Results under continuous piecewise linear specifications of α(·) and β(·) with
12 characteristics and two internal knots†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 42.78 5.57 2.98 3.32 5.19 2.54 2.83 0.57 0.57 0.27 3.29 0.99 3.33

2∗ 61.36 9.56 5.97 6.87 9.18 5.51 6.26 0.57 0.57 0.27 3.01 0.80 3.78

3 67.77 10.59 6.65 7.88 10.20 6.15 7.29 0.57 0.57 0.27 2.94 0.80 3.69

4 72.86 13.62 10.09 11.35 13.17 9.64 10.67 0.57 0.57 0.27 2.97 0.78 3.81

5 76.92 14.14 10.43 12.01 13.73 10.01 11.48 0.57 0.57 0.27 2.98 0.76 3.91

6 80.63 14.94 11.45 12.75 14.42 10.51 12.05 0.57 0.57 0.27 1.51 0.41 3.73

7 84.29 15.17 11.59 12.94 14.76 10.77 12.44 0.57 0.57 0.27 1.01 0.33 3.09

8 87.42 15.45 11.87 13.23 15.26 11.47 12.98 0.57 0.57 0.27 0.73 0.22 3.36

9 89.11 16.33 12.68 13.94 16.16 12.31 13.72 0.57 0.57 0.27 0.71 0.20 3.62

10 90.72 16.54 12.91 14.17 16.38 12.54 13.95 0.57 0.57 0.27 0.69 0.18 3.90

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 42.95 NA NA NA 5.34 2.59 2.90 0.32 0.34 -0.10 NA NA NA

2 61.58 NA NA NA 9.12 5.45 6.15 0.33 0.21 -0.56 NA NA NA

3 68.02 NA NA NA 10.15 6.08 7.25 0.62 0.68 0.16 NA NA NA

4 74.08 NA NA NA 10.77 6.99 7.98 0.57 0.65 0.24 NA NA NA

5 78.98 NA NA NA 14.15 10.49 11.93 0.55 0.57 0.23 NA NA NA

6 82.66 NA NA NA 14.43 10.68 12.32 0.56 0.53 0.23 NA NA NA

7 85.44 NA NA NA 14.93 11.31 12.76 0.55 0.55 0.25 NA NA NA

8 87.85 NA NA NA 15.37 11.78 13.13 0.56 0.54 0.27 NA NA NA

9 89.53 NA NA NA 16.28 12.57 13.85 0.56 0.52 0.27 NA NA NA

10 91.13 NA NA NA 16.49 12.78 14.08 0.57 0.55 0.27 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 20.72%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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We report the results for three specifications of α(·) and β(·) by fixing the dimen-

sion of sieve series for both linear and nonlinear cases. In Table 5, we consider linear

specifications by letting φ(zit) = (1, z′it)
′. In Table 6, we consider continuous piecewise

linear specifications with 18 characteristics with one internal knot by letting φ(zit) be

linear B-splines of zit, where we split [−0.5, 0.5] into two equal length intervals. We

also refer it to as nonlinear specificathis ions with 18 characteristics. In Table 7, we

further consider continuous piecewise linear specifications with 12 characteristics with

two internal knots by letting φ(zit) be linear B-splines of zit, where we split [−0.5, 0.5]

into three equal length intervals. We also refer it to as nonlinear specifications with 12

characteristics. For the selection of 12 or 18 characteristics, we choose the significant

characteristics based on both (Kelly et al., 2019) and our estimation results from linear

model, where the list of variables can be found in Tables 10 and 11, separately. For each

case, we report the results for imposing α(·) = 0 and not imposing α(·) = 0, respectively.

In addition to estimating the number of factors, we report the results for K = 1, . . . , 10.

The main findings are summarized as follows. First, formal tests select one factor

in the linear cases and two factors in the nonlinear cases, which is in contrast to the

arguments of Kelly et al. (2019) that five factors are needed. Second, the out-of-sample

R2
O based on our estimated one or two factor model with nonzero α(·) is 0.54 in the

linear specification, 0.59 and 0.57 in the two nonlinear specifications, all of which are

comparable to 0.60 in Kelly et al. (2019)’s linear specifications with five factors. We

notice that the total in-sample R2’s from this estimated single factor models is smaller

than Kelly et al. (2019)’s. This is not surprising, since the objective of their IPCA

estimation is (essentially) maximizing total (in-sample) R2. The nonlinear specifications

with nonzero α(·) give the higher R2
N,T,O than the linear case and nonlinear cases with

zero α(·). Third, by increasing the number of factors, we can impove the in-sample fit,

since all three in-sample R2’s increase with K. However, increasing the number of factors

does not necessarily improve the out-of-sample fit of the model, since factor betas simply

soaks up the variation that is otherwise captured by alpha.8 In contrast, when alpha is

restricted to be zero, increasing the number of factors does improve the out-of sample

fit for the cross-section of expected returns, R2
N,T,O, while both the total and the time-

series out of sample fit measures, R2
O and R2

O,T,N , are hump-shaped in the number of

factors, peaking around three or four factors, depending on specification (naturally, these

measures are small since they are not meant to capture month-to-month variation in

returns by design). Fourth, compared to the linear model, nonlinear models improve in-

sample fitting R2 significantly and out-of-sample prediction R2 slightly, meanwhile, the

estimation results from nonlinear models are quite close. Both the better performance

and robustness show the advantage of of nonlinear model estimation based on linear B-

8Formally, this is because α̂(zi,t−1) + β̂(zi,t−1)′F̂1T /T = φ(zi,t−1)′(â − B̂F̂1T /T ) = φ(zi,t−1)′ ¯̃Y ,

which does not depend on K, where ¯̃Y is the average of the coefficient estimates from the first-step
Fama-MacBetch regressions (also see (9)).
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splines. Finally, we provide more associated empirical results in the Online Appendix.

We further use our tests to examine whether factor models explain the cross-section of

average stock returns (i.e. α(·) = 0) as well as whether α(·) and β(·) functions are linear

in characteristics. First, we find strong evidence to reject the null hypothesis of α(·) = 0

in our estimated factor models whether we consider the one- or two-factor models that

are selected by our formal tests, or indeed any number of factors between one and ten

(we do not report the p-values here to save space, suffice it to say that in all cases the

pricing errors are significant at 1% level). This finding is contrast to the finding in Kelly

et al. (2019); they find that increasing the number of factors can turn rejection to failure

to reject, settling on a five-factor model. The difference stems from the nature of factors

that we extract: our factors are designed to capture common time-series variation of

stock returns, in the spirit of the APT, while the IPCA procedure of Kelly et al. (2019) is

designed to fit the cross-section of stock returns as well as their common time-variation,

potentially giving up on the former to maximize the latter. Indeed, our factors do a

better job of capturing common time variation in stock returns, as exhibited both by

the R2 measures above and, more importantly, by the Sharpe ratios of the arbitrage

portfolios that exploit the non-zero alphas. In particular, we find a high annualized

Sharpe ratio for the pure-alpha strategy in all of the cases that we consider. The Sharpe

ratio increases from 3.18 to 3.82 as we increase K from 1 to 10 in the linear specification,

and are in the same range (sometimes exceeding 4) in the nonlinear specifications that

utilize B-splines while reducing the number of characteristics used (when we use fewer

characteristics, the Sharpe ratio tends to fall with the number of factors in some of

the specifications). Importantly, since alphas always decline when additional factors are

introduced, the rising Sharpe ratios’ as the number of factors grows is clear evidence

of the important role of the factors in hedging out common variation in stock returns,

which reduces the volatility of the arbitrage portfolio at a rate that exceeds the decline

in alpha.

Before proceeding to the detailed investigation of characteristics and nonlinearity,

we need to pin down the sign of the single extracted factor. Under the normalization:

B′B = IK and F ′MTF/T being diagonal with diagonal entries in descending order,

the sign of the single extracted factor is undetermined. To pin down the sign, we let

the sample means of the extracted factors to be positive such that the unconditional

risk premium is positive. Further, to interpret the latent factors, we also report the

correlation matrix among the extracted factors and six constructed factors in Table 8.

The extracted factor from the linear specification is almost uncorrelated with the market

excess return factor, and the second extracted factor from the nonlinear specifications.

The extracted factors from the nonlinear specification have much higher correlations

with the market excess return, SMB, and RMW. It is noteworthy to point out that the

fourth factor in all three models is highly correlated with MKT and SMB, although
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Table 8: Factors correlation†

MKT SMB HML MOM RMW CMA

Linear specifications with 36 characteristics

Factor1 0.02 0.11 0.10 -0.36 -0.11 0.02

Factor 2 0.26 0.26 0.05 -0.16 -0.20 -0.02

Factor 3 -0.26 -0.22 -0.05 0.18 0.11 0.07

Factor 4 0.58 0.46 -0.33 -0.06 -0.30 -0.30

Factor 5 0.10 0.05 -0.15 0.05 0.01 -0.16

Factor 6 0.32 0.24 -0.13 -0.04 -0.20 -0.13

Factor 7 0.30 0.19 0.02 -0.16 -0.09 -0.10

Factor 8 -0.04 -0.05 0.21 -0.41 0.14 0.16

Factor 9 0.02 0.03 -0.08 0.29 -0.06 -0.03

Factor 10 -0.03 0.01 0.13 0.01 0.09 0.08

Nonlinear specifications with 18 characteristics

Factor1 0.24 0.37 0.07 -0.37 -0.30 -0.02

Factor2 0.41 0.31 -0.37 -0.09 -0.30 -0.29

Factor 3 -0.22 -0.11 0.45 -0.50 0.23 0.33

Factor 4 0.48 0.21 -0.04 -0.34 -0.15 -0.18

Factor 5 -0.12 -0.01 -0.25 0.14 -0.06 -0.10

Factor 6 0.07 -0.21 -0.04 0.09 0.08 -0.08

Factor 7 -0.15 -0.22 -0.09 -0.12 -0.06 -0.03

Factor 8 -0.01 -0.08 0.14 0.05 0.09 0.05

Factor 9 -0.17 0.03 0.08 0.10 0.10 0.09

Factor 10 -0.21 -0.04 0.11 0.07 0.06 0.06

Nonlinear specifications with 12 characteristics

Factor1 0.22 0.36 0.05 -0.32 -0.32 -0.01

Factor2 0.39 0.31 -0.27 -0.34 -0.26 -0.26

Factor 3 -0.19 -0.19 0.49 -0.57 0.25 0.30

Factor 4 0.50 0.21 -0.12 -0.13 -0.16 -0.24

Factor 5 -0.04 -0.15 -0.11 0.12 -0.02 -0.07

Factor 6 -0.20 -0.20 -0.14 0.08 0.06 -0.07

Factor 7 -0.05 -0.04 0.16 0.00 0.12 0.04

Factor 8 -0.04 0.19 0.28 0.18 0.06 0.22

Factor 9 0.27 0.06 0.18 0.11 -0.14 0.16

Factor 10 0.17 -0.27 -0.22 -0.06 0.21 -0.20

† MKT: market excess return; SMB: “small minus big” fac-
tor; HML: “high minus low” factor; MOM: “momentum”
factor; RMW: “robust minus weak” factor; CMA: “conser-
vative minus aggressive” factor. The highlighted ones are
selected factors in the models.
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is not a common factor that is selected by the formal tests. Finally, we find that the

correlation of extracted factors with MOM is negative for the first two to four factors,

shifting to positive for the third factor in the linear case and the fifth (and some of the

higher-order) factors in the nonlinear cases.9

Table 9: Characteristic significance under linear
specifications of α(·) and β(·)†

Char Alpha Beta
a2me 0.0034 −0.2356∗∗∗

assets −0.0048∗∗∗ 0.5638∗∗∗

ato −0.0023∗ 0.0398∗∗∗

bm 0.0045∗∗ −0.0885∗∗∗

beta −0.0056∗∗∗ 0.0829∗∗∗

bidask 0.0004 0.0336∗∗∗

c 0.0017∗∗∗ 0.0079
cto −0.0013 −0.0426∗

d2a 0.0047∗∗∗ 0.0221∗∗∗

dpi2a −0.0017∗∗ −0.0109
e2p −0.0034∗∗∗ 0.0067
fc2y 0.0000 0.0372∗∗∗

free cy 0.0019∗∗∗ −0.0133∗

idiovol −0.0075∗∗∗ −0.0077
invest −0.0019∗∗ 0.0003
lev −0.0012 −0.0200∗∗

mktcap −0.0022∗∗∗ −0.7576∗∗∗

turn 0.0075∗∗∗ 0.0532∗∗∗

noa −0.0036∗∗∗ 0.0217∗∗

oa −0.0007 −0.0083
ol 0.0041∗ 0.0466∗

pcm 0.0064∗∗∗ −0.0320∗∗

pm 0.0020 0.0319∗∗

prof 0.0008 −0.0341∗∗

q −0.0027 −0.0552∗∗

w52h 0.0014∗ −0.0374∗∗∗

rna 0.0008 −0.0074
roa 0.0015 −0.0370∗∗

roe 0.0041∗∗∗ 0.0295∗∗

mom 0.0078∗∗∗ −0.0202∗

intmom 0.0010 0.0072
strev −0.0272∗∗∗ −0.0512∗∗∗

ltrev −0.0031∗∗∗ −0.0629∗∗∗

s2p 0.0044∗∗ −0.0151
sga2m −0.0008 0.0291
suv 0.0143∗∗∗ 0.0147∗∗∗

Constant 0.0060∗∗∗ 0.0829∗∗∗

† Char = characteristic; ∗∗∗: p−value < 1%; ∗∗:
p−value < 5%; ∗: p−value < 10%.

9We also find that the single factor from the linear model and the first extracted factors from the
nonlinear cases are highly correlated, and the second extracted factors from the nonlinear cases are also
highly correlated, which shows the robustness of our model estimation.
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Table 10: Characteristics significance under nonlinear specifications of α(·) and β(·) with 18 characteristics and one
internal knot†

Char
Alpha Beta1 Beta2

B1 B2 B1 B2 B1 B2

assets 0.0013∗∗ −0.0043∗∗∗ 0.0975∗∗∗ 0.2703∗∗∗ −0.2603∗∗∗ −0.5175∗∗∗

ato −0.0002 −0.0005 0.0193∗∗∗ 0.0168∗∗ −0.0058 −0.0356∗∗∗

bm 0.0069∗∗∗ 0.0098∗∗∗ −0.0606∗∗∗ −0.1212∗∗∗ 0.0416∗∗∗ 0.0761∗∗∗

beta −0.0009∗∗ −0.0085∗∗∗ 0.0466∗∗∗ 0.1293∗∗∗ 0.0562∗∗∗ 0.1740∗∗∗

d2a 0.0037∗∗∗ 0.0051∗∗∗ 0.0197∗∗∗ 0.0175∗∗∗ −0.0175∗∗ −0.0375∗∗∗

idiovol 0.0030∗∗∗ −0.0085∗∗∗ −0.0133∗∗∗ 0.0186∗∗∗ 0.0003 −0.0078

invest 0.0000 −0.0033∗∗∗ −0.0316∗∗∗ −0.0189∗∗∗ −0.0060 0.0197∗∗

mktcap −0.0088∗∗∗ −0.0023∗∗∗ −0.2815∗∗∗ −0.5338∗∗∗ 0.2094∗∗∗ 0.4082∗∗∗

turn 0.0072∗∗∗ 0.0064∗∗∗ 0.0282∗∗∗ 0.0328∗∗∗ 0.0343∗∗∗ 0.1099∗∗∗

noa −0.0012∗∗ −0.0056∗∗∗ −0.0030 −0.0019 −0.0183∗∗ −0.0238∗∗∗

pcm 0.0010∗ 0.0044∗∗∗ −0.0047 −0.0061 −0.0294∗∗∗ −0.0551∗∗∗

prof 0.0022∗∗∗ 0.0027∗∗∗ −0.0257∗∗∗ −0.0479∗∗∗ 0.0452∗∗∗ 0.1033∗∗∗

w52h −0.0049∗∗∗ 0.0018∗∗ −0.1087∗∗∗ −0.0823∗∗∗ −0.1042∗∗∗ −0.0984∗∗∗

roe 0.0058∗∗∗ 0.0061∗∗∗ −0.0427∗∗∗ −0.0228∗∗∗ −0.0739∗∗∗ −0.0801∗∗∗

mom 0.0063∗∗∗ 0.0090∗∗∗ −0.0835∗∗∗ −0.0799∗∗∗ −0.0804∗∗∗ −0.1060∗∗∗

strev −0.0140∗∗∗ −0.0255∗∗∗ −0.0458∗∗∗ −0.0993∗∗∗ −0.0785∗∗∗ −0.1252∗∗∗

ltrev −0.0018∗∗∗ −0.0028∗∗∗ −0.0974∗∗∗ −0.1033∗∗∗ −0.0744∗∗∗ −0.0706∗∗∗

suv 0.0042∗∗∗ 0.0143∗∗∗ −0.0048 0.0089∗∗ −0.0029 −0.0016

Constant −0.0039∗∗∗ 0.6643∗∗∗ 0.5443∗∗∗

† Char = characteristic; ∗∗∗: p−value < 1%; ∗∗: p−value < 5%; ∗: p−value < 10%. Bi is the estimated coefficients
corresponding to the i-th sieve basis function.
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Table 11: Characteristics significance under nonlinear specifications of α(·) and β(·) with 12 characteristics and two internal knots†

Char
Alpha Beta1 Beta2

B1 B2 B3 B1 B2 B3 B1 B2 B3

assets 0.0002 0.0011∗∗ −0.0059∗∗∗ 0.0782∗∗∗ 0.0780∗∗∗ 0.2297∗∗∗ −0.2479∗∗∗ −0.2104∗∗∗ −0.4264∗∗∗

bm 0.0079∗∗∗ 0.0066∗∗∗ 0.0096∗∗∗ −0.0731∗∗∗ −0.0671∗∗∗ −0.1236∗∗∗ 0.0675∗∗∗ 0.0507∗∗∗ 0.1005∗∗∗

beta −0.0024∗∗∗ −0.0017∗∗∗ −0.0102∗∗∗ 0.0614∗∗∗ 0.0404∗∗∗ 0.1378∗∗∗ 0.0669∗∗∗ 0.0403∗∗∗ 0.1941∗∗∗

idiovol 0.0018∗∗∗ 0.0021∗∗∗ −0.0095∗∗∗ 0.0004 −0.0201∗∗∗ 0.0381∗∗∗ −0.0064 0.0110∗ −0.0175∗

invest 0.0001 0.0012∗∗ −0.0063∗∗∗ −0.0369∗∗∗ −0.0363∗∗∗ −0.0219∗∗∗ −0.0392∗∗∗ −0.0401∗∗∗ −0.0161∗∗

mktcap −0.0113∗∗∗ −0.0063∗∗∗ −0.0005 −0.2845∗∗∗ −0.2625∗∗∗ −0.4995∗∗∗ 0.2184∗∗∗ 0.2057∗∗∗ 0.3388∗∗∗

turn 0.0068∗∗∗ 0.0066∗∗∗ 0.0058∗∗∗ 0.0310∗∗∗ 0.0288∗∗∗ 0.0392∗∗∗ 0.0621∗∗∗ 0.0578∗∗∗ 0.1398∗∗∗

prof 0.0048∗∗∗ 0.0038∗∗∗ 0.0052∗∗∗ −0.0318∗∗∗ −0.0198∗∗∗ −0.0458∗∗∗ 0.0307∗∗∗ 0.0254∗∗∗ 0.0784∗∗∗

mom 0.0077∗∗∗ 0.0070∗∗∗ 0.0129∗∗∗ −0.1411∗∗∗ −0.1096∗∗∗ −0.1179∗∗∗ −0.2299∗∗∗ −0.1928∗∗∗ −0.2641∗∗∗

strev −0.0165∗∗∗ −0.0110∗∗∗ −0.0251∗∗∗ −0.0788∗∗∗ −0.0522∗∗∗ −0.1243∗∗∗ −0.1241∗∗∗ −0.0980∗∗∗ −0.1697∗∗∗

ltrev −0.0003 0.0004 −0.0008 −0.1164∗∗∗ −0.0933∗∗∗ −0.1132∗∗∗ −0.0848∗∗∗ −0.0782∗∗∗ −0.0740∗∗∗

suv 0.0051∗∗∗ 0.0039∗∗∗ 0.0153∗∗∗ −0.0031 −0.0030 0.0109∗∗∗ −0.0060 −0.0013 −0.0043
Constant −0.0029∗∗∗ 0.6074∗∗∗ 0.4194∗∗∗

† Char = characteristic; ∗∗∗: p−value < 1%; ∗∗: p−value < 5%; ∗: p−value < 10%. Bi is the estimated coefficients corresponding to the i-th sieve
basis function.
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To further investigate the nonlinearity and contributions of each individual charac-

teristic to pricing errors and risk exposures, we report coefficient estimates for three

different specifications in Tables 9-11. We examine the significance of each individual

term in φ(zit) by the weighted bootstrap in Section 5.1. In contrast to the finding in

Kelly et al. (2019) of 13 out of 36 characteristics being significant in driving risk expo-

sures, we find 26 to be significant in the linear specification. We find 22 characteristics

to have a significant effect on alpha in the linear specification. The findings indicate

that most of the characteristics contain relevant information about both pricing errors

and risk exposures (rather just one or the other). In the nonlinear cases, we find that

almost all the sieve coefficients are significant, which indicates that it is necessary to

introduce the nonlinear terms.

Empirical studies show that stocks with smaller market capitalization, higher book-

to-market ratio (Fama and French, 1993), or better past performance (Jegadeesh and

Titman, 1993) tend to have higher returns, often referred to as “size”, “value”, and “mo-

mentum” anomalies in equity market. The presumed “rational” explanation for these

anomalies is that smaller or value firms or firms with better past performance have larger

exposures to priced systematic risky factors. In order to test this hypothesis, we report

the plots of the pricing error and the risk exposure versus six important characteristics.

Figure 1 reports the results for the linear specification, and we find a downward sloping

curve for book-to-market ratio, which rejects a (conditional) one-factor-model expla-

nation of value. Figures 2-3 report the results for the nonlinear specifications, while

we find the associated nonlinear and upward sloping exposure to the second extracted

factor, which is more consistent with the risk-based views. Similarly, we find opposite

curve slopes from the linear and nonlinear specifications for investment and profitability,

where the results from the nonlinear specifications are more consistent with the findings

in Fama and French (2015): the firms with low investment and high profitability bear

the larger risks. Overall, more estimates from the nonlinear specifications are consistent

with the traditional view than those from the linear specification.

Finally, we check the estimated contribution of each individual characteristic in the

pricing error with different numbers of factors. In Figure 4, we report the estimates and

their associated 95% confidence intervals for the coefficients in the linear specification.

We find that increasing the number of factors does not affect the estimates and confidence

intervals significantly. This implies that the estimation of alpha is not sensitive to the

number of factors and is also contrast to the estimation procedure in (Kelly et al., 2019).

To conclude, we not only find strong evidence of nonlinearity but also identify the

source of the nonlinearity in both pricing errors and risk exposures.
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Figure 1: Characteristics-alpha and characteristics-beta plots under linear specifications
of α(·) and β(·) with 36 characteristics

Notes: the six important characteristics are market capitalization (mktcap), market beta (beta), book-
to-market ratio (bm), momentum (mom), investment (invest), and gross profitaility (prof). To make
the magnitude comparable, the annualized values are reported for some alphas.
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Figure 2: Characteristics-alpha and characteristics-beta plots under continuous piece-
wise linear specifications of α(·) and β(·) with 18 characteristics and one internal knot

Notes: the six important characteristics are market capitalization (mktcap), market beta (beta), book-
to-market ratio (bm), momentum (mom), investment (invest), and gross profitaility (prof). To make
the magnitude comparable, the annualized alpha is reported.
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Figure 3: Characteristics-alpha and characteristics-beta plots under continuous piece-
wise linear specifications of α(·) and β(·) with 12 characteristics and two internal knots

Notes: the six important characteristics are market capitalization (mktcap), market beta (beta), book-
to-market ratio (bm), momentum (mom), investment (invest), and gross profitaility (prof). To make
the magnitude comparable, the annualized alpha is reported.
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Figure 4: Estimates and 95% confidence intervals of coefficients in alpha under linear
specifications of α(·) and β(·)
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9 Conclusion

In this paper, we developed a simple and tractable semiparametric sieve estimation

for conditional factor models with time-varying covariances and latent factors, and a

weighted bootstrap for conducting inference on the intercept and factor loading func-

tions. We established large sample properties of the estimators and validity of the tests

for large N , even when T is small. These results enable us to estimate conditional

(dynamic) behavior of a large set of individual assets from a number of characteristics

exhibiting nonlinearity without the need to pre-specify factors, while allowing us to dis-

entangle the alpha from betas. We applied these methods to explain the cross-sectional

differences of individual stock returns in the US market. We found strong evidence of

conditional factor structure as well as nonlinearity in conditional alpha and beta func-

tions. Importantly, although only one or two factors are selected by the formal tests,

even when a large number of common factors is considered, conditional pricing errors

remain large, resulting in arbitrage portfolios with high Sharpe ratios (typically above

3).
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Appendix A - Proof of Theorem 4.1

A.1 Proof of Theorem 4.1

Proof of Theorem 4.1: Let us begin by defining some notation. Let Ãt ≡
(Φ(Zt)

′Φ(Zt))
−1Φ(Zt)

′At for At = ∆t and εt, where ∆t = R(Zt) + ∆(Zt)ft. Let

∆̃ ≡ (∆̃1, . . . , ∆̃T ) and Ẽ ≡ (ε̃1, . . . , ε̃T ). Then (9) can be written as

Ỹ = a1′T +BF ′ + ∆̃ + Ẽ, (A.1)

where 1T denote a T × 1 vector of ones. Recall MT = IT − 1T 1′T /T . Post-multiplying

(A.1) by MT to remove a, we thus obtain

Ỹ MT = B(MTF )′ + ∆̃MT + ẼMT . (A.2)

Let V be a K×K diagonal matrix of the first K largest eigenvalues of Ỹ MT Ỹ
′/T . By the

definitions of B̂ and F̂ , (Ỹ MT Ỹ
′/T )B̂ = B̂V and MT F̂ = MT Ỹ

′B̂. Thus, F̂ ′MT F̂ /T =

B̂′(Ỹ MT Ỹ
′/T )B̂ = V and H = (F ′MT F̂ )(F̂ ′MT F̂ )−1 = (F ′MT Ỹ

′B̂/T )V −1. We may

substitute (A.2) to (Ỹ MT Ỹ
′/T )B̂ = B̂V to obtain

B̂ −BH = [(∆̃ + Ẽ)MT Ỹ
′/T ]B̂V −1 =

6∑
j=1

DjB̂V
−1, (A.3)

where D1 = ∆̃MTFB
′/T , D2 = ∆̃MT ∆̃′/T , D3 = D′6 = ∆̃MT Ẽ

′/T , D4 = ẼMTFB
′/T

and D5 = ẼMT Ẽ
′/T . By the Cauchy-Schwartz inequality and the fact that ‖C+D‖F ≤

‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (A.3) implies

‖B̂ −BH‖2F ≤ 6‖B̂‖22‖V −1‖22

 6∑
j=1

‖Dj‖2F

 = Op

(
1

J2κ
+
J2

N2
+

J

NT

)
, (A.4)

where the equality follows by Lemmas A.1 and A.2(i) and the fact that ‖D3‖F = ‖D6‖F .

Since B̂′B̂ = IK , ‖IJM − B̂B̂′‖2 = 1 and (IJM − B̂B̂′)B̂ = 0. By the definition of â,

â− a = −B̂(B̂ −BH)′a+ (IJM − B̂B̂′)(BH − B̂)H−1f̄

+ (IJM − B̂B̂′)∆̃1T /T + (IJM − B̂B̂′)Ẽ1T /T. (A.5)

where H−1 is well defined with probability approaching one by (A.4) and Lemma A.2(ii),

and we have used a′B = 0 and (IJM − B̂B̂′)B̂ = 0. By the Cauchy-Schwartz inequality

and the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and ‖Ax‖ ≤ ‖A‖2‖x‖, (A.5) implies

|â− a|2 ≤ 4

(
‖B̂ −BH‖2F ‖a‖2 + ‖BH − B̂‖2F ‖H−1‖22 max

t≤T
‖ft‖2
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+
1

T
‖∆̃‖2F +

1

T 2
‖Ẽ1T ‖2

)
= Op

(
1

J2κ
+
J2

N2
+

J

NT

)
, (A.6)

where the equality follows by (A.4), Assumptions 4.2(ii) and 4.4, and Lemmas A.2(ii),

A.3(i) and A.4(ii). Noting B̂′B̂ = IK , we may substitute (A.1) to F̂ = Ỹ ′B̂ to obtain

F̂ − F (H ′)−1 = 1Ta
′(B̂ −BH) + F (H ′)−1(BH − B̂)′B̂ + ∆̃′B̂ + Ẽ′B̂. (A.7)

where (H ′)−1 is well defined with probability approaching one by (A.4) and Lemma

A.2(ii), and we have used a′B = 0. By the Cauchy-Schwartz inequality and the fact

that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (A.7) implies

1

T
‖F̂ − F (H ′)−1‖2F ≤

4

T

(
‖F‖22‖H−1‖22‖BH − B̂‖2F + ‖∆̃‖2F + ‖Ẽ‖2F

)
‖B̂‖22

+
4

T
‖1T ‖2‖BH − B̂‖2F ‖a‖2 = Op

(
1

J2κ
+
J

N

)
, (A.8)

where the equality follows from (A.4), Assumptions 4.2(ii) and 4.4, and Lemmas A.2(ii),

A.3(i) and (ii) by noting that J = o(
√
N). Since β̂(z) = B̂′φ(z) and β(z) = B′φ(z)+δ(z),

β̂(z)−H ′β(z) = B̂′φ(z)− (BH)′φ(z) +H ′δ(z). (A.9)

By the Cauchy-Schwartz inequality and the fact that ‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖Ax‖ ≤
‖A‖2‖x‖ and ‖A‖2 ≤ ‖A‖F , (A.9) implies

sup
z
‖β̂(z)−H ′β(z)‖2 ≤ 2‖B̂ −BH‖2F sup

z
‖φ(z)‖2 + 2‖H‖22 sup

z
‖δ(z)‖2

= Op

(
1

J2κ−1
+
J3

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2, (A.10)

where the equality follows from (A.4) and Lemma A.2(i) by noting that supz ‖φ(z)‖2 ≤
JM maxj≤J supz |φj(z)|2 and supz ‖δ(z)‖2 ≤ KM2 maxk≤K,m≤M supz |δkm,J(z)|2 =

O(J−2κ) due to Assumption 4.2(iv). The proof of the second last result is similar.

This completes the proof of the theorem. �

A.2 Technical Lemmas

Lemma A.1. Let D1, D2, D3, D4, D5 be given in the proof of Theorem 4.1.

(i) Under Assumptions 4.1(i), 4.2(i), (ii) and (iv), ‖D1‖2F = Op(J
−2κ).

(ii) Under Assumptions 4.1(i), 4.2(ii) and (iv), ‖D2‖2F = Op(J
−4κ).

(iii) Under Assumptions 4.1, 4.2(ii), (iv) and 4.3, ‖D3‖2F = Op(J
−2κJ/N).

(iv) Under Assumptions 4.1, 4.2(i), (ii) and 4.3, ‖D4‖2F = Op(J/NT ).

(v) Under Assumptions 4.1 and 4.3, ‖D5‖2F = Op(J
2/N2).

Proof: (i) Since ‖MT ‖2 = 1, ‖D1‖F ≤ ‖B‖2‖F‖2‖∆̃‖F /T . The result then immedi-
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ately follows from Assumptions 4.2(i), (ii) and Lemma A.3(i).

(ii) Since ‖MT ‖2 = 1, ‖D2‖F ≤ ‖∆̃‖2F /T . The result then immediately follows from

Lemma A.3(i).

(iii) Since ‖MT ‖2 = 1, ‖D3‖F ≤ ‖∆̃‖F ‖Ẽ‖F /T . The result then immediately follows

from Lemma A.3(i) and (ii).

(iv) Since ‖D4‖F ≤ ‖B‖2‖ẼMTF‖F /T , the result then immediately follows from

Assumption 4.2(i) and Lemma A.3(iii).

(v) Since ‖MT ‖2 = 1, ‖D5‖F ≤ ‖Ẽ‖2F /T . The result then immediately follows from

Lemma A.3(ii). �

Lemma A.2. Suppose Assumptions 4.1-4.3 hold. Let V be given in the proof of Theorem

4.1. Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with

J = o(
√
N). Then (i) ‖V ‖2 = Op(1), ‖V −1‖2 = Op(1), and ‖H‖2 = Op(1); (ii)

‖H−1‖2 = Op(1), if ‖B̂ −BH‖F = op(1).

Proof: (i) Let D7 ≡ D′1 and D8 ≡ D′4. Then by (A.2), Ỹ MT Ỹ
′/T = BF ′MTFB

′/T +∑8
j=1Dj , where D1, . . . , D6 are given below (A.2). By the fact that ‖C + D‖F ≤

‖C‖F + ‖D‖F ,

‖Ỹ MT Ỹ
′/T −BF ′MTFB

′/T‖F ≤
8∑
j=1

‖Dj‖F = Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
, (A.11)

where the equality follows by Lemma A.1 and the fact that ‖D6‖F = ‖D3‖F , ‖D7‖F =

‖D1‖F and ‖D8‖F = ‖D4‖F . Let V be a K ×K diagonal matrix of the eigenvalues of

(F ′MTF/T )B′B, which are equal to the first K largest eigenvalues of BF ′MTFB
′/T .

By the Weyl’s inequality and the fact that ‖A‖2 ≤ ‖A‖F ,

‖V − V‖2 ≤ ‖Ỹ MT Ỹ
′/T −BF ′MTFB

′/T‖2 = Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
. (A.12)

Thus, ‖V ‖2 = Op(1) and ‖V −1‖2 = λ−1
min(V ) = Op(1) follow from (A.12) and Assump-

tions 4.2(i)-(iii). Let H� ≡ (F ′MTF/T )B′B̂V −1. Recall that H = (F ′MT Ỹ
′B̂/T )V −1.

Then by the fact that ‖A‖2 ≤ ‖A‖F and ‖MT ‖2 = 1,

‖H −H�‖2 ≤
1

T
(‖F‖2‖∆̃‖F + ‖ẼMTF‖F )‖B̂‖2‖V −1‖2 = Op

(
1

Jκ
+

√
J√
NT

)
, (A.13)

where the equality follows from the second result in (i), Assumption 4.2(ii) and Lemmas

A.3(i) and (iii). Since ‖H�‖2 ≤ ‖F ′MTF/T‖2‖B‖2‖B̂‖2‖V −1‖2, the third result in (i)

follows from (A.13), the second result in (i) and Assumptions 4.2(i) and (ii).
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(ii) By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F ,

‖B̂′B̂ −H ′B′BH‖F ≤ ‖B̂‖2‖B̂ −BH‖F + ‖B̂ −BH‖F ‖B‖2‖H‖2. (A.14)

Thus, IK −H ′B′BH = op(1) by Assumption 4.2(i) and ‖H‖2 = Op(1). It then follows

that IK − λmin(B′B)H ′H is negative semidefinite with probability approaching one,

since H ′B′BH−λmin(B′B)H ′H is positive semidefinite. So, the eigenvalues of H ′H are

not smaller than λ−1
min(B′B) with probability approaching one. Thus, the result in (ii)

follows from Assumption 4.2(i). �

Lemma A.3. Let ∆̃ and Ẽ be given in the proof of Theorem 4.1.

(i) Under Assumptions 4.1(i), 4.2(ii) and (iv), ‖∆̃‖2F /T = Op(J
−2κ).

(ii) Under Assumptions 4.1 and 4.3, ‖Ẽ‖2F /T = Op(J/N).

(iii) Under Assumptions 4.1, 4.2 (ii) and 4.3, ‖ẼMTF‖2F /T = Op(J/N).

Proof: (i) By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖ and ‖A‖2 ≤ ‖A‖F ,

1

T
‖∆̃‖2F =

1

T

T∑
t=1

‖(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′(R(Zt) + ∆(Zt)ft)‖2

≤ 2 max
t≤T
‖ft‖2

(
min
t≤T

λmin(Q̂t)

)−1 1

NT

T∑
t=1

‖∆(Zt)‖2F

+ 2

(
min
t≤T

λmin(Q̂t)

)−1 1

NT

T∑
t=1

‖R(Zt)‖2 = Op

(
1

J2κ

)
, (A.15)

where the last equality follows from Assumptions 4.1(i) and 4.2(ii) and Lemma A.4(iii).

(ii) By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖,

1

T
‖Ẽ‖2F =

1

T

T∑
t=1

‖(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′εt‖2

≤
(

min
t≤T

λmin(Q̂t)

)−2 1

N2T

T∑
t=1

‖Φ(Zt)
′εt‖2 = Op

(
J

N

)
, (A.16)

where the last equality follows from Assumption 4.1(i) and Lemma A.4(i).

(iii) By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F ,

1

T
‖ẼMTF‖2F ≤

2

N2T

∥∥∥∥∥
T∑
t=1

Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

+
2‖f̄‖2

N2T

∥∥∥∥∥
T∑
t=1

Q̂−1
t Φ(Zt)

′εt

∥∥∥∥∥
2

= Op

(
J

N

)
, (A.17)

where the equality follows from Assumption 4.2(ii) and Lemma A.4(ii). �
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Lemma A.4. (i) Under Assumptions 4.1(ii) and 4.3,

T∑
t=1

‖Φ(Zt)
′εt‖2 = Op(NTJ).

(ii) Under Assumptions 4.1, 4.2(ii) and 4.3,∥∥∥∥∥
T∑
t=1

Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

= Op(NTJ) and

∥∥∥∥∥
T∑
t=1

Q̂−1
t Φ(Zt)

′εt

∥∥∥∥∥
2

= Op(NTJ).

(iii) Under Assumption 4.2(iv),

T∑
t=1

‖∆(Zt)‖2F = Op(NTJ
−2κ) and

T∑
t=1

‖R(Zt)‖2 = Op(NTJ
−2κ).

Proof: (i) The result follows by the Markov’s inequality, since

E

[
T∑
t=1

‖Φ(Zt)
′εt‖2

]
= E

 T∑
t=1

N∑
i=1

N∑
j=1

φ(zit)
′φ(zjt)εitεjt


=

T∑
t=1

N∑
i=1

N∑
j=1

E[φ(zit)
′φ(zjt)]E[εitεjt]

≤ max
i≤N,t≤T

E[‖φ(zit)‖2]

T∑
t=1

N∑
i=1

N∑
j=1

|E[εitεjt]|

≤ TJM max
m≤M,j≤J,i≤N,t≤T

E[φ2
j (zit,m)] max

t≤T

N∑
i=1

N∑
j=1

|E[εitεjt]| = O(NTJ), (A.18)

where the second equality follows by the independence in Assumption 4.3(i), the first

inequality is due to the Cauchy Schwartz inequality, the second inequality follows since

maxi≤N,t≤T E[‖φ(zit)‖2] ≤ JM maxm≤M,j≤J,i≤N,t≤T E[φ2
j (zit,m)], and the last equality

follows from Assumptions 4.1(ii) and 4.3(iii).

(ii) Let Eε denote the expectation with respect to {εt}t≤T . Since ‖A‖2F = tr(AA′),

Eε

∥∥∥∥∥
T∑
t=1

Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

 = Eε

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

Q̂−1
t φ(zit)εitf

′
tfsεjsφ(zjs)

′Q̂−1
s


=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

φ(zit)
′Q̂−1

t Q̂−1
s φ(zjs)f

′
tfsE[εitεjs]

≤ max
t≤T
‖ft‖2

(
min
t≤T

λmin(Q̂t)

)−2 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

‖φ(zit)‖‖φ(zjs)‖|E[εitεjs]|, (A.19)
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where the second equality follows by the independence in Assumption 4.3(i) and the

fact that both expectation and trace operators are linear, and the inequality follows by

the fact that ‖Ax‖ ≤ ‖A‖2‖x‖. Moreover,

E

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

‖φ(zit)‖‖φ(zjs)‖|E[εitεjs]|


≤ max

i≤N,t≤T
E[‖φ(zit)‖2]

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεjs]|

≤ JM max
m≤M,j≤J,i≤N,t≤T

E[φ2
j (zit,m)]

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]|, (A.20)

where the first inequality is due to the Cauchy-Schwartz inequality, and the second in-

equality follows since maxi≤N,t≤T E[‖φ(zit)‖2] ≤ JM maxm≤M,j≤J,i≤N,t≤T E[φ2
j (zit,m)].

Combining (A.19) and (A.20) implies that Eε[‖
∑T

t=1 Q̂
−1
t Φ(Zt)

′εtf
′
t‖2F ] = Op(NTJ) by

Assumptions 4.1, 4.2(ii) and 4.3(iii). Thus, the first result of the lemma follows by the

Markov’s inequality and Lemma A.5. The proof of the second result is similar.

(iii) The first result follows since

T∑
t=1

‖∆(Zt)‖2F ≤ NTKM2 max
k≤K,m≤M

sup
z
|δkm,J(z)|2 = Op(NTJ

−2κ), (A.21)

where the inequality follows since maxi≤N,t≤T ‖δ(zit)‖2 ≤ M2K supk≤K,m≤M supz

|δkm,J(z)|2, and the equality follows from Assumption 4.2(iv). The proof of the sec-

ond result is similar. �

Lemma A.5. Let S1, . . . , SN be a sequence of random variables and D1, . . . ,DN be a

sequence of random vectors. Then SN = Op(1) if and only if SN = Op|DN
(1), where

p denotes the underlying probability measure and p|DN denotes the probability measure

conditional on DN .

Proof: By definition, SN = Op(1) means that P (|SN | > `N ) = o(1) for any `N → ∞,

while SN = Op|DN
(1) means that P (|SN | > `N |DN ) = op(1) for any `N → ∞. The

second follows from the first by the Markov inequality because E[P (|SN | > `N |DN )] =

P (|SN | > `N ) = o(1). Since P (|SN | > `N |DN ) ≤ 1 for all N , {P (|SN | > `N |DN )}N≥1

are uniformly integrable. The first follows from the second by the fact that convergence

in probability implies moments convergence for uniformly integrable sequences. �
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Appendix B - Proof of Theorem 4.2

B.1 Proof of Theorem 4.2

Proof of Theorem 4.2: Let us first look at (A.3). To improve the rate of B̂ in

Theorem 4.1, we cannot use the inequality in (A.4). Instead, we need to treat D5B̂

as a whole to establish its rate. By the Cauchy-Schwartz inequality and the fact that

‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (A.3) implies

‖B̂ −BH‖2F ≤ 10‖B̂‖22‖V −1‖22

 6∑
j 6=5

‖Dj‖2F

+ 2‖V −1‖22‖D5B̂‖2F ,

= Op

(
1

J2κ
+

J

N2
+

J

NT

)
, (B.1)

where the equality follows by J = o(
√
N), Lemmas A.1(i)-(iv), A.2(i) and B.1(ii) and

the fact that ‖D6‖F = ‖D3‖F . Given the rate of ‖B̂ − BH‖2F in (B.1), the rate of

|â − a|2 immediately follows from the same argument in (A.6). We now look at (A.7).

To improve the rate of F̂ in Theorem 4.1, we cannot use the inequality in (A.8). Instead,

we need to plug in the expansion of B̂ − BH, and treat a′D4, D′4B̂, D5B̂ and Ẽ′B̂ as

a whole to establish their rates. By the fact that ‖C + D‖F ≤ ‖C‖F + ‖D‖F and

‖CD‖F ≤ ‖C‖2‖D‖F , combining (A.3) and (A.7) implies

‖F̂ − F (H ′)−1‖F =

 6∑
j 6=4,5

‖Dj‖F ‖B̂‖2‖a‖+ ‖a′D4‖‖B̂‖2 + ‖a‖‖D5B̂‖F

 ‖V −1‖2‖1T ‖

+

 6∑
j 6=4,5

‖Dj‖F ‖B̂‖2 + ‖D′4B̂‖F + ‖D5B̂‖F


× ‖F‖2‖H−1‖2‖V −1‖2‖B̂‖2 + ‖∆̃‖F ‖B̂‖2 + ‖Ẽ′B̂‖F

= Op

(√
T

Jκ
+

√
T

N

)
, (B.2)

where the equality follows by J = o(
√
N), Assumptions 4.2(ii) and 4.4, Lemmas A.1(i)-

(iii), A.2, A.3(i), B.1 and B.2(i) and the fact that ‖D6‖F = ‖D3‖F . Thus, the third

result of the theorem follows from (B.2). The proofs of the last two results of the theorem

are similar to the proofs of the last two results of Theorem 4.1. �

B.2 Technical Lemmas

Lemma B.1. Let D4 and D5 be given in the proof of Theorem 4.1. Assume (i) N →∞;

(ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J2ξ2
J log J = o(N).

50



(i) Under Assumptions 4.1-4.5, ‖D′4B̂‖2F = Op(1/NT ).

(ii) Under Assumptions 4.1-4.5, ‖D5B̂‖2F = Op(J/N
2).

(iii) Under Assumptions 4.1-4.5, ‖D′4a‖2 = Op(1/NT ).

Proof: (i) Since ‖D′4B̂‖F ≤ ‖B‖2‖B̂′ẼMTF‖F /T , the result then immediately follows

from Assumption 4.2(i) and Lemma B.2(ii).

(ii) Since ‖MT ‖2 = 1, ‖D5B̂‖F ≤ ‖Ẽ‖F ‖B̂′Ẽ‖F /T . The result then immediately

follows from Lemmas A.3(ii) and B.2(i).

(iii) Since ‖D′4a‖ ≤ ‖B‖2‖a′ẼMTF‖/T , the result then immediately follows from

Assumption 4.2(i) and Lemma B.2(iii). �

Lemma B.2. Let Ẽ be given in the proof of Theorem 4.1. Assume (i) N → ∞; (ii)

T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J2ξ2
J log J = o(N).

(i) Under Assumptions 4.1-4.5, ‖B̂′Ẽ‖2F /T = Op(1/N).

(ii) Under Assumptions 4.1-4.5, ‖B̂′ẼMTF‖2F /T = Op(1/N).

(iii) Under Assumptions 4.1-4.5, ‖a′ẼMTF‖2/T = Op(1/N).

Proof: By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F ,

1

T
‖B̂′Ẽ‖2F ≤

2

T
‖Ẽ‖2F ‖B̂ −BH‖2F +

2

T
‖H‖22‖B′Ẽ‖2F

=
2

T
‖Ẽ‖2F ‖B̂ −BH‖2F +

2

N2T
‖H‖22

(
T∑
t=1

‖B′Q̂−1
t Φ(Zt)

′εt‖2
)

= Op

(
J

N

(
1

J2κ
+
J2

N2
+

J

NT

)
+

1

N

)
= Op

(
1

N

)
, (B.3)

where the second equality follows from J2ξ2
J log J = o(N), Lemmas A.2(i), A.3(ii) and

B.3(i) and Theorem 4.1, and the last equality is due to κ > 1/2 and J = o(
√
N).

(ii) By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F ,

1

T
‖B̂′ẼMTF‖2F ≤

2

T
‖ẼMTF‖2F ‖B̂ −BH‖2F +

2

T
‖H‖22‖B′ẼMTF‖2F

≤ 2

T
‖ẼMTF‖2F ‖B̂ −BH‖2F +

4

N2T
‖H‖22

∥∥∥∥∥
T∑
t=1

B′Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

+
4‖f̄‖2

N2T
‖H‖22

∥∥∥∥∥
T∑
t=1

B′Q̂−1
t Φ(Zt)

′εt

∥∥∥∥∥
2

= Op

(
J

N

(
1

J2κ
+
J2

N2
+

J

NT

)
+

1

N

)
= Op

(
1

N

)
, (B.4)

where the first equality follows from J2ξ2
J log J = o(N), Assumption 4.2(ii), Lemmas

A.2(i), A.3(iii) and B.3(ii) and Theorem 4.1, and the last equality is due to κ > 1/2 and

J = o(
√
N).
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(iii) By the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

1

T
‖a′ẼMTF‖2 ≤

2

N2T

∥∥∥∥∥
T∑
t=1

a′Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

+
2‖f̄‖2

N2T

∣∣∣∣∣
T∑
t=1

a′Q̂−1
t Φ(Zt)

′εt

∣∣∣∣∣
2

= Op

(
1

N

)
, (B.5)

where the equality follows from J2ξ2
J log J = o(N), Assumption 4.2(ii) and Lemma

B.3(ii). �

Lemma B.3. Assume J ≥ 2 and ξ2
J log J = o(N).

(i) Under Assumptions 4.1(i), 4.2(i), 4.3 and 4.5,

T∑
t=1

‖B′Q̂−1
t Φ(Zt)

′εt‖2 = Op

(
NT

(
1 +

Jξ2
J log J

N

))
.

(ii) Under Assumptions 4.1(i), 4.2(i), (ii), 4.3, 4.4 and 4.5,∥∥∥∥∥
T∑
t=1

B′Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

= Op

(
NT

(
1 +

JξJ
√

log J√
N

))
,

∥∥∥∥∥
T∑
t=1

B′Q̂−1
t Φ(Zt)

′εt

∥∥∥∥∥
2

= Op

(
NT

(
1 +

JξJ
√

log J√
N

))
,

∥∥∥∥∥
T∑
t=1

a′Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

= Op

(
NT

(
1 +

JξJ
√

log J√
N

))
,

∣∣∣∣∣
T∑
t=1

a′Q̂−1
t Φ(Zt)

′εt

∣∣∣∣∣
2

= Op

(
NT

(
1 +

JξJ
√

log J√
N

))
.

Proof: (i) Let Qt ≡ E[Q̂t]. By the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

T∑
t=1

‖B′Q̂−1
t Φ(Zt)

′εt‖2 ≤ 2

T∑
t=1

‖B′Q−1
t Φ(Zt)

′εt‖2

+ 2

T∑
t=1

‖B′(Q̂−1
t −Q

−1
t )Φ(Zt)

′εt‖2 ≡ 2T1 + 2T2. (B.6)

Therefore, it suffices to show that T1 = Op(NT ) and T2 = Op(TJξ
2
J log J). The former

holds by the Markov’s inequality, since

E[T1] = E

 T∑
t=1

N∑
i=1

N∑
j=1

φ(zit)
′Q−1

t BB′Q−1
t φ(zjt)εitεjt
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=

T∑
t=1

N∑
i=1

N∑
j=1

E[φ(zit)
′Q−1

t BB′Q−1
t φ(zjt)]E[εitεjt]

≤ T max
i≤N,t≤T

E[‖B′Q−1
t φ(zit)‖2] max

t≤T

N∑
i=1

N∑
j=1

|E[εitεjt]| = O(NT ), (B.7)

where the second equality follows by the independence in Assumption 4.3(i), the in-

equality is due to the Cauchy-Schwartz inequality, and the last equality follows from

Assumption 4.3(iii) and Lemma B.4. The latter also holds, since

T2 ≤ CNT
T∑
t=1

‖Q̂t −Qt‖22‖Φ(Zt)
′εt‖2

≤ CNT

(
T∑
t=1

‖Q̂t −Qt‖42

)1/2( T∑
t=1

‖Φ(Zt)
′εt‖4

)1/2

= Op(TJξ
2
J log J), (B.8)

where CNT = ‖B‖22(mint≤T λmin(Q̂t))
−2(mini≤N,t≤T λmin(Qit))

−2, the first inequality

follows since mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), the second inequality is due to

the Cauchy-Schwartz inequality, and the equality follows from Assumptions 4.1(i), 4.2(i)

and 4.5(ii) and Lemmas B.5 and B.6. This completes the proof of (i).

(ii) Let Qt ≡ E[Q̂t]. By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F ,∥∥∥∥∥
T∑
t=1

B′Q̂−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

≤ 2

∥∥∥∥∥
T∑
t=1

B′Q−1
t Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥
T∑
t=1

B′(Q̂−1
t −Q

−1
t )Φ(Zt)

′εtf
′
t

∥∥∥∥∥
2

F

≡ 2T1 + 2T2. (B.9)

Therefore, it suffices to show that T1 = Op(NT ) and T2 = Op(
√
NTJξJ

√
log J). Note

that ‖A‖2F = tr(AA′). The former holds by the Markov’s inequality, since

E[T1] = E

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

B′Q−1
t φ(zit)εitf

′
tfsεjsφ(zjs)

′Q−1
s B


=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

E
[
φ(zit)

′Q−1
t BB′Q−1

s φ(zjs)
]
f ′tfsE[εitεjs]

≤ CNT max
i≤N,t≤T

E[‖B′Q−1
t φ(zit)‖2]

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]| = O(NT ), (B.10)

where CNT = maxt≤T ‖ft‖2, the second equality follows by the independence in As-

sumption 4.3(i) and the fact that both expectation and trace operators are linear, the

inequality is due to the Cauchy-Schwartz inequality, and the last equality follows from
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Assumptions 4.2(ii) and 4.3(iii) and Lemma B.4. Let Eε denote the expectation with

respect to {εt}t≤T . For the latter, we have

Eε[T2] = Eε

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

B′(Q̂−1
t −Q

−1
t )φ(zit)εitf

′
tfsεjsφ(zjs)

′(Q̂−1
s −Q−1

s )B


=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

φ(zit)
′(Q̂−1

t −Q
−1
t )BB′(Q̂−1

s −Q−1
s )φ(zjs)f

′
tfsE[εitεjs]

≤ C∗NT
T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

‖Q̂t −Qt‖2‖φ(zit)‖‖φ(zjs)‖|E[εitεjs]|

≤ C∗∗NT

 T∑
t=1

 T∑
s=1

N∑
i=1

N∑
j=1

‖φ(zit)‖‖φ(zjs)‖|E[εitεjs]|

21/2

, (B.11)

where C∗NT = ‖B‖22 maxt≤T ‖ft‖2[(mint≤T λmin(Q̂t))
−1 + (mini≤N,t≤T λmin(Qit))

−1]

(mint≤T λmin(Q̂t))
−1(mini≤N,t≤T λmin(Qit))

−1 and C∗∗NT = C∗NT (
∑T

t=1 ‖Q̂t − Qt‖22)1/2,

the second equality follows by the independence in Assumption 4.3(i) and the fact

that both expectation and trace operators are linear, the first inequality follows since

mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), and the last inequality is due to the Cauchy-

Schwartz inequality. Moreover, we have

E

 T∑
t=1

 T∑
s=1

N∑
i=1

N∑
j=1

‖φ(zit)‖‖φ(zjs)‖|E[εitεjs]|

2
≤ max

i≤N,t≤T
E[‖φ(zit)‖4]

T∑
t=1

 T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεjs]|

2

≤ J2M2 max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

T∑
t=1

 T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεjs]|

2

, (B.12)

where the first inequality is due to the Cauchy-Schwartz inequality, the second inequality

follows since maxi≤N,t≤T E[‖φ(zit)‖4] ≤ J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)]. By As-

sumptions 4.1(i), 4.2(i), (ii) and 4.5(ii) and Lemma B.6, C∗∗NT = Op(
√
TξJ
√

log J/
√
N).

Combining this, (B.11) and (B.12) implies that Eε[T2] = Op(
√
NTJξJ

√
log J) by As-

sumptions 4.5(i) and (iv). Thus, the latter—T2 = Op(
√
NTJξJ

√
log J)—holds by the

Markov’s inequality and Lemma A.5. This completes the proof of the first result of (ii),

and the proofs of the other three are similar. �

Lemma B.4. Suppose Assumptions 4.2(i), 4.4 and 4.5(ii) hold. Let Qt ≡ E[Q̂t]. Then

max
i≤N,t≤T

E[‖B′Q−1
t φ(zit)‖2] <∞ and max

i≤N,t≤T
E[|a′Q−1

t φ(zit)|2] <∞.
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Proof: Since ‖x‖2 = tr(xx′),

E[‖B′Q−1
t φ(zit)‖2] = E[tr(B′Q−1

t φ(zit)φ(zit)
′Q−1

t B)] = tr(B′Q−1
t QitQ

−1
t B)

≤ max
i≤N,t≤T

λmax(Qit)

(
min
t≤T

λmin(Qt)

)−1

K‖B‖22

≤ max
i≤N,t≤T

λmax(Qit)

(
min

i≤N,t≤T
λmin(Qit)

)−1

K‖B‖22, (B.13)

where the second equality follows by the fact that both expectation and trace operators

are linear, the first inequality follows since tr(B′B) = ‖B‖2F ≤ K‖B‖22, and the second

inequality follows since mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit). Thus, the first result

of the lemma follows from (B.13), Assumptions 4.2(i) and 4.5(ii). The proof of the

second result is similar. �

Lemma B.5. Under Assumptions 4.3(i), 4.5(i) and (iv),

T∑
t=1

‖Φ(Zt)
′εt‖4 = Op(N

2TJ2).

Proof: The result follows by the Markov’s inequality, since

E

[
T∑
t=1

‖Φ(Zt)
′εt‖4

]
= E

 T∑
t=1

 N∑
i=1

N∑
j=1

φ(zit)
′φ(zjt)εitεjt

2
= E

 T∑
t=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

φ(zit)
′φ(zjt)φ(zkt)

′φ(z`t)εitεjtεktε`t


=

T∑
t=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

E[φ(zit)
′φ(zjt)φ(zkt)

′φ(z`t)]E[εitεjtεktε`t]

≤ max
i≤N,t≤T

E[‖φ(zit)‖4]

T∑
t=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|E[εitεjtεktε`t]|

≤ J2M2 max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

T∑
t=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|E[εitεjtεktε`t]|

= O(N2TJ2), (B.14)

where the third equality follows by the independence in Assumption 4.3(i), the first

inequality is due to the Cauchy Schwartz inequality, the second inequality follows since

maxi≤N,t≤T E[‖φ(zit)‖4] ≤ J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)], and the last equality

follows from Assumptions 4.5(i) and (iv). �

Lemma B.6. Suppose Assumptions 4.5(ii) and (iii) hold. Let Qt ≡ E[Q̂t]. Assume
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J ≥ 2 and ξ2
J log J = o(N). Then

T∑
t=1

‖Q̂t −Qt‖22 = Op

(
Tξ2

J log J

N

)
and

T∑
t=1

‖Q̂t −Qt‖42 = Op

(
Tξ4

J log2 J

N2

)
.

Proof: Recall that Q̂t =
∑N

i=1 φ(zit)φ(zit)
′/N . Let η1, . . . , ηN be an i.i.d. sequence of

Rademacher variables. It then follows that

Dt ≡ E[‖Q̂t −Qt‖42]

≤ 16E

∥∥∥∥∥ 1

N

N∑
i=1

ηiφ(zit)φ(zit)
′

∥∥∥∥∥
4

2


≤ 16C

log2 JM

N2
sup
z
‖φ(z)‖4E

∥∥∥∥∥ 1

N

N∑
i=1

φ(zit)φ(zit)
′

∥∥∥∥∥
2

2


≤ 16M2C

ξ4
J log2 JM

N2
E[‖Q̂t‖22], (B.15)

where the first inequality follows from the independence in Assumption 4.5(iii) and the

symmetrization lemma (e.g., Lemma 2.3.1 of van der Vaart and Wellner (1996)), the

second inequality follows by Lemma B.7 and the fact that φ(zit)
′φ(zit) ≤ supz ‖φ(z)‖2,

the third inequality follows since supz ‖φ(z)‖2 ≤ M supz ‖φ̄(z)‖2 = Mξ2
J . Let A =

16M2Cξ4
J log2 JM/N2. Combining E[‖Q̂t‖22] ≤ 2

√
Dt + 2‖Qt‖22 and (B.15) leads to the

inequality: Dt ≤ 2A(
√
Dt + ‖Qt‖22). Solving the inequality yields

E[‖Q̂t −Qt‖42] ≤
(
A+

√
A2 + 2A‖Qt‖22

)2

. (B.16)

Thus, by the fact that maxt≤T ‖Qt‖2 ≤ maxi≤N,t≤T λmax(Qit) and the Markov’s inequal-

ity, the second result of the lemma follows from (B.16) and Assumption 4.5(ii). The first

result of the lemma follows similarly by noting that E[‖Q̂t−Qt‖22] ≤ (E[‖Q̂t−Qt‖42])1/2.

This completes the proof of the lemma. �

Lemma B.7 (Khinchin inequality). Let S1, . . . , SN be a sequence of symmetric k × k
matrices and η1, . . . , ηN be an i.i.d. sequence of Rademacher variables. Then for k ≥ 2,

Eη

∥∥∥∥∥ 1

N

N∑
i=1

ηiSi

∥∥∥∥∥
4

2

 ≤ C log2 k

N2

∥∥∥∥∥ 1

N

N∑
i=1

S2
i

∥∥∥∥∥
2

2

for some positive constant C, where Eη denotes the expectation with respect to {ηi}i≤N .

Proof: This is a modified version of Lemma 6.1 in Belloni et al. (2015). The result is
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trivial for 2 ≤ k ≤ e6. For k > e6, we have

Eη

∥∥∥∥∥ 1

N

N∑
i=1

ηiSi

∥∥∥∥∥
4

2

 ≤ Eη
∥∥∥∥∥ 1

N

N∑
i=1

ηiSi

∥∥∥∥∥
4

Slog k


≤

Eη
∥∥∥∥∥ 1

N

N∑
i=1

ηiSi

∥∥∥∥∥
log k

Slog k

4/ log k

≤ C4
0

log2 k

N2

∥∥∥∥∥∥
(

1

N

N∑
i=1

S2
i

)1/2
∥∥∥∥∥∥

4

Slog k

≤ C4
0e

4 log2 k

N2

∥∥∥∥∥ 1

N

N∑
i=1

S2
i

∥∥∥∥∥
2

2

, (B.17)

where the first inequality follows by (6.44) in Belloni et al. (2015) and ‖ · ‖Slog k
is

the Schatten norm, the second inequality follows by the Jensen’s inequality, the third

inequality follows by (6.45) in Belloni et al. (2015) and C0 is some positive constant, and

the fourth inequality follows by (6.44) in Belloni et al. (2015) again. Thus, the result of

the lemma follows by setting C = C4
0e

4. �

Appendix C - Proof of Theorem 4.3

C.1 Proof of Theorem 4.3

Proof of Theorem 4.3: Let us first look at (B.1). The asymptotic distribution can

be obtained by choosing large J and assuming T not too large such that the terms with

Op(J
−2κ) and Op(J/N

2) are negligible relative to the term with Op(J/NT ). Thus, the

asymptotic distribution is determined by the term with Op(J/NT ). Specifically, by the

fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (A.3) implies

‖
√
NT (B̂ −BH)−

√
NTD4B̂V

−1‖F ≤
√
NT‖V −1‖2‖D5B̂‖F

+
√
NT‖B̂‖2‖V −1‖2

6∑
j 6=4,5

‖Dj‖F = Op

(√
NT

Jκ
+

√
TJ√
N

)
, (C.1)

where the equality follows by J = o(
√
N), Lemmas A.1(i)-(iii), A.2(i) and B.1(ii) and

the fact that ‖D6‖F = ‖D3‖F . Let LNT ≡
∑T

t=1Q
−1
t Φ(Zt)

′εt(ft − f̄)′/
√
NT . Since

J = o(
√
N), J (1/2−κ) = o(

√
NT/Jκ). By the fact that ‖C + D‖F ≤ ‖C‖F + ‖D‖F ,

combining (C.1) and Lemma C.1 implies

‖
√
NT (B̂ −BH)− LNTB′BM‖F = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
. (C.2)
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Note that N2 is a JM × K matrix from the last K columns of N. Thus, the second

result of the theorem follows from (C.2) and Lemma C.2. We now look at (A.5). By

the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖, it implies

‖
√
NT (â− a)− (IJM − B̂B̂′)[

√
N/TẼ1T −

√
NT (B̂ −BH)H−1f̄ ]

+ B̂
√
NT (B̂ −BH)′a‖ ≤ ‖(IJM − B̂B̂′)

√
N/T ∆̃1T ‖ = Op

(√
NT

Jκ

)
, (C.3)

where the equality follows by Lemma A.3(i). Given the rate of ‖B̂−BH‖F in Theorem

4.2 and the rate of ‖NẼ1T ‖ in Lemma A.4(ii), we may replace all B̂ except those in

B̂ −BH with BH to obtain

‖
√
NT (â− a)− (IJM −BHH ′B′)[

√
N/TẼ1T −

√
NT (B̂ −BH)H−1f̄ ]

+BH
√
NT (B̂ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J√
NT

)
(C.4)

by noting that J = o(
√
N) and J (1/2−κ) = o(

√
NT/Jκ). Similarly, given the rate of

H −H in Lemma C.3, we may replace all H except those in B̂ −BH with H to obtain

‖
√
NT (â− a)− (IJM −B′HH′B′)[

√
N/TẼ1T −

√
NT (B̂ −BH)H−1f̄ ]

+BH
√
NT (B̂ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J√
NT

)
(C.5)

Let `NT ≡
∑T

t=1Q
−1
t Φ(Zt)

′εt/
√
NT . Given the rate of ‖

√
N/TẼ1T − `NT ‖ in Lemma

C.1, we may replace
√
N/TẼ1T with `NT to obtain

‖
√
NT (â− a)− (IJM −B′HH′B′)[`NT −

√
NT (B̂ −BH)H−1f̄ ]

+BH
√
NT (B̂ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
(C.6)

by noting that J/
√
NT = o(

√
JξJ log1/4 J/N1/4). The arguments in (C.4)-(C.6) are

similar to those for the first result in Lemma C.1. Note that N1 is a JM ×1 vector from

the first column of N. Thus, the first result of the theorem follows from (C.6), Lemma

C.2 and the second result of the theorem. This completes proof of the theorem. �

C.2 Technical Lemmas

Lemma C.1. Suppose Assumptions 4.1-4.5, 4.6(i) and (ii) hold. Let Ẽ, D4 and V be

given in the proof of Theorem 4.1, and `NT and LNT be given in the proof of Theorem

4.3. Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with
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ξ2
J log J = o(N). Then

‖
√
NTD4B̂V

−1 − LNTB′BM‖F = Op

(
1

J (κ−1/2)
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
N/TẼ1T − `NT ‖ = Op

(√
JξJ log1/4 J

N1/4

)
,

where M is a nonrandom matrix given in Lemma C.3.

Proof: For the first result, we have the following decomposition

√
NTD4B̂V

−1 =
√
N/TẼMTFB

′BM+
√
N/TẼMTFB

′(B̂ −BH)V −1

+
√
N/TẼMTFB

′B(HV −1 −M) ≡ T1 + T2 + T3. (C.7)

Therefore, it suffices to show that ‖T1 − LNTB′BM‖F = Op(
√
JξJ log1/4 J/N1/4),

‖T2‖F = Op(J
(1/2−κ)+J3/2/N+J/

√
NT ) and ‖T3‖F = Op(J

(1/2−κ)+J3/2/N+J/
√
NT ).

The first one holds, since

‖T1 − LNTB′BM‖F ≤ ‖B‖22‖M‖2

∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂−1
t −Q

−1
t )Φ(Zt)

′εtf
′
t

∥∥∥∥∥
F

+ ‖B‖22‖M‖2‖f̄‖

∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂−1
t −Q

−1
t )Φ(Zt)

′εt

∥∥∥∥∥
= Op

(√
JξJ log1/4 J

N1/4

)
, (C.8)

where the equality follows from Assumptions 4.2(i) and (ii) and Lemma C.4. The latter

two follow by a similar argument. The second result also follows by a similar argument

as in (C.8). This completes the proof of the lemma. �

Lemma C.2. Suppose Assumptions 4.2(ii), 4.3(i), (ii), 4.5(i)-(iii), 4.6(ii) and (iii)

hold. Let `NT and LNT be given in the proof of Theorem 4.3. Then there exists a

JM × (K + 1) random matrix N with vec(N) ∼ N(0,Ω) such that

‖(`NT ,LNT )− N‖F = Op

(
J5/6

N1/6

)
.

Proof: Let ζi ≡
∑T

t=1 f
†
t ⊗ Q−1

t φ(zit)εit/
√
NT . Then vec((`NT ,LNT )) =

∑N
i=1 ζi.

Note that E[ζi] = 0 by Assumptions 4.3(i) and (ii) and ζ1, . . . , ζN are independent by
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Assumptions 4.3(i), 4.5(iii) and 4.6(ii). Moreover,

N∑
i=1

E[‖ζi‖3] ≤
N∑
i=1

(E[‖ζi‖4])3/4 = O

(
J3/2

√
N

)
, (C.9)

where the inequality follows by the Liapounovs inequality, and the equality follows from

Assumptions 4.2(ii), 4.5(i), (ii) and 4.6(iii) since

E[‖ζi‖4] =
1

N2T 2
E

( T∑
t=1

T∑
s=1

φ(zit)
′Q−1

t Q−1
s φ(zis)f

†′
t f
†
sεitεis

)2


≤ CNT max
i≤N,t≤T

E[‖φ(zit)‖4]
1

N2T 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

|E[εitεisεiuεiv]|

≤ CNT max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

J2M2

N2T 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

|E[εitεisεiuεiv]|, (C.10)

where CNT = maxt≤T ‖f †t ‖4(mini≤N,t≤T λmin(Qit))
−4, the first inequality follows by

the independence in Assumption 4.3(i), the Cauchy-Schwartz inequality, and the fact

that mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), and the second inequality follows since

maxi≤N,t≤T E[‖φ(zit)‖4] ≤ J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)]. In addition, Ω =

E[vec((`NT ,LNT ))vec((`NT ,LNT ))′]. Thus, Lemma C.5 implies that there exists a JM×
(K + 1) random matrix N with vec(N) ∼ N(0,Ω) such that

‖(LNT , `NT )− N‖F = ‖vec((LNT , `NT ))− vec(N)‖ = Op

(
J5/6

N1/6

)
. (C.11)

This completes the proof of the Lemma. �

Lemma C.3. Suppose Assumptions 4.1-4.4 and 4.6(i) hold. Let V be given in the proof

of Theorem 4.1. Assume (i) N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞
with J = o(

√
N). Then

H = H+Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
and HV −1 =M+Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
,

where H = (F ′MTF/T )1/2ΥV−1/2, M = HV−1, V is a diagonal matrix of the eigen-

values of (F ′MTF/T )1/2 B′B(F ′MTF/T )1/2 and Υ is the corresponding eigenvector

matrix such that Υ′Υ = IK .

Proof: By the definition of B̂, (Ỹ MT Ỹ
′/T )B̂ = B̂V . Pre-multiply (Ỹ MT Ỹ

′/T )B̂ =

B̂V on both sides by (F ′MTF/T )1/2B′ to obtain

(F ′MTF/T )1/2B′(Ỹ MT Ỹ
′/T )B̂ = (F ′MTF/T )1/2B′B̂V. (C.12)
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To simplify the notation, let δNT ≡ (F ′MTF/T )1/2B′(Ỹ MT Ỹ
′/T −B(F ′MTF/T )B′)B̂

and RNT ≡ (F ′MTF/T )1/2B′B̂. Then we can rewrite (C.12) as

[(F ′MTF/T )1/2B′B(F ′MTF/T )1/2 + δNTR
−1
NT ]RNT = RNTV. (C.13)

Let DNT be a diagonal matrix consisting the diagonal elements of R′NTRNT . Denote

ΥNT ≡ RNTD−1/2
NT , which has a unit length. Then we can further rewrite (C.13) as

[(F ′MTF/T )1/2B′B(F ′MTF/T )1/2 + δNTR
−1
NT ]ΥNT = ΥNTV, (C.14)

which implies that ΥNT is the eigenvector matrix of (F ′MTF/T )1/2B′B(F ′MTF/T )1/2+

δNTR
−1
NT and V is the diagonal eigenvalue matrix. Since RNT = (F ′MTF/T )1/2B′BH+

op(1) by simple algebra and Theorem 4.1, R−1
NT = Op(1) by Assumptions 4.2(i)-(iii) and

Lemma A.2. This together with (A.11) and Assumptions 4.2(i) and (ii) implies that

δNTR
−1
NT = Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
. (C.15)

Since the eigenvalues of (F ′MTF/T )B′B are equal to those of (F ′MTF/T )1/2B′B

(F ′MTF/T )1/2, the eigenvalues of (F ′MTF/T )1/2B′B(F ′MTF/T )1/2 are distinct by

Assumption 4.6(i). By the eigenvector perturbation theory, there exists a unique eigen-

vector matrix Υ of (F ′MTF/T )1/2B′B(F ′MTF/T )1/2 such that

ΥNT = Υ +Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
. (C.16)

By (A.11) and simple algebra, R′NTRNT = B̂′B(F ′MTF/T )B′B̂ = B̂′(Ỹ MT Ỹ
′/T )B̂ +

Op(J
−κ + J/N +

√
J/
√
NT ) = V +Op(J

−κ + J/N +
√
J/
√
NT ). This implies that

DNT = V +Op

(
1

Jκ
+
J

N
+

√
J√
NT

)
. (C.17)

Recall that H� = (F ′MTF/T )B′B̂V −1 in the proof of Lemma A.2(i). Thus, by (C.16)

and (C.17), we have H� = (F ′MTF/T )1/2RNTV
−1 = (F ′MTF/T )1/2ΥNTD

1/2
NTV

−1 =

H+Op(J
−κ+J/N +

√
J/NT ), which together with (A.12) and (A.13) leads to the first

result of the lemma. The second result of the lemma follows from (A.12), the first result

of the lemma and Lemma A.2(i). �

Lemma C.4. Suppose Assumptions 4.1(i), 4.2(ii), 4.3(i), (ii), 4.5 and 4.6(ii) hold.

Assume J ≥ 2 and ξ2
J log J = o(N). Then∥∥∥∥∥ 1√

NT

T∑
t=1

(Q̂−1
t −Q

−1
t )Φ(Zt)

′εtf
′
t

∥∥∥∥∥
F

= Op

(√
JξJ log1/4 J

N1/4

)
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and ∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂−1
t −Q

−1
t )Φ(Zt)

′εt

∥∥∥∥∥ = Op

(√
JξJ log1/4 J

N1/4

)
.

Proof: Let T ≡
∑T

t=1(Q̂−1
t − Q

−1
t )Φ(Zt)

′εtf
′
t/
√
NT and Eε denote the expectation

with respect to {εt}t≤T . Since ‖A‖2F = tr(AA′),

Eε[‖T ‖2F ] =
1

NT
Eε

[
tr

(
T∑
t=1

T∑
s=1

(Q̂−1
t −Q

−1
t )Φ(Zt)

′εtf
′
tfsε

′
sΦ(Zs)(Q̂

−1
s −Q−1

s )

)]

=
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

φ(zit)
′(Q̂−1

t −Q
−1
t )(Q̂−1

s −Q−1
s )φ(zjs)f

′
tfsE[εitεjs]

=
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

φ(zit)
′(Q̂−1

t −Q
−1
t )(Q̂−1

s −Q−1
s )φ(zis)f

′
tfsE[εitεis]

≤ C∗NT
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

‖Q̂t −Qt‖2‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

≤ C∗∗NT
1

NT

 T∑
t=1

(
N∑
i=1

T∑
s=1

‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

)2
1/2

, (C.18)

where C∗NT = (mint≤T λmin(Q̂t))
−1[(mint≤T λmin(Q̂t))

−1 + (mini≤N,t≤T λmin(Qit))
−1]

(mini≤N,t≤T λmin(Qit))
−1 maxt≤T ‖ft‖2 and C∗∗NT = C∗NT (

∑T
t=1 ‖Q̂t −Qt‖22)1/2, the sec-

ond equality follows by the independence in Assumption 4.3(i) and the fact that both

expectation and trace operators are linear, the third equality follows by Assumption

4.3(ii) and the independence in Assumption 4.6(ii), the first inequality follows since

mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), and the last inequality is due to the Cauchy-

Schwartz inequality. Moreover, we have

E

 T∑
t=1

(
N∑
i=1

T∑
s=1

‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

)2


≤ max
i≤N,t≤T

E[‖φ(zit)‖4]
T∑
t=1

(
N∑
i=1

T∑
s=1

|E[εitεis]|

)2

≤ J2M2 max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

T∑
t=1

(
N∑
i=1

T∑
s=1

|E[εitεis]|

)2

, (C.19)

where the first inequality is due to the Cauchy-Schwartz inequality, the second inequal-

ity follows since maxi≤N,t≤T E[‖φ(zit)‖4] ≤ J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)]. By

Assumptions 4.1(i), 4.2(ii), and 4.5(ii) and Lemma B.6, C∗∗NT = Op(
√
TξJ
√

log J/
√
N).

Combining this, (C.18) and (C.19) implies that Eε[‖T ‖2F ] = Op(JξJ
√

log J/
√
N) by

Assumptions 4.5(i) and (iv). Thus, the first result of the lemma follows by the Markov’s
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inequality and Lemma A.5. The proof of the second result is similar. �

Lemma C.5 (Yurinskiis coupling). Let ζ1, . . . , ζN be independent random k−vectors

with E[ζi] = 0 for each i and β =
∑N

i=1E[‖ζi‖3] finite. Let S =
∑N

i=1 ζi. For each

δ > 0, there exists a random vector S in the same probability space with S with a

N(0, E[SS′]) distribution such that

P{‖S − S‖ > 3δ} ≤ C0D0

(
1 +
| log(1/D0)|

k

)
for some universal constant C0, where D0 = βkδ−3.

Proof: This is the Yurinskiis coupling, see Theorem 10 in Pollard (2002). �

Appendix D - Proof of Theorem 5.1

D.1 Proof of Theorem 5.1

Proof of Theorem 5.1: Let us begin by defining some notation. Let Ã∗t ≡
(Φ(Zt)

∗′Φ(Zt))
−1Φ(Zt)

∗′At for At = ∆t and εt, where ∆t = R(Zt) + ∆(Zt)ft. Let

∆̃∗ ≡ (∆̃∗1, . . . , ∆̃
∗
T ) and Ẽ∗ ≡ (ε̃∗1, . . . , ε̃

∗
T ). Then we have

Ỹ ∗ = a1′T +BF ′ + ∆̃∗ + Ẽ∗, (D.1)

where 1T denotes a T × 1 vector of ones. Recall MT = IT − 1T 1′T /T . Post-multiplying

(D.1) by MT to remove a, we thus obtain

Ỹ ∗MT = B(MTF )′ + ∆̃∗MT + Ẽ∗MT . (D.2)

Recall that V us a K×K diagonal matrix of the first K largest eigenvalues of Ỹ MT Ỹ
′/T

as defined in the proof of Theorem 4.1, H = F ′MT F̂ (F̂ ′MT F̂ )−1 and F̂ ′MT F̂ /T = V as

showed in the proof of Theorem 4.1. By the definitions of B̂∗, B̂∗ = Ỹ ∗MT F̂ (F̂ ′MT F̂ )−1.

We may substitute (D.2) to B̂∗ = Ỹ ∗MT F̂ (F̂ ′MT F̂ )−1 to obtain

B̂∗ −BH = [(∆̃∗ + Ẽ∗)MT Ỹ
′/T ]B̂V −1 =

6∑
j=1

D∗j B̂V
−1, (D.3)

where in the first equality we have used F̂ ′MT F̂ /T = V and F̂ = Ỹ ′B̂, in the second

equality we have substituted (A.2) into the equation, and D∗1 = ∆̃∗MTFB
′/T , D∗2 =

∆̃∗MT ∆̃′/T , D∗3 = ∆̃∗MT Ẽ
′/T , D∗4 = Ẽ∗MTFB

′/T , D∗5 = Ẽ∗MT Ẽ
′/T and D∗6 =

Ẽ∗MT ∆̃′/T . We can conduct the same exercise as in (C.1) to obtain

‖
√
NT (B̂∗ −BH)−

√
NTD∗4B̂V

−1‖F ≤
√
NT‖V −1‖2‖D∗5B̂‖F
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+
√
NT‖B̂‖2‖V −1‖2

6∑
j 6=4,5

‖D∗j‖F = Op

(√
NT

Jκ
+

√
TJ√
N

)
, (D.4)

where the equality follows by J = o(
√
N), Lemmas D.1 and A.2(i). Let L∗∗NT ≡∑T

t=1Q
−1
t Φ(Zt)

∗′εt(ft − f̄)′/
√
NT . Since J = o(

√
N), J (1/2−κ) = o(

√
NT/Jκ). By

the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F , combining (D.4) and Lemma D.2 implies

‖
√
NT (B̂∗ −BH)− L∗∗NTB′BM‖F = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
. (D.5)

Let L∗NT ≡
∑T

t=1Q
−1
t [Φ(Zt)

∗ − Φ(Zt)]
′εt(ft − f̄)′/

√
NT = L∗∗NT − LNT . Note that√

NT (B̂∗ − B̂) =
√
NT (B̂∗ − BH) −

√
NT (B̂ − BH). By the fact that ‖C + D‖F ≤

‖C‖F + ‖D‖F , we now may combine (C.2) and (D.5) to obtain

‖
√
NT (B̂∗ − B̂)− L∗NTB′BM‖F = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
. (D.6)

Note that N∗2 is a JM × K matrix from the last K columns of N∗. Thus, the second

result of the theorem follows from (D.6) and Lemmas A.5 and D.3. We now show the

first result of the theorem. By the definition of â∗,

â∗ − a = −B̂∗(B̂∗′B̂∗)−1(B̂∗ −BH)′a+ (IJM − B̂∗(B̂∗′B̂∗)−1B̂∗′)(BH − B̂∗)H−1f̄

+ (IJM − B̂∗(B̂∗′B̂∗)−1B̂∗′)∆̃∗1T /T + (IJM − B̂∗(B̂∗′B̂∗)−1B̂∗′)Ẽ∗1T /T, (D.7)

where H−1 is well defined with probability approaching one by (A.4) and Lemma

A.2(ii), and we have used a′B = 0 and (IJM − B̂∗(B̂∗′B̂∗)−1B̂∗′)B̂∗ = 0. Let

`∗∗NT ≡
∑T

t=1Q
−1
t Φ(Zt)

∗′εt/
√
NT . By a similar argument as in (C.3)-(C.6), we have

‖
√
NT (â∗ − a)− (IJM −BHH′B′)[`∗∗NT −

√
NT (B̂∗ −BH)H−1f̄

+BH
√
NT (B̂∗ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
(D.8)

by noting that H′B′BH = IK . Let `∗NT ≡
∑T

t=1Q
−1
t [Φ(Zt)

∗−Φ(Zt)]
′εt/
√
NT = `∗∗NT −

`NT . Note that
√
NT (â∗ − â) =

√
NT (â∗ − a) −

√
NT (â − a) and

√
NT (B̂∗ − B̂) =√

NT (B̂∗−BH)−
√
NT (B̂−BH). By the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖, we now may

combine (C.6) and (D.8) to obtain

‖
√
NT (â∗ − â)− (IJM −BHH′B′)[`∗NT −

√
NT (B̂∗ − B̂)H−1f̄

+BH
√
NT (B̂∗ − B̂)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+

√
JξJ log1/4 J

N1/4

)
. (D.9)
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Note that N∗1 is a JM × 1 vector from the first column of N∗. Thus, the first result of

the theorem follows from (D.9), the second result of the theorem and Lemmas A.5 and

D.3. This completes the proof of the theorem. �

D.2 Technical Lemmas

Lemma D.1. Let D∗1, D
∗
2, D

∗
3, D

∗
5, D

∗
6 be given in the proof of Theorem 5.1.

(i) Under Assumptions 4.2(i), (ii), (iv), 5.1(i) and (ii), ‖D∗1‖2F = Op(J
−2κ).

(ii) Under Assumptions 4.1(i), 4.2(ii), (iv), 5.1(i) and (ii), ‖D∗2‖2F = Op(J
−4κ).

(iii) Under Assumptions 4.1, 4.2(ii), (iv), 4.3, 5.1(i) and (ii), ‖D∗3‖2F = Op(J
−2κJ/N).

(iv) Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with

J2ξ2
J log J = o(N). Under Assumptions 4.1-4.5, 5.1(i) and (ii), ‖D∗5B̂‖2F = Op(J/N

2).

(v) Under Assumptions 4.1, 4.2(ii), (iv), 4.3, 5.1(i) and (ii), ‖D∗6‖2F = Op(J
−2κJ/N).

Proof: (i) Since ‖MT ‖2 = 1, ‖D∗1‖F ≤ ‖B‖2‖F‖2‖∆̃∗‖F /T . The result then immedi-

ately follows from Assumptions 4.2(i), (ii) and Lemma D.4(i).

(ii) Since ‖MT ‖2 = 1, ‖D∗2‖F ≤ ‖∆̃‖F ‖∆̃∗‖F /T . The result then immediately follows

from Lemmas A.3(i) and D.4(i).

(iii) Since ‖MT ‖2 = 1, ‖D∗3‖F ≤ ‖∆̃∗‖F ‖Ẽ‖F /T . The result then immediately

follows from Lemmas A.3(ii) and D.4(i).

(iv) Since ‖MT ‖2 = 1, ‖D∗5B̂‖F ≤ ‖B̂′Ẽ‖F ‖Ẽ∗‖F /T . The result then immediately

follows from Lemmas B.2(i) and D.4(ii).

(v) Since ‖MT ‖2 = 1, ‖D∗6‖F ≤ ‖∆̃‖F ‖Ẽ∗‖F /T . The result then immediately follows

from Lemmas A.3(i) and D.4(ii). �

Lemma D.2. Suppose Assumptions 4.1-4.5, 4.6(i), (ii), 5.1(i) and (ii) hold. Let V be

given in the proof of Theorem 4.1, and Ẽ∗, D∗4, `∗∗NT and L∗∗NT be given in the proof of

Theorem 5.1. Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞
with ξ2

J log J = o(N). Then

‖
√
NTD∗4B̂V

−1 − L∗∗NTB′BM‖F = Op

(
1

J (κ−1/2)
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
N/TẼ∗1T − `∗∗NT ‖ = Op

(√
JξJ log1/4 J

N1/4

)
,

where M is a nonrandom matrix given in Lemma C.3.

Proof: For the first result, we have the following decomposition

√
NTD∗4B̂V

−1 =
√
N/TẼ∗MTFB

′BM2 +
√
N/TẼ∗MTFB

′(B̂ −BH)V −1
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+
√
N/TẼ∗MTFB

′B(HV −1 −M) ≡ T1 + T2 + T3. (D.10)

Therefore, it suffices to show that ‖T1 − L∗∗NTB′BM2‖F = Op(
√
JξJ log1/4 J/N1/4),

‖T2‖F = Op(J
(1/2−κ)+J3/2/N+J/

√
NT ) and ‖T3‖F = Op(J

(1/2−κ)+J3/2/N+J/
√
NT ).

The first one holds, since

‖T1 − L∗∗NTB′BM‖F ≤ ‖B‖22‖M‖2

∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂∗−1
t −Q−1

t )Φ(Zt)
∗′εtf

′
t

∥∥∥∥∥
F

+ ‖B‖22‖M‖2‖f̄‖

∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂∗−1
t −Q−1

t )Φ(Zt)
∗′εt

∥∥∥∥∥
= Op

(√
JξJ log1/4 J

N1/4

)
, (D.11)

where the equality follows from Assumptions 4.2(i) and (ii) and Lemma D.6. The latter

two follow by a similar argument. The second result also follows by a similar argument

as in (D.11). This completes the proof of the lemma. �

Lemma D.3. Suppose Assumptions 4.2(ii), 4.3(i), (ii), 4.5(i)-(iii), 4.6(ii), (iii), 5.1(i)

and (iii) hold. Let `∗NT and L∗NT be given in the proof of Theorem 5.1. Assume J =

o(
√
N). Then there exists a JM × (K + 1) random matrix N∗ with vec(N∗) ∼ N(0,Ω)

conditional on {Yt, Zt}t≤T such that

‖(`∗NT ,L∗NT )−
√
ω0N∗‖F = Op

(
J5/6

N1/6

)
.

Proof: Let ζi ≡ (wi − 1)
∑T

t=1 f
†
t ⊗ Q−1

t φ(zit)εit/
√
NT . Then vec((`∗NT ,L∗NT )) =∑N

i=1 ζi. Let Ew denote the expectation with respect to {wi}i≤N . Then conditional

on {Yt, Zt}t≤T , Ew[ζi] = 0 and ζ1, . . . , ζN are independent by Assumption 5.1(i). To

proceed, let ΩNT ≡
∑N

i=1

∑T
t=1

∑T
s=1(f †t f

†′
s ) ⊗ Q−1

t φ(zit)φ(zis)
′Q−1

s εitεis/NT . Then

Ew[vec((`∗NT ,L∗NT ))vec((`∗NT ,L∗NT ))′] = ω0ΩNT . We now apply Lemma C.5 to the

independent random vectors ζ1, . . . , ζN conditional on {Yt, Zt}t≤T . There exists a JM×
(K+ 1) random matrix N∗∗ with vec(N∗∗) ∼ N(0,ΩNT ) conditional on {Yt, Zt}t≤T such

that the following holds:

‖vec((`∗NT ,L∗NT ))−
√
ω0vec(N∗∗)‖ = Op∗

(
(Jβ)1/3

)
, (D.12)

where β =
∑N

i=1E[‖ζi‖3]. Next, we calculate β. To the end, we first calculate

E[‖ζi‖4] = E[(w1 − 1)4]
1

N2T 2
E

( T∑
t=1

T∑
s=1

φ(zit)
′Q−1

t Q−1
s φ(zis)f

†′
t f
†
sεitεis

)2
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≤ CNT max
i≤N,t≤T

E[‖φ(zit)‖4]
1

N2T 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

|E[εitεisεiuεiv]|

≤ CNT max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

J2M2

N2T 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

|E[εitεisεiuεiv]|, (D.13)

where CNT = E[(w1 − 1)4] maxt≤T ‖f †t ‖4(mini≤N,t≤T λmin(Qit))
−4, the first inequality

follows by the independence in Assumption 4.3(i), the Cauchy-Schwartz inequality, and

the fact that mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), and the second inequality follows

since maxi≤N,t≤T E[‖φ(zit)‖4] ≤ J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)]. Thus,

β =
N∑
i=1

E[‖ζi‖3] ≤
N∑
i=1

(E[‖ζi‖4])3/4 = O

(
J3/2

√
N

)
, (D.14)

where the inequality follows by the Liapounovs inequality, and the last equality follows

from (D.13) and Assumptions 4.2(ii), 4.5(i), (ii), 4.6(iii) and 5.1(i). We now may combine

(D.12), (D.14) and Lemma A.5 to obtain

‖vec((`∗NT ,L∗NT ))−
√
ω0vec(N∗∗)‖ = Op

(
J5/6

N1/6

)
. (D.15)

By Assumption 5.1(iii) and Lemma D.8, Ω
−1/2
NT is well defined with probability approach-

ing one since J = o(
√
N). Define N∗ such that vec(N∗) = Ω1/2Ω

−1/2
NT vec(N∗∗). Then

vec(N∗) ∼ N(0,Ω) conditional on {Yt, Zt}t≤T . It follows that

‖vec((`∗NT ,L∗NT ))−
√
ω0N∗‖F ≤ ‖vec((`∗NT ,L∗NT ))−

√
ω0vec(N∗∗)‖

+
√
ω0‖vec(N∗)− vec(N∗∗)‖ = Op

(
J5/6

N1/6
+
J3/2

√
N

)
= Op

(
J5/6

N1/6

)
, (D.16)

where the first equality follows by (D.15) and the fact that ‖vec(N∗) − vec(N∗∗)‖ ≤
‖Ω1/2

NT − Ω1/2‖2‖Ω−1/2
NT vec(N∗∗)‖ = Op(J

3/2/
√
N), which is due to Lemma D.8. This

completes the proof of the lemma. �

Lemma D.4. Let ∆̃∗ and Ẽ∗ be given in the proof of Theorem 5.1.

(i) Under Assumptions 4.2(ii), (iv), 5.1(i) and (ii), ‖∆̃∗‖2F /T = Op(J
−2κ).

(ii) Under Assumptions 4.1(ii), 4.3, 5.1(i) and (ii), ‖Ẽ∗‖2F /T = Op(J/N).

Proof: (i) By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖ and ‖A‖2 ≤ ‖A‖F ,

1

T
‖∆̃∗‖2F =

1

T

T∑
t=1

‖(Φ(Zt)
∗′Φ(Zt))

−1Φ(Zt)
∗′(R(Zt) + ∆(Zt)ft)‖2

≤ 2 max
t≤T
‖ft‖2

(
min
t≤T

λmin(Q̂∗t )

)−1 1

NT

T∑
t=1

N∑
i=1

wi‖δ(zit)‖2
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+ 2

(
min
t≤T

λmin(Q̂∗t )

)−1 1

NT

T∑
t=1

N∑
i=1

wi|r(zit)|2 = Op

(
1

J2κ

)
, (D.17)

where the last equality follows from Assumptions 4.2(ii) and 5.1(ii) and Lemma D.5(ii).

(ii) By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖,

1

T
‖Ẽ∗‖2F =

1

T

T∑
t=1

‖(Φ(Zt)
∗′Φ(Zt))

−1Φ(Zt)
∗′εt‖2

≤
(

min
t≤T

λmin(Q̂∗t )

)−2 1

N2T

T∑
t=1

‖Φ(Zt)
∗′εt‖2 = Op

(
J

N

)
, (D.18)

where the last equality follows from Assumption 5.1(ii) and Lemma D.5(i). �

Lemma D.5. (i) Under Assumptions 4.1(ii), 4.3 and 5.1(i),

T∑
t=1

‖Φ(Zt)
∗′εt‖2 = Op(NTJ).

(ii) Under Assumption 4.2(iv) and 5.1(i),

T∑
t=1

N∑
i=1

wi‖δ(zit)‖2 = Op(NTJ
−2κ) and

T∑
t=1

N∑
i=1

wi|r(zit)|2 = Op(NTJ
−2κ).

Proof: (i) The result follows by the Markov’s inequality, since

E

[
T∑
t=1

‖Φ(Zt)
∗′εt‖2

]
= E

 T∑
t=1

N∑
i=1

N∑
j=1

φ(zit)
′φ(zjt)εitεjtwiwj


=

T∑
t=1

N∑
i=1

N∑
j=1

E[φ(zit)
′φ(zjt)]E[εitεjt]E[wiwj ]

≤ E[w2
1] max
i≤N,t≤T

E[‖φ(zit)‖2]

T∑
t=1

N∑
i=1

N∑
j=1

|E[εitεjt]|

≤ TJME[w2
1] max
m≤M,j≤J,i≤N,t≤T

E[φ2
j (zit,m)] max

t≤T

N∑
i=1

N∑
j=1

|E[εitεjt]| = O(NTJ), (D.19)

where the second equality follows by the independence in Assumptions 4.3(i) and 5.1(i),

the first inequality is due to the Cauchy Schwartz inequality, the second inequality

follows since maxi≤N,t≤T E[‖φ(zit)‖2] ≤ JM maxm≤M,j≤J,i≤N,t≤T E[φ2
j (zit,m)], and the

last equality follows from Assumptions 4.1(ii), 4.3(iii) and 5.1(i).
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(iii) The first result follows since

T∑
t=1

N∑
i=1

wi‖δ(zit)‖2 ≤ TKM2 max
k≤K,m≤M

sup
z
|δkm,J(z)|2

N∑
i=1

wi = Op(NTJ
−2κ), (D.20)

where the inequality follows since wi’s are positive and maxi≤N,t≤T ‖δ(zit)‖2 ≤ M2K

supk≤K,m≤M supz |δkm,J(z)|2, and the equality follows by the law of large numbers and

Assumptions 4.2(iv) and 5.1(i). The proof of the second result is similar. �

Lemma D.6. Suppose Assumptions 4.2(ii), 4.3(i), (ii), 4.5, 4.6(ii), 5.1(i) and (ii)

hold. Assume J ≥ 2 and ξ2
J log J = o(N). Then∥∥∥∥∥ 1√

NT

T∑
t=1

(Q̂∗−1
t −Q−1

t )Φ(Zt)
∗′εtf

′
t

∥∥∥∥∥
F

= Op

(√
JξJ log1/4 J

N1/4

)

and ∥∥∥∥∥ 1√
NT

T∑
t=1

(Q̂∗−1
t −Q−1

t )Φ(Zt)
∗′εt

∥∥∥∥∥ = Op

(√
JξJ log1/4 J

N1/4

)
.

Proof: Let T ≡
∑T

t=1(Q̂∗−1
t − Q−1

t )Φ(Zt)
∗′εtf

′
t/
√
NT and Eε denote the expectation

with respect to {εt}t≤T . Since ‖A‖2F = tr(AA′),

Eε[‖T ‖2F ] =
1

NT
Eε

[
tr

(
T∑
t=1

T∑
s=1

(Q̂∗−1
t −Q−1

t )Φ(Zt)
∗′εtf

′
tfsε

′
sΦ(Zs)

∗(Q̂∗−1
s −Q−1

s )

)]

=
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

wiφ(zit)
′(Q̂∗−1

t −Q−1
t )(Q̂∗−1

s −Q−1
s )φ(zjs)wjf

′
tfsE[εitεjs]

=
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

w2
i φ(zit)

′(Q̂∗−1
t −Q−1

t )(Q̂∗−1
s −Q−1

s )φ(zis)f
′
tfsE[εitεis]

≤ C∗NT
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

‖Q̂∗t −Qt‖2w2
i ‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

≤ C∗∗NT
1

NT

 T∑
t=1

(
N∑
i=1

T∑
s=1

w2
i ‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

)2
1/2

, (D.21)

where C∗NT = (mint≤T λmin(Q̂∗t ))
−1[(mint≤T λmin(Q̂∗t ))

−1 + (mini≤N,t≤T λmin(Qit))
−1]

(mini≤N,t≤T λmin(Qit))
−1 maxt≤T ‖ft‖2 and C∗∗NT = C∗NT (

∑T
t=1 ‖Q̂∗t −Qt‖22)1/2, the sec-

ond equality follows by the independence in Assumptions 4.3(i) and 5.1(i) and the fact

that both expectation and trace operators are linear, the third equality follows by As-

sumption 4.3(ii) and the independence in Assumption 4.6(ii), the first inequality follows

since mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit), and the last inequality is due to the
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Cauchy-Schwartz inequality. Moreover, we have

E

 T∑
t=1

(
N∑
i=1

T∑
s=1

w2
i ‖φ(zit)‖‖φ(zis)‖|E[εitεis]|

)2


≤ E[w4
1] max
i≤N,t≤T

E[‖φ(zit)‖4]
T∑
t=1

(
N∑
i=1

T∑
s=1

|E[εitεis]|

)2

≤ J2M2E[w4
1] max
m≤M,j≤J,i≤N,t≤T

E[φ4
j (zit,m)]

T∑
t=1

(
N∑
i=1

T∑
s=1

|E[εitεis]|

)2

, (D.22)

where the first inequality is by the Cauchy-Schwartz inequality and the independence

in Assumption 5.1(i), the second inequality follows since maxi≤N,t≤T E[‖φ(zit)‖4] ≤
J2M2 maxm≤M,j≤J,i≤N,t≤T E[φ4

j (zit,m)]. By Assumptions 4.2(ii), 4.5(ii) and 5.1(ii) and

Lemma D.7, C∗∗NT = Op(
√
TξJ
√

log J/
√
N). Combining this, (D.21) and (D.22) implies

that Eε[‖T ‖2F ] = Op(JξJ
√

log J/
√
N) by Assumptions 4.5(i), (iv) and 5.1(i). Thus, the

result of the lemma follows by the Markov’s inequality and Lemma A.5. The proof of

the second result is similar. �

Lemma D.7. Suppose Assumptions 4.5(ii), (iii) and 5.1(i) hold. Assume J ≥ 2 and

ξ2
J log J = o(N). Then

T∑
t=1

‖Q̂∗t −Qt‖22 = Op

(
Tξ2

J log J

N

)
.

Proof: The proof is similar to the proof of Lemma B.6, thus omitted for brevity. �

Lemma D.8. Suppose Assumptions 4.2(ii), 4.3(i), (ii), 4.5(i)-(iii), 4.6(ii), (iii) and

5.1(iii) hold. Let ΩNT be given in the proof of Lemma D.3. Then

‖Ω1/2
NT − Ω1/2‖2 = Op

(
J√
N

)
.

Proof: We first show ‖ΩNT−Ω‖2F = Op(J
2/N). Let ζi ≡

∑T
t=1 ft⊗Q

−1
t φ(zit)εit/

√
NT .

Then ΩNT =
∑N

i=1 ζiζ
′
i and Ω =

∑N
i=1E[ζiζ

′
i]. Since ‖A‖2F = tr(AA′),

E[‖ΩNT − Ω‖2F ] = E

tr

 N∑
i=1

N∑
j=1

(ζiζ
′
i − E[ζiζ

′
i])(ζjζ

′
j − E[ζjζ

′
j ])
′


=

N∑
i=1

(
E[(ζ ′iζi)

2]− ‖E[ζiζ
′
i]‖2F

)
≤ N max

i≤N
E[‖ζi‖4] = O

(
J2

N

)
, (D.23)

where the second equality follows since ζ1, . . . , ζN are independent by Assumptions 4.3(i),

4.5(iii) and 4.6(ii) and both expectation and trace operators are linear, the inequality

70



follows by the Cauchy-Schwartz inequality since ‖E[ζiζ
′
i]‖2F ≥ 0, and the last equality

follows from (C.10) and Assumptions 4.2(ii), 4.5(i), (ii) and 4.6(iii). Thus, ‖ΩNT−Ω‖2F =

Op(J
2/N) follows from (D.23) by the Markov’s inequality. The result of the lemma

follows from Assumption 5.1(iii) and Lemma A.2 of Belloni et al. (2015). �

Appendix E - Proof of Theorem 5.2

E.1 Proof of Theorem 5.2

Proof of Theorem 5.2: To show the first result, let us assume that H0 is true.

Since α̂(zit) = â′φ(zit), β̂(zit) = B̂′φ(zit), α(zit) = a′φ(zit) + r(zit) = γ′zit and β(zit) =

B′φ(zit) + δ(zit) = Γ′zit, we have

S =
1

J

N∑
i=1

T∑
t=1

|(γ̂ − γ)′zit − (â− a)′φ(zit) + r(zit)|2

+
1

J

N∑
i=1

T∑
t=1

‖(Γ̂− ΓH)′zit − (B̂ −BH)′φ(zit) +H ′δ(zit)‖2

=
1

J

N∑
i=1

T∑
t=1

|(γ̂ − γ)′zit − (â− a)′φ(zit)|2 + S1 + 2S2 + 2S3

+
1

J

N∑
i=1

T∑
t=1

‖(Γ̂− ΓH)′zit − (B̂ −BH)′φ(zit)‖2 + S4 + 2S5 + 2S6, (E.1)

where S1 =
∑T

i=1

∑N
t=1 |r(zit)|2/J , S2 =

∑N
i=1

∑T
t=1 z

′
it(γ̂−γ)r(zit)/J , S3 =

∑N
i=1

∑T
t=1

φ(zit)
′(â − a)r(zit)/J , S4 =

∑T
i=1

∑N
t=1 ‖H ′δ(zit)‖2/J , S5 =

∑N
i=1

∑T
t=1 z

′
it(Γ̂ −

ΓH)H ′δ(zit)/J and S6 =
∑N

i=1

∑T
t=1 φ(zit)

′(B̂ − BH)H ′δ(zit)/J . Let WNT,a ≡
(
√
NT (γ̂ − γ)′,−

√
NT (â − a)′)′, WNT,B ≡ (

√
NT (Γ̂ − ΓH)′,−

√
NT (B̂ − BH)′)′,

WNT ≡ (WNT,a,WNT,B) and Q̂ ≡
∑N

i=1

∑T
t=1(z′it, φ(zit)

′)′(z′it, φ(zit)
′)/NT . By Lemma

E.1, (E.1) implies

S − 1

J
W ′NT,aQ̂WNT,a −

1

J
tr(W ′NT,BQ̂WNT,B)

= S − 1

J
tr(W ′NT Q̂WNT ) = Op

( √
NT

Jκ+1/2

)
. (E.2)

Let Q ≡ E[Q̂], Wa ≡ (G′γ ,−G′a)′, WB ≡ (G′Γ,−G′B)′ and W ≡ (Wa,WB), where Gγ and

GΓ are given in Lemma E.2. By Lemmas E.2 and E.3 and Theorem 4.3, (E.2) implies

S − 1

J
W′aQWa −

1

J
tr(W′BQWB)

= S − 1

J
tr(W′QW) = Op

( √
NT

Jκ+1/2
+
J1/3

N1/6
+

√
ξJ log1/4 J

N1/4
+

√
T

N

)
. (E.3)

71



We let W∗NT,a ≡ (
√
NT/ω0(γ̂∗ − γ̂)′,−

√
NT/ω0(â∗ − â)′)′, W∗NT,B ≡ (

√
NT/ω0(Γ̂∗ −

Γ̂)′,−
√
NT/ω0(B̂∗ − B̂)′)′, W∗NT ≡ (W∗NT,a,W∗NT,B), W∗a ≡ (G∗′γ ,−G∗′a )′, W∗B ≡

(G∗′Γ ,−G∗′B)′ and W∗ ≡ (W∗a,W∗B), where G∗γ and G∗Γ are given in Lemma E.4. Then (18)

can be written as S∗ =W∗′NT,aQ̂W∗NT,a/J+tr(W∗′NT,BQ̂W∗NT,B)/J = tr(W∗′NT Q̂W∗NT )/J .

By Lemmas A.5, E.3 and E.4 and Theorem 5.1,

S∗ − 1

J
W∗′aQW∗a −

1

J
tr(W∗′BQW∗B)

= S∗ − 1

J
tr(W∗′QW∗) = Op

( √
NT

Jκ+1/2
+
J1/3

N1/6
+

√
ξJ log1/4 J

N1/4
+

√
T

N

)
. (E.4)

Let γNT ≡ (
√
NTJ−κ + J5/6/N1/6 +

√
JξJ log1/4 J/N1/4 +

√
TJ/N)1/2, which is o(1)

by the assumption. Let c0,1−α be the 1 − α quantile of tr(W∗′QW∗)/J , which is also

the 1− α quantile of tr(W′QW)/J . Then in view of (E.4), Lemma A.1 of Belloni et al.

(2015) implies that there exists a sequence {νNT } such that νNT = o(1) and

P (c1−α < c0,1−α−νNT − γNT /
√
J) = o(1), (E.5)

P (c1−α > c0,1−α+νNT + γNT /
√
J) = o(1). (E.6)

Note that tr(W′QW) = vec(W)′(IK ⊗ Q)vec(W). Since Q has rank not smaller than

JM −M and the variance of vec(GB) has full rank, tr(W′QW) is bounded below by

a random variable with a chi-squared distribution with degree of freedom JM − M

multiplied by a constant, and above by a random variable with a chi-squared distribution

with degree of freedom JM multiplied by a constant. Thus, it follows that

P (S ≤ c1−α) ≤ P (tr(W′QW)/J ≤ c1−α + γNT /
√
J) + o(1)

≤ P (tr(W′QW)/J ≤ c0,1−α+νNT + 2γNT /
√
J) + o(1)

≤ P (tr(W′QW)/
√
J ≤
√
Jc0,1−α+νNT + 2γNT ) + o(1)

≤ P (tr(W′QW)/
√
J ≤
√
Jc0,1−α+νNT ) + o(1)

≤ 1− α+ νNT + o(1) = 1− α+ o(1), (E.7)

where the first inequality follows since P (|S − tr(G′QG)/J | > γNT /
√
J) = o(1) due to

(E.3), the second inequality follows from (E.6), and the fourth inequality follows since

γNT = o(1) and tr(W′QW) is bounded by chi-squared random variables. By a similar

argument, P (S > c1−α) ≤ 1−α+o(1). Therefore, the first result of the theorem follows.

To show the second result, we now assume that H1 is true. Since (x+ y)2 ≥ x2/2− y2,

2J

NT
S ≥ 1

NT

N∑
i=1

T∑
t=1

‖Γ̂′zit −H ′β(zit)‖2 −
2

NT

N∑
i=1

T∑
t=1

‖β̂(zit)−H ′β(zit)‖2

+
2

NT

N∑
i=1

T∑
t=1

|γ̂′zit − α̂(zit)|2 ≥ c0 + op(1) for some c0 > 0, (E.8)
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where the second inequality follows from Lemmas E.5 and E.6. Since (x+y)2 ≤ 2x2+2y2,

2J

NT
S∗ ≤ 4

NTω0

N∑
i=1

T∑
t=1

|(γ̂∗ − γ̂)′zit|2 +
4

NTω0

N∑
i=1

T∑
t=1

|(â∗ − â)′φ(zit)|2

+
4

NTω0

N∑
i=1

T∑
t=1

‖(Γ̂∗ − Γ̂)′zit‖2 +
4

NTω0

N∑
i=1

T∑
t=1

‖(B̂∗ − B̂)′φ(zit)‖2

= op(1), (E.9)

where the equality follows from Lemma E.7. In view of (E.9), Lemma A.1 of Belloni

et al. (2015) implies that 2c1−αJ/(NT ) = op(1). This together with (E.8) thus concludes

the second result of the theorem. This completes the proof of the theorem. �

E.2 Technical Lemmas

Lemma E.1. Let S1,S2,S3,S4,S5,S6 be given in the proof of Theorem 5.2. Assume

(i) N → ∞; (ii) T → ∞ with T = o(N) or T ≥ K + 1 is finite; (iii) J → ∞ with

J2ξ2
J log J = o(N) and NTJ−(2κ+1) = o(1). Assume that H0 is true.

(i) Under Assumption 4.2(iv), S1 = Op(NTJ
−(2κ+1)).

(ii) Under Assumptions 4.1-4.6, 5.2(i)-(iii), S2 = Op(
√
NTJ−(κ+1)).

(iii) Under Assumptions 4.1-4.5, S3 = Op(
√
NTJ−(κ+1/2)).

(iv) Under Assumptions 4.1-4.3, S4 = Op(NTJ
−(2κ+1)).

(v) Under Assumptions 4.1-4.6, 5.2(i)-(iii), S5 = Op(
√
NTJ−(κ+1)).

(vi) Under Assumptions 4.1-4.5, S6 = Op(
√
NTJ−(κ+1/2)).

Proof: (i) The proof is similar to the proof of (iv).

(ii) The proof is similar to the proof of (v).

(iii) The proof is similar to the proof of (vi).

(iv) It follows that

S4 ≤ ‖H‖22
T∑
i=1

T∑
t=1

‖δ(zit)‖2/J ≤ (NT/J)‖H‖22M2K sup
k≤K,m≤M

sup
z
|δkm,J(z)|2, (E.10)

where the second inequality follows since maxi≤N,t≤T ‖δ(zit)‖2 ≤ M2K supk≤K,m≤M

supz |δkm,J(z)|2. Thus, the result of the lemma follows from (E.10), Assumption 4.2(iv)

and Lemma A.2(i).

(v) By Assumption 5.2(ii),
∑N

i=1

∑T
t=1 ‖zit‖2/NT = Op(1) by the Markov’s inequal-
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ity. It then follows that

1

J

T∑
i=1

T∑
t=1

‖(Γ̂− ΓH)′zit‖2 ≤ ‖Γ̂− ΓH‖2F
1

J

N∑
i=1

T∑
t=1

‖zit‖2

= Op

(
1

J
+

T

J2κ+1
+

T

NJ

)
= Op

(
1

J

)
, (E.11)

where the first equality follows from Lemma E.2, and the second equality follows since

T = o(N), NTJ−(2κ+1) = o(1) and J = o(
√
N). By the Cauchy-Schwartz inequality,

|S5| ≤ S1/2
4

(
1

J

T∑
i=1

T∑
t=1

‖(Γ̂− ΓH)′zit‖2
)1/2

. (E.12)

Thus, the result of the lemma follows from (E.11) and (E.12) and Lemma E.1(iv).

(vi) By the fact that ‖x‖2 = tr(xx′),

1

J

T∑
i=1

T∑
t=1

‖(B̂ −BH)′φ(zit)‖2 =
N

J

T∑
t=1

tr
(

(B̂ −BH)′Q̂t(B̂ −BH)
)

≤ NT

J
max
t≤T

λmax(Q̂t)‖B̂ −BH‖2F = Op

(
NT

J2κ+1
+
T

N
+ 1

)
= Op(1), (E.13)

where the second equality follows from Assumption 4.1(i) and Theorem 4.2, and the

last equality follows since T = o(N) and NTJ−(2κ+1) = o(1). By the Cauchy-Schwartz

inequality,

|S6| ≤ S1/2
4

(
1

J

T∑
i=1

T∑
t=1

‖(B̂ −BH)′φ(zit)‖2
)1/2

. (E.14)

Thus, the result of the lemma follows from (E.13) and (E.14) and Lemma E.1(iv). �

Lemma E.2. Suppose Assumptions 4.1-4.6 and 5.2(i)-(iii) hold. Let γ̂ and Γ̂ be given in

Section 5.2. Assume (i) N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with

J2ξ2
J log J = o(N). Let Ωz ≡

∑N
i=1

∑T
t=1

∑T
s=1 f

†
t f
†′
s ⊗ Q−1

z,tE[zitz
′
is]Q

−1
z,sE[εitεis]/NT ,

where Qz,t =
∑N

i=1E[zitz
′
it]/N . Assume that H0 is true. Then there exists an M×(K+1)

random matrix Nz with vec(Nz) ∼ N(0,Ωz) such that

‖
√
NT (γ̂ − γ)−Gγ‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
NT (Γ̂− ΓH)−GΓ‖F = Op

(√
T

Jκ
+

√
T√
N

+
1

N1/6

)
,
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where Gγ = Nz,1−GΓH−1f̄ −ΓHH′B′(N1−GBH−1f̄)−ΓHG′Ba, GΓ = Nz,2B′BM, H,

M, N1 and GB are given in Theorem 4.3, and Nz,1 and Nz,2 are the first column and

the last K columns of Nz.

Proof: Let us begin by defining some notation. Let ~εt ≡ (Z ′tZt)
−1Z ′tεt and ~E ≡

(~ε1, . . . , ~εT ). Then (9) under H0 can be written as

~Y = γ1′T + ΓF ′ + ~E, (E.15)

where 1T denotes a T × 1 vector of ones. Recall MT = IT − 1T 1′T /T . Post-multiplying

(E.15) by MT to remove γ, we thus obtain

~YMT = Γ(MTF )′ + ~EMT . (E.16)

Recall that V is a K×K diagonal matrix of the first K largest eigenvalues of Ỹ MT Ỹ
′/T

as defined in the proof of Theorem 4.1, H = F ′MT F̂ (F̂ ′MT F̂ )−1 and F̂ ′MT F̂ /T = V

as showed in the proof of Theorem 4.1. By the definition of Γ̂, Γ̂ = ~YMT F̂ (F̂ ′MT F̂ )−1.

We may substitute (E.16) to Γ̂ = ~YMT F̂ (F̂ ′MT F̂ )−1 to obtain

Γ̂− ΓH = ( ~EMT Ỹ
′/T )B̂V −1 =

3∑
j=1

DjB̂V −1, (E.17)

where in the first equality we have used F̂ ′MT F̂ /T = V and F̂ = Ỹ ′B̂, in the second

equality we have substituted (A.2) into the equation, and D1 = ~EMTFB
′/T , D2 =

~EMT Ẽ
′/T and D3 = ~EMT ∆̃′/T . We can conduct the same exercise as in (C.1) to

obtain

‖
√
NT (Γ̂− ΓH)−

√
NTD1B̂V

−1‖F

≤
√
NT‖V −1‖2(‖D2B̂‖F + ‖D3‖F ‖B̂‖2) = Op

(√
T

Jκ
+

√
T√
N

)
, (E.18)

where the equality follows by Lemmas A.2(i) and E.8. Thus, the second result of the

lemma follows from (E.18) and Lemma E.9. We now show the first result of the lemma.

By the definition of γ̂,

γ̂ − γ = ~E1T /T + (ΓH − Γ̂)H−1f̄ − Γ̂(B̂ −BH)′a

− Γ̂B̂′(BH − B̂)H−1f̄ − Γ̂B̂′Ẽ1T /T − Γ̂B̂′∆̃1T /T, (E.19)

where H−1 is well defined with probability approaching one by (A.4) and Lemma A.2(ii),

and we have used a′B = 0 and B̂′B̂ = IK . By a similar argument as in (C.3)-(C.5),

‖
√
NT (γ̂ − γ)− [

√
N/T ~E1T −

√
NT (Γ̂− ΓH)H−1f̄ ]
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+ ΓHH′B′[
√
N/TẼ1T −

√
NT (B̂ −BH)H−1f̄ ]

+ ΓH
√
NT (B̂ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J√
NT

)
. (E.20)

Thus, the first result of the lemma follows from (E.20), Lemmas E.9, C.1 and C.2,

Theorem 4.3 and the second result of the lemma. �

Lemma E.3. Suppose Assumptions 4.5(i), (iii) and 5.2(ii) hold. Let Q̂ and Q be given

in the proof of Theorem 5.2. Then

‖Q̂ − Q‖2F = Op

(
J2

N

)
.

Proof: Let Q̂t ≡
∑N

i=1(z′it, φ(zit)
′)(z′it, φ(zit)

′)′/N and Qt ≡ E[Q̂t]. Then Q̂ =∑T
t=1 Q̂t/T and Q =

∑T
t=1Qt/T . It follows that E[‖Q̂t − Qt‖2F ] ≤ [((J + 1)M)2/N ]

(maxm≤M,j≤J,i≤N,t≤T E[φ4
j (zit,m)] + maxi≤N,t≤T E[‖zit‖4]) by the independence in As-

sumption 4.5(iii). By the Cauchy-Schwartz inequality,

E[‖Q̂ − Q‖2F ] ≤ 1

T

T∑
t=1

E[‖Q̂t −Qt‖2F ] = O

(
J2

N

)
, (E.21)

where the equality follows from Assumptions 4.5(i) and 5.2(ii). By the Markov’s in-

equality, the result of the lemma thus follows from (E.21). �

Lemma E.4. Suppose Assumptions 4.1-4.6, 5.1 and 5.2(ii)-(iv) hold. Let γ̂, Γ̂, γ̂∗ and

Γ̂∗ be given in Section 5.2. Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite;

(iii) J → ∞ with J2ξ2
J log J = o(N). Assume that H0 is true. Then there exists an

M × (K + 1) random matrix N∗z with vec(N∗z) ∼ N(0,Ωz) conditional on {Yt, Zt}t≤T
such that

‖
√
NT/ω0(γ̂∗ − γ̂)−G∗γ‖ = Op∗

(√
NT

Jκ
+

√
TJ√
N

+
J5/6

N1/6
+

√
JξJ log1/4 J

N1/4

)

and

‖
√
NT/ω0(Γ̂∗ − Γ̂)−G∗Γ‖F = Op∗

(√
T

Jκ
+

√
T√
N

+
1

N1/6

)
,

where Ωz is given in Lemma E.2, G∗γ = N∗z,1 − G∗ΓH−1f̄ − ΓHH′B′(N∗1 − G∗BH−1f̄) −
ΓHG∗′Ba, G∗Γ = N∗z,2B′BM, H, M, N∗1 and G∗B are given in Theorem 5.1, and N∗z,1 and

N∗z,2 are the first column and the last K columns of N∗z.

Proof: Let us begin by defining some notation. Let ~ε∗t ≡ (Z∗′t Zt)
−1Z∗′t εt and ~E∗ ≡
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(~ε∗1, . . . , ~ε
∗
T ). Then under H0, we have

~Y ∗ = γ1′T + ΓF ′ + ~E∗. (E.22)

where 1T denotes a T × 1 vector of ones. Recall MT = IT − 1T 1′T /T . Post-multiplying

(E.22) by MT to remove γ, we thus obtain

~Y ∗MT = Γ(MTF )′ + ~E∗MT . (E.23)

Recall that V us a K×K diagonal matrix of the first K largest eigenvalues of Ỹ MT Ỹ
′/T

as defined in the proof of Theorem 4.1, H = F ′MT F̂ (F̂ ′MT F̂ )−1 and F̂ ′MT F̂ /T = V as

showed in the proof of Theorem 4.1. By the definitions of Γ̂∗, Γ̂∗ = ~Y ∗MT F̂ (F̂ ′MT F̂ )−1.

We may substitute (E.23) to Γ̂∗ = ~Y ∗MT F̂ (F̂ ′MT F̂ )−1 to obtain

Γ̂∗ − ΓH = ( ~E∗MT Ỹ
′/T )B̂V −1 =

3∑
j=1

D∗j B̂V −1, (E.24)

where in the first equality we have used F̂ ′MT F̂ /T = V and F̂ = Ỹ ′B̂, in the second

equality follows we have substituted (A.2) into the equation, and D∗1 = ~E∗MTFB
′/T ,

D∗2 = ~E∗MT Ẽ
′/T and D∗3 = ~E∗MT ∆̃′/T . We can conduct the same exercise as in (C.1)

to obtain

‖
√
NT (Γ̂∗ − ΓH)−

√
NTD∗1B̂V −1‖F

≤
√
NT‖V −1‖2(‖D∗2B̂‖F + ‖D∗3‖F ‖B̂‖2) = Op

(√
T

Jκ
+

√
T√
N

)
, (E.25)

where the equality follows by Lemmas A.2(i) and E.10. By the fact that ‖C + D‖F ≤
‖C‖F + ‖D‖F , we may combine (E.18) and (E.25) to obtain

‖
√
NT (Γ̂∗ − Γ̂)−

√
NT (D∗1 −D1)B̂V −1‖F = Op

(√
T

Jκ
+

√
T√
N

)
. (E.26)

Thus, the second result of the lemma follows from (E.26) and Lemmas A.5 and E.11.

We now show the first result of the lemma. By the definition of γ̂∗,

γ̂∗ − γ = ~E∗1T /T + (ΓH − Γ̂∗)H−1f̄ − Γ̂∗(B̂∗′B̂∗)−1(B̂∗ −BH)′a

− Γ̂∗(B̂∗′B̂∗)−1B̂∗′(BH − B̂∗)H−1f̄ − Γ̂∗(B̂∗′B̂∗)−1B̂∗′Ẽ∗1T /T

− Γ̂∗(B̂∗′B̂∗)−1B̂∗′∆̃∗1T /T, (E.27)

where H−1 is well defined with probability approaching one by (A.4) and Lemma A.2(ii),

and we have used a′B = 0 and (B̂∗′B̂∗)−1B̂∗′B̂∗ = IK . By a similar argument as in
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(C.3)-(C.5),

‖
√
NT (γ̂∗ − γ)− [

√
N/T ~E∗1T −

√
NT (Γ̂∗ − ΓH)H−1f̄ ]

+ ΓHH′B′[
√
N/TẼ∗1T −

√
NT (B̂∗ −BH)H−1f̄ ]

+ ΓH
√
NT (B̂∗ −BH)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J√
NT

)
. (E.28)

By the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖, we may combine (E.20) and (E.28) to obtain

‖
√
NT (γ̂∗ − γ̂)− [

√
N/T ( ~E∗1T − ~E1T )−

√
NT (Γ̂∗ − Γ̂)H−1f̄ ]

+ ΓHH′B′[
√
N/T (Ẽ∗1T − Ẽ1T )−

√
NT (B̂∗ − B̂)H−1f̄ ]

+ ΓH
√
NT (B̂∗ − B̂)′a‖ = Op

(√
NT

Jκ
+

√
TJ√
N

+
J√
NT

)
. (E.29)

Thus, the first result of the lemma follows from (E.29), Lemma E.11, C.1, D.2 and D.3,

Theorem 5.1 and the second result of the lemma. �

Lemma E.5. Suppose Assumptions 4.1-4.4 hold. Assume (i) N →∞; (ii) T →∞ or

T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N). Then

1

NT

N∑
i=1

T∑
t=1

‖β̂(zit)−H ′β(zit)‖2 = op(1).

Proof: Since β̂(zit) = B̂′φ(zit) and β(zit) = B′φ(zit) + δ(zit),

1

J

N∑
i=1

T∑
t=1

‖β̂(zit)−H ′β(zit)‖2 ≤
2

J

T∑
i=1

T∑
t=1

‖(B̂ −BH)′φ(zit)‖2 + 2S4, (E.30)

where S4 =
∑T

i=1

∑N
t=1 ‖H ′δ(zit)‖2/J as defined in the proof of Theorem 5.2. Note that

(E.13) and Lemma E.1(iv) continue to hold under H1. Thus, the result of the lemma

follows from (E.13) and Lemma E.1(iv). �

Lemma E.6. Suppose Assumptions 4.1-4.4, 4.5(iii), 5.2(i), (ii) and (v) hold. Assume

(i) N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N). Assume

that H1 is true. Then there exists positive constant c0 such that

1

NT

N∑
i=1

T∑
t=1

‖Γ̂′zit −H ′β(zit)‖2 ≥ c0 + op(1).

Proof: Let us begin by defining some notation. Let ~At ≡ (Z ′tZt)
−1Z ′tAt for At = Yt,Ψt,

εt, where Ψt = (α(z1t) + β(z1t)
′ft, . . . , α(zNt) + β(zNt)

′ft)
′. Let ~Y ≡ (~Y1, . . . , ~YT ),

~Ψ ≡ (~Ψ1, . . . , ~ΨT ) and ~E ≡ (~ε1, . . . , ~εT ). Then Γ̂ = (~Ψ + ~E)MT F̂ (F̂ ′MT F̂ )−1. It is
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straightforward to show that Γ̂ = (~ΨMTF/T )(F ′MTF/T )−1H + op(1) by Theorem 4.1,

and ‖(~ΨMTF/T )(F ′MTF/T )−1‖F ≤ C∗ for some C∗ with probability approaching one.

This together with Lemma A.2(ii) implies that P (‖Γ̂H−1‖F > C) = o(1). Therefore,

under H1,

1

NT

N∑
i=1

T∑
t=1

‖Γ̂′zit −H ′β(zit)‖2 ≥ λmin(H ′H)
1

NT

N∑
i=1

T∑
t=1

‖(Γ̂H−1)′zit − β(zit)‖2

= λmin(H ′H)
1

NT

N∑
i=1

T∑
t=1

E
[
‖β(zit)− (Γ̂H−1)′zit‖2

]
+ op(1)

≥ λmin(H ′H) inf
i≤N,t≤T

inf
Π
E[‖β(zit)−Π′zit‖2] + op(1)

≥ c0 + op(1) for some c0 > 0, (E.31)

where the equality follows from Lemma E.12 since P (‖Γ̂H−1‖F > C) = o(1), and the

last inequality follows by Lemma A.2(ii). �

Lemma E.7. Suppose Assumptions 4.1-4.4, 4.5(iii), 5.2 hold. Assume (i) N → ∞;

(ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N). Then

1

NT

N∑
i=1

T∑
t=1

|(γ̂∗ − γ̂)′zit|2 +
1

NT

N∑
i=1

T∑
t=1

|(â∗ − â)′φ(zit)|2 = op(1)

and

1

NT

N∑
i=1

T∑
t=1

‖(Γ̂∗ − Γ̂)′zit‖2 +
1

NT

N∑
i=1

T∑
t=1

‖(B̂∗ − B̂)′φ(zit)‖2 = op(1).

Proof: We prove the second result, and the proof of the first result is similar. Note

that (E.13) continue to hold under H1, so the second term on the left-hand side of the

second result is op(1). For the first term, we have

1

NT

N∑
i=1

T∑
t=1

‖(Γ̂∗ − Γ̂)′zit‖2 ≤ ‖Γ̂∗ − Γ̂‖2F
1

NT

N∑
i=1

T∑
t=1

‖zit‖2. (E.32)

Let ~A∗t ≡ (Z∗′t Zt)
−1Z∗′t At for At = Yt,Ψt, εt, where Ψt = (α(z1t)+β(z1t)

′ft, . . . , α(zNt)+

β(zNt)
′ft)
′. Let ~Y ∗ ≡ (~Y ∗1 , . . . ,

~Y ∗T ), ~Ψ∗ ≡ (~Ψ∗1, . . . ,
~Ψ∗T ) and ~E∗ ≡ (~ε∗1, . . . , ~ε

∗
T ).

Then Γ̂∗ = (~Ψ∗ + ~E∗)MT F̂ (F̂ ′MT F̂ )−1. It is straightforward to show that Γ̂∗ =

(~Ψ∗MTF/T )(F ′MTF/T )−1H + op(1) by Theorem 4.1. From the proof of Lemma

E.6, Γ̂ = (~ΨMTF/T )(F ′MTF/T )−1H + op(1). Moreover, it can be easily shown that

(~Ψ∗ − ~Ψ)MTF/T = op(1). Thus,

Γ̂∗ − Γ̂ = (~Ψ∗ − ~Ψ)F/T (F ′F/T )−1 = op(1). (E.33)

By Assumption 5.2(ii),
∑N

i=1

∑T
t=1 ‖zit‖2/NT = Op(1) by the Markov’s inequality. This
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together with (E.32) and (E.33) implies that the first term is also op(1). �

Lemma E.8. Let D2 and D3 be given in the proof of Lemma E.2.

(i) Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with

J2ξ2
J log J = o(N). Under Assumptions 4.1-4.5, 5.2(i) and (ii), ‖D2B̂‖2F = Op(1/N

2).

(ii) Under Assumptions 4.1(i), 4.2(ii), (iv), 4.3, 5.2(i) and (ii), ‖D3‖2F = Op(J
−2κ/N).

Proof: (i) By Assumptions 4.3, 5.2(i) and (ii), we may follow a similar argument

as in the proof of Lemma A.3(ii) to obtain ‖ ~E‖2F /T = Op(1/N). Since ‖D2B̂‖F ≤
‖B̂′Ẽ‖F ‖ ~E‖F /T , the result then follows from Lemmas B.2(i).

(ii) Note that ‖ ~E‖2F /T = Op(1/N) from the proof of (i). Since ‖D3‖F ≤
‖∆̃‖F ‖ ~E‖F /T , the result then immediately follows from Lemmas A.3(i). �

Lemma E.9. Suppose Assumptions 4.1-4.3, 4.5(iii), (iv), 4.6, 5.2(i)-(iii) hold. Let V

be given in the proof of Theorem 4.1, D1 and ~E be given in the proof of Lemma E.2.

Assume (i) N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N).

Then there exists an M × (K+ 1) random matrix Nz with vec(Nz) ∼ N(0,Ωz) such that

‖
√
NTD1B̂V

−1 −GΓ‖F = Op

(
1

Jκ
+

1

N1/6

)
and

‖
√
N/T ~E1T − Nz,1‖ = Op

(
1

N1/6

)
,

where Ωz is given in Lemma E.2, GΓ = Nz,2B′BM, M is a nonrandom matrix given

in Lemma C.3, and Nz,1 and Nz,2 are first column and the last K columns of Nz.

Proof: Let LNT,z ≡
∑T

t=1Q
−1
t,zZ

′
tεt(ft − f̄)′/

√
NT and `NT,z ≡

∑T
t=1Q

−1
t,zZ

′
tεt/
√
NT .

By a similar argument as in the proof of Lemma C.1,

‖
√
NTD1B̂V

−1 − LNT,zB′BM‖F = Op

(
1

Jκ
+

1

N1/4

)
(E.34)

and

‖
√
N/T ~E1T − `NT,z‖ = Op

(
1

N1/4

)
. (E.35)

By a similar argument as in the proof of Lemma C.2, there exists an M × (K + 1)

random matrix Nz with vec(Nz) ∼ N(0,Ωz) such that

‖(`NT,z,LNT,z)− Nz‖F = Op

(
1

N1/6

)
. (E.36)

Thus the result of the lemma follows from (E.34)-(E.36). �
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Lemma E.10. Let D∗2 and D∗3 be given in the proof of Lemma E.4.

(i) Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with

J2ξ2
J log J = o(N). Under Assumptions 4.1-4.5, 5.1(i), 5.2(ii) and (iv), ‖D∗2B̂‖2F =

Op(1/N
2).

(ii) Under Assumptions 4.1(i), 4.2(ii), (iv), 4.3, 5.1(i), 5.2(ii) and (iv), ‖D∗3‖2F =

Op(J
−2κ/N).

Proof: (i) By Assumptions 4.3, 5.1(i), 5.2 (ii) and (iv), we may follow a similar

argument as in the proof of Lemma D.4(ii) to obtain ‖ ~E∗‖2F /T = Op(1/N). Since

‖D∗2B̂‖F ≤ ‖B̂′Ẽ‖F ‖ ~E∗‖F /T , the result then follows from Lemmas B.2(i).

(ii) Note that ‖ ~E∗‖2F /T = Op(1/N) from the proof of (i). Since ‖D∗3‖F ≤
‖∆̃‖F ‖ ~E∗‖F /T , the result then immediately follows from Lemmas A.3(i). �

Lemma E.11. Suppose Assumptions 4.1-4.3, 4.5(iii), (iv), 4.6, 5.1(i) and 5.2(ii)-(iv)

hold. Let V be given in the proof of Theorem 4.1, D1 and ~E be given in the proof of

Lemma E.2, and D∗1 and ~E∗ be given in the proof of Lemma E.4. Assume (i) N →∞;

(ii) T → ∞ or T ≥ K + 1 is finite; (iii) J → ∞ with J = o(
√
N). Then there exists

an M × (K + 1) random matrix N∗z with vec(N∗z) ∼ N(0,Ωz) conditional on {Yt, Zt}t≤T
such that

‖
√
NT (D∗1 −D1)B̂V −1 −

√
ω0G∗Γ‖F = Op

(
1

Jκ
+

1

N1/6

)
and

‖
√
N/T ( ~E∗1T − ~E1T )−

√
ω0N∗z,1‖ = Op

(
1

N1/6

)
,

where Ωz is given in Lemma E.2, G∗Γ = N∗z,2B′BM, M is a nonrandom matrix given

in Lemma C.3, and N∗z,1 and N∗z,2 are first column and the last K columns of N∗z.

Proof: Let L∗∗NT,z ≡
∑T

t=1Q
−1
t,zZ

∗′
t εt(ft− f̄)′/

√
NT and `∗∗NT,z ≡

∑T
t=1Q

−1
t,zZ

∗′
t εt/

√
NT .

By a similar argument as in the proof of Lemma D.2,

‖
√
NTD∗1B̂V −1 − L∗∗NT,zB′BM‖F = Op

(
1

Jκ
+

1

N1/4

)
(E.37)

and

‖
√
N/T ~E∗1T − `∗∗NT,z‖ = Op

(
1

N1/4

)
. (E.38)

Let L∗NT,z ≡
∑T

t=1Q
−1
t,z (Z∗t − Zt)

′εt(ft − f̄)′/
√
NT = L∗∗NT,z − LNT,z and `∗NT,z ≡∑T

t=1Q
−1
t,z (Z∗t − Zt)′εt/

√
NT = `∗∗NT,z − `NT,z. By a similar argument as in the proof of

Lemma D.3, there exists an M × (K + 1) random matrix N∗z with vec(N∗z) ∼ N(0,Ωz)
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conditional on {Yt, Zt}t≤T such that

‖(`∗NT,z,L∗NT,z)−
√
ω0N∗z‖F = Op

(
1

N1/6

)
. (E.39)

Thus, the result of the lemma follows from (E.34),(E.35) and (E.37)-(E.39). �

Lemma E.12. Suppose Assumptions 4.5(iii), 5.2(ii) and (v) hold. For any given posi-

tive constant C,

sup
‖Π‖F≤C

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

‖β(zit)−Π′zit‖2 −
1

NT

N∑
i=1

T∑
t=1

E
[
‖β(zit)−Π′zit‖2

]∣∣∣∣∣ = op(1).

Proof: Let AC ≡ {Π ∈ RM×K , ‖Π‖F ≤ C} for C > 0, and FC ≡ {ζ(·,Π) :

ζ(z1, · · · , zT ,Π) =
∑T

t=1 ‖β(zt) − Π′zt‖2/T for Π ∈ AC} be a class of functions

ζ(·,Π) indexed by Π ∈ AC . We aim to show supΠ∈AC
| 1
N

∑N
i=1 ζ(zi1, · · · , ziT ,Π) −

1
N

∑N
i=1E[ζ(zi1, · · · , ziT ,Π)]| = op(1). It follows that for any Π1,Π2 ∈ AC ,

|ζ(z1, · · · , zT ,Π1)− ζ(z1, · · · , zT ,Π2)|

≤ ‖Π1 −Π2‖F
1

T

T∑
t=1

‖zt‖(‖β(zt)−Π′1zt‖+ ‖β(zt)−Π′2zt‖)

≤ ‖Π1 −Π2‖F
2

T

T∑
t=1

(‖zt‖‖β(zt)‖+ C‖zt‖2) ≡ ‖Π1 −Π2‖FG(z1, · · · , zT ). (E.40)

By Assumptions 5.2(ii) and (v), maxi≤N E[G(zi1, · · · , ziT )] < ∞. This together with

(E.40) implies that and FC is a class of functions that are Lipschitz in the index Π ∈ AC
with envelop function G. Since AC is compact, for every ε > 0, the covering number

N(ε,AC , ‖ · ‖F ) of AC with respect to ‖ · ‖F is bounded. By Theorem 2.7.11 of van der

Vaart and Wellner (1996), for every ε > 0, the bracketing numberN[](ε,FC , L1(P )) of FC
with respect to L1(P ) is bounded. Thus, the result of the lemma follows by the Glivenko-

Cantelli theorem (e.g., Theorem 2.4.1 of van der Vaart and Wellner (1996)). �

Appendix F - Proof of Theorem 6.1

F.1 Proof of Theorem 6.1

Proof of Theorem 6.1: (A) Let θk ≡ λk(Ỹ MT Ỹ
′/T )/λk+1(Ỹ MT Ỹ

′/T ). If K̂ 6= K,

then there exists some 1 ≤ k ≤ K − 1 or K + 1 ≤ k ≤ JM/2 such that θk ≥ θK . Let

JM/2 be the integer part of JM/2. Since λ1(Ỹ MT Ỹ
′/T )/λK(Ỹ MT Ỹ

′/T ) ≥ θk for all

1 ≤ k ≤ K−1 and λK+1(Ỹ MT Ỹ
′/T )/λJM/2(Ỹ MT Ỹ

′/T ) ≥ θk for all K+1 ≤ k ≤ JM/2,

the event of K̂ 6= K implies the event of λ1(Ỹ MT Ỹ
′/T )/λK(Ỹ MT Ỹ

′/T ) ≥ θK or the
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event of λK+1(Ỹ MT Ỹ
′/T )/λJM/2(Ỹ MT Ỹ

′/T ) ≥ θK . Thus, we have

P (K̂ 6= K) ≤ P

(
λ1(Ỹ MT Ỹ

′/T )

λK(Ỹ MT Ỹ ′/T )
≥ θK

)
+ P

(
λK+1(Ỹ MT Ỹ

′/T )

λJM/2(Ỹ MT Ỹ ′/T )
≥ θK

)
. (F.1)

By Lemmas F.1 and F.2, λ1(Ỹ MT Ỹ
′/T )/λK(Ỹ MT Ỹ

′/T ) = Op(1), θK/N = C + op(1)

for some positive constant C, and λK+1(Ỹ MT Ỹ
′/T )/λJM/2(Ỹ MT Ỹ

′/T ) = Op(1), since

JM/2 + 1 < JM −K − 1 for large J . Thus, this together with (F.1) implies P (K̂ 6=
K)→ 0.

(B) If K̃ 6= K, then λK−1(Ỹ MT Ỹ
′/T ) < λNT or λK+1(Ỹ MT Ỹ

′/T ) ≥ λNT . Thus,

we have

P (K̃ 6= K) ≤ P
(
λK−1(Ỹ MT Ỹ

′/T ) < λNT

)
+ P

(
λK+1(Ỹ MT Ỹ

′/T ) ≥ λNT
)
. (F.2)

By Lemma F.1 and λNT → 0, P (λK−1(Ỹ MT Ỹ
′/T ) < λNT ) → 0. For a matrix A, let

σk(A) denote the kth largest singular value of A. Noting that λk(AA
′) = σ2

k(A), it

follows that

λK+1(Ỹ MT Ỹ
′/T ) = σ2

K+1(Ỹ MT /
√
T ) = |σK+1(Ỹ MT /

√
T )− σK+1(BF ′MT /

√
T )|2

≤ 1

T
‖Ỹ MT −B(MTF )′‖2F ≤

2

T
‖∆̃‖2F +

2

T
‖Ẽ‖2F = Op

(
1

J2κ
+
J

N

)
, (F.3)

where the second equality follows since the rank of B(MTF )′ is not greater than K, the

first inequality follows by the Weyl’s inequality, the second inequality by (A.2) and the

Cauchy-Schwartz inequality, and the last equality follows from Lemmas A.3(i) and (ii).

Since λNT min{N/J, J2κ} → ∞, (F.3) implies that P (λK+1(Ỹ MT Ỹ
′/T ) ≥ λNT ) → 0.

This completes the proof of the theorem. �

F.2 Technical Lemmas

Lemma F.1. Suppose Assumptions 4.1-4.3 hold. Assume (i) N →∞; (ii) T →∞ or

T ≥ K + 1 is finite; (iii) J → ∞ with J = o(
√
N). Then there exist positive constants

c1 and c2 such that

c1 + op(1) ≤ λK(Ỹ MT Ỹ
′/T ) ≤ λ1(Ỹ MT Ỹ

′/T ) ≤ c2 + op(1).

Proof: By (A.12), λk(Ỹ MT Ỹ
′/T ) = λk((F

′MTF/T )B′B) + op(1) for k = 1, . . . ,K.

Thus, the result of the lemma immediately follows from Assumptions 4.2(i)-(iii). �

Lemma F.2. Suppose Assumptions 4.1(i), 4.2(ii), (iv), 4.3(i), 4.5(i) and 6.1 hold.

Assume (i) N → ∞; (ii) T → ∞; (iii) J → ∞ with J = o(min{
√
N,
√
T}) and
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J−2κN = o(1). Then there exist positive constants c3 and c4 such that

c3 + op(1) ≤ NλJM−K−1(Ỹ MT Ỹ
′/T ) ≤ NλK+1(Ỹ MT Ỹ

′/T ) ≤ c4 + op(1).

Proof: For a matrix A, let σk(A) denote the kth largest singular value of A. Noting

that λk(AA
′) = σ2

k(A), it follows that for k = 1, . . . , JM −K,

|λK+k(Ỹ MT Ỹ
′)− λK+k((BF

′ + Ẽ)MT (BF ′ + Ẽ)′)|

≤ |σK+k(Ỹ MT )− σK+k((BF
′ + Ẽ)MT )|2 + 2|σK+k(Ỹ MT )

− σK+k((BF
′ + Ẽ)MT )|σK+k((BF

′ + Ẽ)MT )

≤ ‖Ỹ MT − (BF ′ + Ẽ)MT ‖2F + 2‖Ỹ MT − (BF ′ + Ẽ)MT ‖F

× λ1/2
K+k((BF

′ + Ẽ)MT (BF ′ + Ẽ)′)

≤ ‖∆̃‖2F + 2‖∆̃‖Fλ1/2
K+1((BF ′ + Ẽ)MT (BF ′ + Ẽ)′), (F.4)

where the first inequality is due to the triangle inequality, the second inequality follows

by the Weyl’s inequality, and the third inequality follows from (A.2) and the fact that

λK+k((BF
′ + Ẽ)MT (BF ′ + Ẽ)′) ≤ λK+1((BF ′ + Ẽ)MT (BF ′ + Ẽ)′) for k ≥ 1. We

next show that the right-hand side of (F.4) is asymptotically negligible and study the

behavior of λK+k((BF
′ + Ẽ)MT (BF ′ + Ẽ)′). Let B̃ = B + ẼMTF (F ′MTF )−1 and

MF = IT −MTF (F ′MTF )−1(MTF )′. We may decompose (BF ′ + Ẽ)MT (BF ′ + Ẽ)′ by

(BF ′ + Ẽ)MT (BF ′ + Ẽ)′ = B̃F ′MTFB̃
′ + ẼMTMFMT Ẽ

′. (F.5)

Then, (F.5) implies that for k = 1, . . . , JM −K,

λK+k((BF
′ + Ẽ)MT (BF ′ + Ẽ)′) ≤ λK+1(B̃F ′MTFB̃

′)

+ λk(ẼMTMFMT Ẽ
′) ≤ λk(ẼMT Ẽ

′) ≤ λk(ẼẼ′), (F.6)

where the first inequality follows by Lemma F.3(i), the second inequality follows by

Lemma F.3(ii) and the fact that the rank of B̃F ′MTFB̃
′ is not greater than K and

I−MF is positive semi-definite, and the third inequality follows since I−MT is positive

semi-definite. Moreover, (F.5) also implies that for k = 1, . . . , JM − 2K − 1,

λK+k((BF
′ + Ẽ)MT (BF ′ + Ẽ)′) ≥ λK+k(ẼMTMFMT Ẽ

′)

= λK+k( ˜EMTMFMT Ẽ
′) + λK+1(ẼMT (I −MF )MT Ẽ

′) ≥ λ2K+k(ẼMT Ẽ
′)

= λ2K+k(ẼMT Ẽ
′) + λ2(Ẽ(IT −MT )Ẽ′) ≥ λ2K+k+1(ẼẼ′), (F.7)

where the first inequality follows by Lemma F.3(ii), the first equality follows since the

rank of ẼMT (I −MF )MT Ẽ
′ is not greater than K, the second inequality follows by

Lemma F.3(i), and the second equality and the third inequality follow similarly. Putting
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(F.6) and (F.7) together implies that eigenvalues of (BF ′+Ẽ)MT (BF ′+Ẽ)′ are bounded

by those of ẼẼ′. Thus, we may study the behavior of the eigenvalues of ẼẼ′. Recall that

ANT =
∑T

t=1 Q̂
−1
t Φ(Zt)

′E[εtε
′
t]Φ(Zt)Q̂

−1
t /NT in Lemma F.4. By the Weyl’s inequality

and Lemma F.4,

sup
k≤JM

|λk(NẼẼ′/T )− λk(ANT )| ≤ ‖NẼẼ′/T −ANT ‖F = op(1). (F.8)

This implies that the eigenvalues of NẼẼ′/T and ANT are asymptotically equivalent.

Then, it follows from (F.6) and (F.8) that

λK+1(N(BF ′ + Ẽ)MT (BF ′ + Ẽ)′/T )

≤ λ1(NẼẼ′/T ) ≤ λ1 (ANT ) + op(1) = Op(1), (F.9)

where the equality follows since λ1(ANT ) ≤ (mint≤T λmin(Q̂t))
−1 maxt≤T λmax(E[εtε

′
t])

= Op(1) by Assumptions 4.1(i) and 6.1 (i). Thus, combining (F.4), (F.9) and Lemma

A.3(i) yields

sup
k≤JM−K

|NλK+k(Ỹ MT Ỹ
′/T )−NλK+k((BF

′ + Ẽ)MT (BF ′ + Ẽ)′/T )| = op(1). (F.10)

This means that NλK+k(Ỹ MT Ỹ
′/T ) and NλK+k((BF

′ + Ẽ)MT (BF ′ + Ẽ)′/T ) are

asymptotically equivalent. By the triangle inequality, it follows from (F.6)-(F.8) and

(F.10) that

λJM (ANT ) + op(1) ≤ NλJM−K−1(Ỹ MT Ỹ
′/T )

≤ NλK+1(Ỹ MT Ỹ
′/T ) ≤ λ1(ANT ) + op(1). (F.11)

Noting that λ1(ANT ) ≤ (mint≤T λmin(Q̂t))
−1 maxt≤T λmax(E[εtε

′
t]) and λJM (ANT ) ≥

(maxt≤T λmax(Q̂t))
−1 mint≤T λmin(E[εtε

′
t]), the result of the lemma then follows from

(F.11), Assumptions 4.1(i) and 6.1(i). �

Lemma F.3 (Weyl’s inequalities). Let C and D be k × k symmetric matrices.

(i) For every i, j ≥ 1 and i+ j − 1 ≤ k,

λi+j−1(C +D) ≤ λi(C) + λj(D).

(ii) If D is positive semi-definite, for all 1 ≤ i ≤ k,

λi(C +D) ≥ λi(C).

Proof: The results can be found in Section III.2 of Bhatia (1997). Also, see the

appendices of Ahn and Horenstein (2013) and Fan et al. (2016b). �
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Lemma F.4. Let ANT ≡
∑T

t=1 Q̂
−1
t Φ(Zt)

′E[εtε
′
t]Φ(Zt)Q̂

−1
t /NT and Ẽ be given in the

proof of Theorem 4.1. Under Assumptions 4.1(i), 4.3(i), 4.5(i) and 6.1(ii),

‖NẼẼ′/T −ANT ‖2F = Op

(
J2

N
+
J2

T

)
.

Proof: Let Eε denote the expectation with respect to {εt}t≤T . To simplify the notation,

let ψ̂it ≡ φ(zit)Q̂
−1
t and νijt ≡ εitεjt − E[εitεjt]. Since ‖A‖2F = tr(AA′),

Eε[‖ĒĒ′/NT −ANT ‖2F ] =
1

N2T 2
Eε

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

ψ̂itψ̂
′
jtνijtνk`sψ̂`sψ̂

′
ks


=

1

N2T 2

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

ψ̂′itψ̂ksψ̂
′
jtψ̂`scov(εitεjt, εksε`s)

= CNT
1

N2T 2

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

‖φ(zit)‖‖φ(zjt)‖‖φ(zks)‖‖φ(z`s)‖|cov(εitεjt, εksε`s)|

with CNT = (min
t≤T

λmin(Q̂t))
−4, (F.12)

where the second equality follows by the independence in Assumption 4.3 (i) and the

fact that both expectation and trace operators are linear, and the inequality follows

since ‖ψ̂it‖ ≤ (λmin(Q̂t))
−1‖φ(zit)‖. Moreover,

E

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

‖φ(zit)‖‖φ(zjt)‖‖φ(zks)‖‖φ(z`s)‖|cov(εitεjt, εksε`s)|


≤ max

i≤N,t≤T
E[‖φ(zit)‖4]

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|cov(εitεjt, εksε`s)|

≤ J2M2 max
`≤JM,i≤N,t≤T

E[φ4(zit,m)]
T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|cov(εitεjt, εksε`s)|, (F.13)

where the first inequality is due to the Cauchy-Schwartz inequality, and the second

inequality follows since maxi≤N,t≤T E[‖φ(zit)‖4] = J2M2 max`≤JM,i≤N,t≤T E[φ4(zit,m)].

Combining (F.12) and (F.13) implies that Eε[‖ĒĒ′/NT −ANT ‖2F ] = Op(J
2/N +J2/T )

by Assumptions 4.1(i), 4.5(i) and 6.1(ii). Thus, the result of the lemma follows by the

Markov’s inequality and Lemma A.5. �

Appendix G - Result for Fixed Sieve Size

In this section, we establish the result for fixed sieve size under α(·) = 0. Without α(·),
we only need one step to estimate both B and F . Specifically, the columns of B̂ are the

eigenvectors corresponding to the first K largest eigenvalues of the JM × JM matrix

86



Ỹ Ỹ ′/T and F̂ = Ỹ ′B̂. We provide the consistency result for the estimators below. To

this end, we replace Assumptions 4.2(i), (iii) and (iv) with the following assumptions.

Assumption G.1 (Fixed sieve size). There are positive constants hmin and hmax such

that: with probability approaching one (as N →∞),

hmin < λK(ΣNT ) ≤ λmax(ΣNT ) < hmax,

where ΣNT =
∑T

t=1(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λ(Zt)ftf

′
tΛ(Zt)

′Φ(Zt)(Φ(Zt)
′Φ(Zt))

−1/T with

Λ(Zt) = (β(z1t), . . . , β(zNt))
′, and λK(ΣNT ) denotes the Kth largest eigenvalue of ΣNT .

Assumption G.1 is a high-level assumption, which does not require J → ∞. Given

Assumptions 4.1(i) and 4.2(ii), it is weaker than Assumptions 4.2(i), (iii) and (iv) when

J → ∞. It is easy to verify that ‖ΣNT − BF ′FB′/T‖F = op(1) when J → ∞, under

Assumptions 4.1(i), 4.2(i), (ii) and (iv). Thus, Assumption G.1 is satisfied under As-

sumptions 4.1(i) and 4.2. Assumption G.1 requires T, JM ≥ K, which is reasonable

since we assume K to be fixed throughout the paper.

Theorem G.1. Suppose α(·) = 0, maxi≤N,t≤T E[‖β(zit)‖2] <∞, and Assumptions 4.1,

4.2(ii), 4.3 and G.1 hold. Let B̂ and f̂t be given in the beginning of Section G. Assume

(i) N →∞; (ii) T →∞ or T ≥ K be finite; (iii) J →∞ with J = o(N) or J ≥ K/M

is fixed. Then ∥∥∥∥∥B̂ − 1

T

T∑
t=1

(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λ(Zt)Ht

∥∥∥∥∥
2

F

= Op

(
J

N

)
,

1

T

T∑
t=1

‖f̂t − B̂′(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λ(Zt)ft‖2 = Op

(
J

N

)
,

where Ht = ftf
′
tΛ(Zt)

′Φ(Zt)(Φ(Zt)
′Φ(Zt))

−1B̂(F̂ ′F̂ /T )−1.

The first result of Theorem G.1 implies that B̂ consistently estimates a weighted aver-

age of the regressed coefficient matrices (Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λ(Zt) with the weighting

matrices Ht. When J → ∞, the result reduces to one similar to the one in Theorem

4.1. When J is fixed, the regressed coefficient matrices can be highly varying over

t and B̂ only estimates their weighted average. Let T be finite. The second result

implies that f̂t consistently estimates ft up to the rotational transformation matrix

B̂′(Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λ(Zt). However, the rotational transformation matrix may be

highly varying over t when J is fixed. It turns out that F̂ may not be consistent to

F up to a rotational transformation. That is, the space spanned by the columns of F

may not be consistently estimated by the space spanned by the columns of F̂ due to

a large sieve approximation error. The result also implies that misspecification of β(·)
may cause inconsistent estimation of F .
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Proof of Theorem G.1: The proof is similar to the proof of Theorem 4.1. Let

Λ̃t ≡ (Φ(Zt)
′Φ(Zt))

−1Φ(Zt)
′Λt, where Λt = Λ(Zt). Since α(·) = 0, (9) can be written as

Ỹt = Λ̃tft + ε̃t. (G.1)

Let V be a K ×K diagonal matrix of the first K largest eigenvalues of Ỹ Ỹ ′/T . By the

definition of B̂, (Ỹ Ỹ ′/T )B̂ = B̂V . We have V = F̂ ′F̂ /T , so Ht = ftf
′
tΛ̃
′
tB̂V

−1. We

may substitute (G.1) to (Ỹ Ỹ ′/T )B̂ = B̂V to obtain

B̂ − 1

T

T∑
t=1

Λ̃tHt =
3∑
j=1

AjB̂V
−1, (G.2)

where A1 = ẼẼ′/T and A2 = A′3 =
∑T

t=1 Λ̃tftε̃
′
t/T . By the Cauchy-Schwartz inequality

and the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (G.2) implies∥∥∥∥∥B̂ − 1

T

T∑
t=1

Λ̃tHt

∥∥∥∥∥
2

F

≤ 3‖B̂‖22‖V −1‖22

 3∑
j=1

‖Aj‖2F

 = Op

(
J

N

)
, (G.3)

where the equality follows by Lemmas A.3(ii), G.1, G.2, and the fact that A1 = D5

and ‖A3‖F = ‖A2‖F . By the definition of f̂t, f̂t = B̂′Ỹt. We may substitute (G.1) to

f̂t = B̂′Ỹt to obtain

f̂t − B̂′Λ̃tft = B̂′ε̃t. (G.4)

By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖, (G.4) implies

1

T

T∑
t=1

‖f̂t − B̂′Λ̃tft‖2 ≤ ‖B̂‖22

(
1

T

T∑
t=1

‖ε̃t‖2
)

=
1

T
‖B̂‖22‖Ẽ‖2F = Op

(
J

N

)
, (G.5)

where the last equality follows from Lemma A.3(ii) and B̂′B̂ = IK . This completes the

proof of the theorem. �

Lemma G.1. Suppose α(·) = 0 and maxi≤N,t≤T E[‖β(zit)‖2] <∞. Let A2 be given in

the proof of Theorem G.1. Under Assumptions 4.1, 4.2(ii) and 4.3, ‖A2‖2F = Op(J/N).

Proof: The proof is similar to the proof of Lemma A.1(iii). Let C̃ ≡ (Λ̃1f1, . . . , Λ̃T fT ),

then A2 = C̃Ẽ′/T . Since ‖A2‖F ≤ ‖C̃‖F ‖Ẽ‖F /T , it suffices to show ‖C̃‖F = Op(
√
T )

by Lemma A.3(ii). We next show this result. By the fact that ‖Ax‖ ≤ ‖A‖2‖x‖,
‖CD‖2 ≤ ‖C‖2‖D‖2 and ‖A‖2 ≤ ‖A‖F ,

‖C̃‖2F =
T∑
t=1

‖Λ̃tft‖2 ≤ max
t≤T
‖ft‖2

(
min
t≤T

λmin(Q̂t)

)−1 1

N

T∑
t=1

‖Λ(Zt)‖2F = Op(T ), (G.6)
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where the last equality follows from Assumptions 4.1(i) and 4.2(ii) by noting that∑T
t=1 ‖Λ(Zt)‖2F = Op(NT ). Here,

∑T
t=1 ‖Λ(Zt)‖2F = Op(NT ) holds by the Markov’s

inequality, since E[
∑T

t=1 ‖Λ(Zt)‖2F ] =
∑N

i=1

∑T
t=1E[‖β(zit)‖2] = O(NT ) which is due

to maxi≤N,t≤T E[‖β(zit)‖2] <∞. This completes the proof of the lemma. �

Lemma G.2. Suppose α(·) = 0, maxi≤N,t≤T E[‖β(zit)‖2] < ∞, and Assumptions 4.1,

4.2(ii), 4.3 and G.1 hold. Let V be given in the proof of Theorem G.1. Assume (i)

N → ∞; (ii) T → ∞ or T ≥ K is finite; (iii) J → ∞ with J = o(N) or J ≥ K/M is

fixed. Then ‖V ‖2 = Op(1) and ‖V −1‖2 = Op(1).

Proof: The proof of is similar to the proof of Lemma A.2(i). It is noted that Ỹ Ỹ ′/T =

ΣNT +
∑3

j=1Aj by (G.1), where A1, A2, A3 are given below (G.2). By the fact that

‖C +D‖F ≤ ‖C‖F + ‖D‖F ,

‖Ỹ Ỹ ′/T − ΣNT ‖F ≤
3∑
j=1

‖Aj‖F = Op

(√
J√
N

)
, (G.7)

where the equality follows by Lemmas A.3(ii) and G.1, and the fact that A1 = D5 and

‖A3‖F = ‖A2‖F . Let ~V be a K ×K diagonal matrix of the first K largest eigenvalues

of ΣNT . By the Weyl’s inequality and the fact that ‖A‖2 ≤ ‖A‖F ,

‖V − ~V ‖2 = ‖Ỹ Ỹ ′/T − ΣNT ‖2 = Op

(√
J√
N

)
. (G.8)

Thus, ‖V ‖2 = Op(1) and ‖V −1‖2 = λ−1
min(V ) = Op(1) follows from (G.8) and Assumption

G.1. This completes the proof of the lemma. �

Appendix H - Improved Rate for A Special Case

In this section, we establish the improved rate for the special case when Q̂t = IJM for

all t ≤ T without Assumption 4.5 and the requirement J2ξ2
J log J = o(N).

Theorem H.1. Suppose Q̂t = IJM for all t ≤ T , maxi≤N,t≤T E[|α(zit)|2] < ∞,

maxi≤N,t≤T E[‖β(zit)‖2] < ∞, and Assumptions 4.1-4.4 hold. Let â, B̂, F̂ , α̂(·) and

β̂(·) be given in (10). Assume (i) N → ∞; (ii) T → ∞ or T ≥ K + 1 is finite; (iii)

J →∞ with J = o(
√
N). Then

‖â− a‖2 = Op

(
1

J2κ
+

J

N2
+

J

NT

)
,

‖B̂ −BH‖2F = Op

(
1

J2κ
+

J

N2
+

J

NT

)
,

1

T
‖F̂ − F (H ′)−1‖2F = Op

(
1

J2κ
+

1

N

)
,
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sup
z
|α̂(z)− α(z)|2 = Op

(
1

J2κ−1
+
J2

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2,

sup
z
‖β̂(z)−H ′β(z)‖2 = Op

(
1

J2κ−1
+
J2

N2
+

J2

NT

)
max
j≤J

sup
z
|φj(z)|2.

When Zt is not changing over t, maxi≤N,t≤T E[‖β(zit)‖2] <∞ reduces to Assumption

4.2(ii) of Fan et al. (2016a). Theorem H.1 implies that the rate of B̂, F̂ and β̂(·) is equal

to the rate in Fan et al. (2016a), when Q̂t = IJM for all t ≤ T . When Zt is not changing

over t, we may orthonormalize the basis functions such that Q̂t = IJM for all t ≤ T .

But the condition fails to hold for general Zt. See Theorem 4.2 for the general case.

Proof of Theorem H.1: Let us first look at (A.3). To improve the rate of B̂ in

Theorem 4.1, we cannot use the inequality in (A.4). Instead, we need to treat D5B̂

as a whole to establish its rate. By the Cauchy-Schwartz inequality and the fact that

‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F , (A.3) implies

‖B̂ −BH‖2F ≤ 10‖B̂‖22‖V −1‖22

 6∑
j 6=5

‖Dj‖2F

+ 2‖V −1‖22‖D5B̂‖2F ,

= Op

(
1

J2κ
+

J

N2
+

J

NT

)
, (H.1)

where the equality follows by J = o(
√
N), Lemmas A.1(i)-(iv), A.2(i) and H.1(ii) and

the fact that ‖D6‖F = ‖D3‖F . Given the rate of ‖B̂ − BH‖2F in (H.1), the rate of

|â − a|2 immediately follows from the same argument in (A.6). We now look at (A.7).

To improve the rate of F̂ in Theorem 4.1, we cannot use the inequality in (A.8). Instead,

we need to plug in the expansion of B̂ − BH, and treat a′D4, D′4B̂, D5B̂ and Ẽ′B̂ as

a whole to establish their rate. By the fact that ‖C + D‖F ≤ ‖C‖F + ‖D‖F and

‖CD‖F ≤ ‖C‖2‖D‖F , combining (A.3) and (A.7) implies

‖F̂ − F (H ′)−1‖F =

 6∑
j 6=4,5

‖Dj‖F ‖B̂‖2‖a‖+ ‖a′D4‖‖B̂‖2 + ‖a‖‖D5B̂‖F

 ‖V −1‖2‖1T ‖

+

 6∑
j 6=4,5

‖Dj‖F ‖B̂‖2 + ‖D′4B̂‖F + ‖D5B̂‖F


× ‖F‖2‖H−1‖2‖V −1‖2‖B̂‖2 + ‖∆̃‖F ‖B̂‖2 + ‖Ẽ′B̂‖F

= Op

(√
T

Jκ
+

√
T

N

)
, (H.2)

where the equality follows by J = o(
√
N), Assumption 4.2(ii) and 4.4, Lemmas A.1(i)-

(iii), A.2, A.3(i), H.1 and H.2(i) and the fact that ‖D6‖F = ‖D3‖F . Thus, the third

result follows from (H.2). The proofs of the last two results of the theorem are similar
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to the proofs of the last two results of Theorem 4.1. �

Lemma H.1. Suppose Q̂t = IJM for all t ≤ T , maxi≤N,t≤T E[|α(zit)|2] < ∞, and

maxi≤N,t≤T E[‖β(zit)‖2] < ∞. Let D4 and D5 be given in the proof of Theorem 4.1.

Assume (i) N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N).

(i) Under Assumptions 4.1-4.4, ‖D′4B̂‖2F = Op(1/NT ).

(ii) Under Assumptions 4.1-4.4, ‖D5B̂‖F = Op(J/N
2).

(iii) Under Assumptions 4.1-4.4, ‖D′4a‖2 = Op(1/NT ).

Proof: (i) Since ‖D′4B̂‖F ≤ ‖B‖2‖B̂′ẼMTF‖F /T , the result then immediately follows

from Assumption 4.2(i) and Lemma H.2(ii).

(ii) Since ‖MT ‖2 = 1, ‖D5B̂‖F ≤ ‖Ẽ‖F ‖B̂′Ẽ‖F /T . The result then immediately

follows from Lemmas A.3(ii) and H.2(i).

(iii) Since ‖D′4a‖ ≤ ‖B‖2‖a′ẼMTF‖/T , the result then immediately follows from

Assumption 4.2(i) and Lemma H.2(iii). �

Lemma H.2. Suppose Q̂t = IJM for all t ≤ T , maxi≤N,t≤T E[|α(zit)|2] < ∞, and

maxi≤N,t≤T E[‖β(zit)‖2] <∞. Let Ẽ be given in the proof of Theorem 4.1. Assume (i)

N →∞; (ii) T →∞ or T ≥ K + 1 is finite; (iii) J →∞ with J = o(
√
N).

(i) Under Assumptions 4.1-4.4, ‖B̂′Ẽ‖2F /T = Op(1/N).

(ii) Under Assumptions 4.1-4.4, ‖B̂′ẼMTF‖2F /T = Op(1/N).

(iii) Under Assumptions 4.1-4.4, ‖a′ẼMTF‖2/T = Op(1/N).

Proof: By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F ,

1

T
‖B̂′Ẽ‖2F ≤

2

T
‖Ẽ‖2F ‖B̂ −BH‖2F +

2

T
‖H‖22‖B′Ẽ‖2F

=
2

T
‖Ẽ‖2F ‖B̂ −BH‖2F +

2

N2T
‖H‖22

(
T∑
t=1

‖B′Φ(Zt)
′εt‖2

)

= Op

(
J

N

(
1

J2κ
+
J2

N2
+

J

NT

)
+

1

N

)
= Op

(
1

N

)
, (H.3)

where the first equality follows from Q̂t = IJM for all t ≤ T , the second equality follows

from Lemmas A.2(i), A.3(ii) and H.3(i) and Theorem 4.1, and the last equality is due

to κ > 1/2 and J = o(
√
N).

(ii) By the fact that ‖C +D‖F ≤ ‖C‖F + ‖D‖F and ‖CD‖F ≤ ‖C‖2‖D‖F ,

1

T
‖B̂′ẼMTF‖2F ≤

2

T
‖ẼMTF‖2F ‖B̂ −BH‖2F +

2

T
‖H‖22‖B′ẼMTF‖2F

≤ 2

T
‖ẼMTF‖2F ‖B̂ −BH‖2F +

4

N2T
‖H‖22

∥∥∥∥∥
T∑
t=1

B′Φ(Zt)
′εtf

′
t

∥∥∥∥∥
2

F
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+
4‖f̄‖2

N2T
‖H‖22

∥∥∥∥∥
T∑
t=1

B′Φ(Zt)
′εt

∥∥∥∥∥
2

= Op

(
J

N

(
1

J2κ
+
J2

N2
+

J

NT

)
+

1

N

)
= Op

(
1

N

)
, (H.4)

where the second inequality follows from Q̂t = IJM for all t ≤ T , the first equality

follows from Assumption 4.2(ii), Lemmas A.2(i), A.3(iii) and H.3(ii) and Theorem 4.1,

and the last equality is due to κ > 1/2 and J = o(
√
N).

(iii) By the fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

1

T
‖a′ẼMTF‖2 ≤

2

N2T

∥∥∥∥∥
T∑
t=1

a′Φ(Zt)
′εtf

′
t

∥∥∥∥∥
2

+
2‖f̄‖2

N2T

∣∣∣∣∣
T∑
t=1

a′Φ(Zt)
′εt

∣∣∣∣∣
2

= Op

(
1

N

)
, (H.5)

where the inequality follows from Q̂t = IJM for all t ≤ T , and the equality follows from

Assumption 4.2(ii) and Lemma H.3(ii). �

Lemma H.3. Suppose maxi≤N,t≤T E[|α(zit)|2] <∞ and maxi≤N,t≤T E[‖β(zit)‖2] <∞.

(i) Under Assumptions 4.2(iv) and 4.3,

T∑
t=1

‖B′Φ(Zt)
′εt‖2 = Op(NT (1 + J−2κ)).

(ii) Under Assumptions 4.2(ii), (iv) and 4.3,∥∥∥∥∥
T∑
t=1

B′Φ(Zt)
′εtf

′
t

∥∥∥∥∥
2

F

= Op(NT (1 + J−2κ)),

∥∥∥∥∥
T∑
t=1

B′Φ(Zt)
′εt

∥∥∥∥∥
2

= Op(NT (1 + J−2κ)),

∥∥∥∥∥
T∑
t=1

a′Φ(Zt)
′εtf

′
t

∥∥∥∥∥
2

= Op(NT (1 + J−2κ)),

∣∣∣∣∣
T∑
t=1

a′Φ(Zt)
′εt

∣∣∣∣∣
2

= Op(NT (1 + J−2κ)).

Proof: (i) Let Λ(Zt) ≡ (β(z1t), . . . , β(zNt))
′, then Φ(Zt)B = Λ(Zt) − ∆(Zt). By the

fact that ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

T∑
t=1

‖B′Φ(Zt)
′εt‖2 ≤ 2

T∑
t=1

‖Λ(Zt)
′εt‖2 + 2

T∑
t=1

‖∆(Zt)
′εt‖2 ≡ 2T1 + 2T2. (H.6)
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Therefore, it suffices to show that T1 = Op(NT ) and T2 = Op(NTJ
−2κ). The former

holds by the Markov’s inequality, since

E[T1] = E

 T∑
t=1

N∑
i=1

N∑
j=1

β(zit)
′β(zjt)εitεjt


=

T∑
t=1

N∑
i=1

N∑
j=1

E[β(zit)
′β(zjt)]E[εitεjt]

≤ T max
i≤N,t≤T

E[‖β(zit)‖2] max
t≤T

N∑
i=1

N∑
j=1

|E[εitεjt]| = O(NT ), (H.7)

where the second equality follows by the independence in Assumption 4.3(i), the in-

equality is due to the Cauchy-Schwartz inequality, and the last equality follows from

maxi≤N,t≤T E[‖β(zit)‖2] < ∞ and Assumption 4.3(iii). The latter also holds by the

Markov’s inequality, since

E[T2] = E

 T∑
t=1

N∑
i=1

N∑
j=1

δ(zit)
′δ(zjt)εitεjt


=

T∑
t=1

N∑
i=1

N∑
j=1

E[δ(zit)
′δ(zjt)]E[εitεjt]

≤ TKM2 max
k≤K,m≤M

sup
z
|δkm,J(z)|2

N∑
i=1

N∑
j=1

|E[εitεjt]| = O(NTJ−2κ), (H.8)

where the second equality follows by the independence in Assumption 4.3(i), the inequal-

ity follows by the Cauchy-Schwartz inequality and the fact that maxi≤N,t≤T E[‖δ(zit)‖2]

≤ KM2 maxk≤K,m≤M supz |δkm,J(z)|2, and the last equality follows from Assumptions

4.2(iv) and 4.3(iii). This completes the proof of (i).

(ii) Let Λ(Zt) ≡ (β(z1t), . . . , β(zNt))
′, then Φ(Zt)B = Λ(Zt) − ∆(Zt). By the fact

that ‖C +D‖F ≤ ‖C‖F + ‖D‖F ,∥∥∥∥∥
T∑
t=1

B′Φ(Zt)
′εtf

′
t

∥∥∥∥∥
2

F

≤ 2

∥∥∥∥∥
T∑
t=1

Λ(Zt)
′εtf

′
t

∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥
T∑
t=1

∆(Zt)
′εtf

′
t

∥∥∥∥∥
2

F

≡ 2T1 + 2T2. (H.9)

Therefore, it suffices to show that T1 = Op(NT ) and T2 = Op(NTJ
−2κ). Note that

‖A‖2F = tr(AA′). The former holds by the Markov’s inequality, since

E[T1] = E

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

β(zit)εitf
′
tfsεjsλ(zjs)

′
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=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

E[β(zit)
′β(zjs)]f

′
tfsE[εitεjs]

≤ max
t≤T
‖ft‖2 max

i≤N,t≤T
E[‖β(zit)‖2]

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]| = O(NT ), (H.10)

where the second equality follows by the independence in Assumption 4.3(i) and the fact

that both expectation and trace operators are linear, the inequality is due to the Cauchy-

Schwartz inequality, and the last equality follows from maxi≤N,t≤T E[‖β(zit)‖2] <∞ and

Assumptions 4.2(ii) and 4.3(iii). The latter also holds by the Markov’s inequality, since

E[T2] = E

tr

 T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

δ(zit)εitf
′
tfsεjsδ(zjs)

′


=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

E[δ(zit)
′δ(zjs)]f

′
tfsE[εitεjs]

≤ CNT max
k≤K,m≤M

sup
z
|δkm,J(z)|2

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεjs]| = O(NTJ−2κ), (H.11)

where CNT = KM2 maxt≤T ‖ft‖2, the second equality follows by the independence

in Assumption 4.3(i) and the fact that both expectation and trace operators are

linear, the inequality follows by the Cauchy-Schwartz inequality and the fact that

maxi≤N,t≤T E[‖δ(zit)‖2] ≤ KM2 maxk≤K,m≤M supz |δkm,J(z)|2, and the last equality fol-

lows from Assumptions 4.2(ii), (iv) and 4.3(iii). This completes the proof the first result

of (ii), and the proofs of the other three are similar. �

Appendix I - Justification for Some Assumptions

We provide preliminary conditions for Assumptions 4.1(i) and 6.1(ii) in the following

two propositions, justifying that the two assumptions are not restrictive.

Proposition I.1 (Justification of Assumption 4.1(i)). Suppose Assumptions 4.5(ii) and

(iii) hold. Assume J ≥ 2 and
√
Tξ2

J log J = o(N), where ξJ is given above Theorem 4.2.

Then Assumption 4.1(i) holds.

Proof: Let Qt ≡ E[Q̂t]. By Lemma B.6 and the condition that
√
Tξ2

J log J = o(N),

max
t≤T
‖Q̂t −Qt‖2 ≤

(
T∑
t=1

‖Q̂t −Qt‖42

)1/4

= Op

(
T 1/4ξJ log1/2 J√

N

)
= op(1). (I.1)
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By (I.1) and the Weyl’s inequality,∣∣∣∣min
t≤T

λmin(Q̂t)−min
t≤T

λmin(Qt)

∣∣∣∣ ≤ max
t≤T
‖Q̂t −Qt‖2 = op(1) (I.2)

and ∣∣∣∣max
t≤T

λmax(Q̂t)−max
t≤T

λmax(Qt)

∣∣∣∣ ≤ max
t≤T
‖Q̂t −Qt‖2 = op(1). (I.3)

The result of the lemma thus follows from (I.2) and (I.3) and Assumption 4.5(ii)

by noting that mint≤T λmin(Qt) ≥ mini≤N,t≤T λmin(Qit) and maxt≤T λmax(Qt) ≤
maxi≤N,t≤T λmax(Qit). �

Proposition I.2 (Justification of Assumption 6.1(ii)). Suppose Assumptions 4.3(ii) and

4.6(ii) hold. Assume maxi≤N,t≤T E[ε4
it] <∞ and there is 0 < C5 <∞ such that

max
i≤N

1

T

T∑
t=1

T∑
s=1

|E[εitεis]|2 < C5.

Then Assumption 6.1(ii) holds.

Proof: By the independence condition and Assumption 4.3(ii), E[εitεjt] = 0 for i 6= j.

Thus, we may have the following decomposition

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

N∑
k=1

N∑
`=1

|cov(εitεjt, εksε`s)|

=

T∑
t=1

T∑
s=1

N∑
i=1

N∑
k=1

|cov(ε2
it, ε

2
ks)|+

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j 6=i

N∑
k=1

N∑
`6=k
|E[εitεjtεksε`s]|

+ 2
T∑
t=1

T∑
s=1

N∑
i=1

N∑
k=1

N∑
` 6=k
|E[(ε2

it − E[ε2
it])εksε`s]|

≡ T1 + T2 + T3. (I.4)

We next establish bound for T1, T2 and T3. By the independence condition,

T1 =

T∑
t=1

T∑
s=1

N∑
i=1

var(ε2
it) ≤

T∑
t=1

T∑
s=1

N∑
i=1

E[ε4
it] ≤ NT 2 max

i≤N,t≤T
E[ε4

it], (I.5)

where the first inequality follows from var(ε2
it) ≤ E[ε4

it]. By the independence condition

and Assumption 4.3(ii), E[εitεjtεksε`s] = 0 unless i = k and j = ` or i = ` and j = k

given i 6= j. It then follows that

T2 = 2

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j 6=i
|E[εitεisεjtεjs]| = 2

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j 6=1

|E[εitεis]||E[εjtεjs]|
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≤ 2
T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

|E[εitεis]||E[εjtεjs]| = 2
T∑
t=1

T∑
s=1

(
N∑
i=1

|E[εitεis]|

)2

≤ 2N

N∑
i=1

T∑
t=1

T∑
s=1

|E[εitεis]|2 ≤ 2N2 max
i≤N

T∑
t=1

T∑
s=1

|E[εitεis]|2, (I.6)

where the second equality follows by the independence condition, the first inequality

follows since |E[εitεis]|2 ≥ 0, the second inequality is due to the Cauchy-Schwartz

inequality. Again by the independence condition and Assumption 4.3(ii), E[(ε2
it −

E[ε2
it])εksε`s] = 0 for k 6= `, so T3 = 0. This together with (I.4)-(I.6) and the as-

sumptions thus concludes the result of the proposition. �

Appendix J - Additional Results for Section 8
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Table 12: Results under linear specifications of α(·) and β(·) with 18 characteristics†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 44.90 3.23 1.85 1.30 2.78 1.24 1.03 0.28 0.26 0.21 1.81 0.46 3.93

2∗ 62.38 14.66 11.21 13.14 14.30 10.93 12.62 0.28 0.26 0.21 1.74 0.44 4.00

3 68.14 15.46 12.15 13.74 15.10 11.79 13.23 0.28 0.26 0.21 1.67 0.42 3.97

4 72.63 16.36 13.46 14.50 16.00 12.94 13.95 0.28 0.26 0.21 1.52 0.38 3.99

5 76.85 17.03 14.11 15.17 16.67 13.72 14.64 0.28 0.26 0.21 1.49 0.37 3.99

6 80.01 17.53 14.75 15.62 17.21 14.35 15.18 0.28 0.26 0.21 1.28 0.32 3.95

7 82.65 17.78 14.94 15.83 17.46 14.59 15.40 0.28 0.26 0.21 1.22 0.31 3.99

8 85.21 17.91 15.07 15.97 17.63 14.81 15.60 0.28 0.26 0.21 1.08 0.29 3.67

9 88.27 18.20 15.36 16.31 17.96 15.17 15.99 0.28 0.26 0.21 0.93 0.28 3.33

10 90.54 18.35 15.58 16.47 18.17 15.34 16.22 0.28 0.26 0.21 0.76 0.23 3.36

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 45.00 NA NA NA 2.88 1.21 1.04 0.19 0.21 0.02 NA NA NA

2∗ 62.52 NA NA NA 14.27 10.84 12.58 0.34 0.49 -0.21 NA NA NA

3 69.18 NA NA NA 14.82 11.44 13.25 0.50 0.70 0.09 NA NA NA

4 74.34 NA NA NA 15.75 12.46 13.95 0.49 0.73 0.15 NA NA NA

5 78.48 NA NA NA 16.72 13.96 14.90 0.50 0.64 0.17 NA NA NA

6 81.87 NA NA NA 17.29 14.48 15.42 0.51 0.61 0.17 NA NA NA

7 84.71 NA NA NA 17.78 15.09 15.90 0.50 0.60 0.18 NA NA NA

8 87.20 NA NA NA 17.99 15.20 16.08 0.50 0.63 0.22 NA NA NA

9 89.48 NA NA NA 18.10 15.31 16.19 0.50 0.61 0.22 NA NA NA

10 91.35 NA NA NA 18.30 15.51 16.40 0.51 0.62 0.22 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 19.68%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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Table 13: Results under linear specifications of α(·) and β(·) with 12 characteristics†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 47.80 4.31 2.52 2.32 3.86 2.01 1.98 0.26 0.13 0.20 1.63 0.43 3.76

2∗ 67.27 14.28 10.66 12.80 13.95 10.37 12.31 0.26 0.13 0.20 1.54 0.41 3.78

3 74.25 14.94 11.30 13.39 14.61 10.91 12.90 0.26 0.13 0.20 1.49 0.40 3.75

4 79.11 16.25 13.41 14.48 15.92 12.88 13.98 0.26 0.13 0.20 1.34 0.35 3.83

5 83.51 16.74 13.98 15.04 16.41 13.61 14.56 0.26 0.13 0.20 1.32 0.34 3.89

6 86.46 17.46 14.83 15.68 17.13 14.47 15.22 0.26 0.13 0.20 0.99 0.31 3.17

7 89.09 17.93 15.08 16.13 17.61 14.96 15.68 0.26 0.13 0.20 0.54 0.21 2.59

8 93.73 18.20 15.44 16.44 18.12 15.39 16.32 0.26 0.13 0.20 0.46 0.17 2.75

9 95.53 18.48 15.85 16.78 18.40 15.77 16.67 0.26 0.13 0.20 0.30 0.11 2.68

10 96.84 18.80 16.54 17.21 18.72 16.45 17.10 0.26 0.13 0.20 0.15 0.07 2.02

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 47.84 NA NA NA 3.97 2.02 2.01 0.17 0.21 0.03 NA NA NA

2∗ 67.39 NA NA NA 13.91 10.30 12.23 0.33 0.53 -0.25 NA NA NA

3 74.74 NA NA NA 14.58 10.87 12.95 0.47 0.52 0.07 NA NA NA

4 80.44 NA NA NA 15.18 11.48 13.63 0.48 0.61 0.16 NA NA NA

5 85.23 NA NA NA 16.51 13.76 14.79 0.49 0.61 0.18 NA NA NA

6 88.69 NA NA NA 17.00 14.21 15.33 0.51 0.64 0.19 NA NA NA

7 91.62 NA NA NA 17.69 15.05 15.96 0.50 0.60 0.23 NA NA NA

8 94.23 NA NA NA 18.17 15.41 16.41 0.50 0.62 0.22 NA NA NA

9 96.04 NA NA NA 18.45 15.84 16.75 0.50 0.60 0.23 NA NA NA

10 97.35 NA NA NA 18.78 16.52 17.19 0.49 0.62 0.21 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 19.07%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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Table 14: Results under continuous piecewise linear specifications of α(·) and β(·) with
12 characteristics and one internal knot†

Unrestricted (α(·) 6= 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 47.93 5.94 3.28 3.68 5.57 2.90 3.22 0.55 0.59 0.27 2.23 0.66 3.37

2∗ 66.23 9.79 6.18 7.18 9.44 5.72 6.62 0.55 0.59 0.27 2.05 0.52 3.95

3 72.25 10.66 6.75 8.05 10.30 6.33 7.49 0.55 0.59 0.27 2.01 0.52 3.86

4 77.10 13.94 10.32 11.81 13.55 9.91 11.25 0.55 0.59 0.27 1.99 0.51 3.90

5 80.71 14.35 10.53 12.32 13.98 10.22 11.82 0.55 0.59 0.27 2.01 0.49 4.11

6 83.62 14.97 11.50 12.83 14.53 10.87 12.25 0.55 0.59 0.27 1.40 0.44 3.20

7 87.36 15.28 11.77 13.13 14.90 11.04 12.68 0.55 0.59 0.27 0.71 0.24 3.00

8 89.85 15.65 12.15 13.46 15.47 11.78 13.26 0.55 0.59 0.27 0.49 0.15 3.18

9 91.44 16.49 12.83 14.10 16.24 12.35 13.83 0.55 0.59 0.27 0.47 0.15 3.18

10 92.98 16.80 13.16 14.38 16.63 12.84 14.18 0.55 0.59 0.27 0.44 0.12 3.68

Restricted (α(·) = 0)

K R2
K R2 R2

T,N R2
N,T R2

f R2
f,T,N R2

f,N,T R2
O R2

T,N,O R2
N,T,O Mean Std SR

1 48.03 NA NA NA 5.66 2.86 3.26 0.28 0.32 -0.06 NA NA NA

2∗ 66.39 NA NA NA 9.39 5.67 6.53 0.34 0.32 -0.43 NA NA NA

3 72.44 NA NA NA 10.27 6.22 7.49 0.60 0.75 0.23 NA NA NA

4 77.79 NA NA NA 10.87 7.08 8.22 0.52 0.70 0.25 NA NA NA

5 82.59 NA NA NA 14.25 10.54 12.16 0.49 0.58 0.25 NA NA NA

6 85.70 NA NA NA 14.59 10.75 12.58 0.52 0.53 0.24 NA NA NA

7 88.34 NA NA NA 15.13 11.51 13.03 0.52 0.55 0.27 NA NA NA

8 90.31 NA NA NA 15.56 11.98 13.37 0.52 0.54 0.28 NA NA NA

9 91.88 NA NA NA 16.32 12.65 13.93 0.52 0.54 0.28 NA NA NA

10 93.34 NA NA NA 16.74 13.05 14.29 0.53 0.53 0.28 NA NA NA

† K: the number of factor specified (∗ denotes the estimated one by our methods); Fama-
MacBeth cross sectional regression R2: R2

Ỹ
= 20.24%; R2

K meassures the variations of

managed portfolios captured by different numbers of factors from PCA; R2, R2
T,N , R2

N,T :

various in-sample R2’s (%), see (25)-(27); R2
f , R2

f,T,N , R2
f,N,T : various in-sample R2’s (%)

without α, see (28)-(30); R2
O, R2

T,N,O, R2
N,T,O: various out-sample predictive R2’s (%), see

(31)-(33); Mean: out-of-sample annualized means of the pure-alpha arbitrage strategy(%);
Std: out-of-sample annualized standard deviations of the pure-alpha arbitrage strategy(%);
SR: out-of-sample annualized Sharpe ratios of the pure-alpha arbitrage strategy.
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