

Seminars of Condensed-Matter Physics

Monday, 29th of October 2012 – CH B3 31 – 12h30

Sub-100 mK SQUID Magnetometer and Characterisation of the Spin Glass Series LiHo_xEr_{1-x}F₄

J. Piatek¹

¹ Laboratory for Quantum Magnetism, ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

The first part of this talk is dedicated to the design and implementation of a piezomotor driven SQUID magnetometer capable of running at temperatures below 100 mK. The overall design is presented with key components explained in detail.

The second part describes a comprehensive experimental study of a new model spin-glass series LiHo_xEr_{1-x}F₄, which combines the Ising anisotropy of ferromagnetic LiHoF₄ with the XY anisotropy of antiferromagnetic LiErF₄. The temperature-doping phase diagram has been studied using AC susceptibility, and three key regions investigated in detail using additional neutron scattering experiments and mean-field calculations. The first region, $x \ge 0.6$, corresponds to an Ising ferromagnet, where T_C(x) decreases linearly and faster than mean-field predictions, unlike in the related series LiHo_xY_{1-x}F₄. At T<T_C, a so-called embedded spin-glass state is observed. The second region, $0.6 \le x \le 0.3$, undergoes a spin-glass transition, where needle-like spin clusters form along the Ising axis below T_g. The final region, $x \le 0.3$, corresponds to a spin-glass with antiferromagnetic spin-spin correlations and shows archetypal spin-glass behaviour. The non-mean field decrease in T_C is examined theoretically using a combination of inhomogeneous mean-field and direct diagonalisation of small clusters of spins. In the x = 0.5 sample, a thermal runaway occurs at a field of 250 Oe, when the field is applied along the Ising direction. The onset of the thermal runaway is discussed in terms of hyperfine level crossings.