A Stochastic and Dynamic Policy-Oriented Model of a Large Network of Airports

Event details
Date | 25.01.2010 |
Hour | 15:00 |
Speaker | Prof. Amedeo Odoni, Massachusetts Institute of Technology |
Location |
GC B3 424
|
Category | Conferences - Seminars |
As more airports in the United States and in Europe become congested, it also becomes increasingly likely that delays at one or more airports will spread to other parts of the network. We describe an analytical model, Airport Network Delays (AND), developed to study this complex phenomenon. It computes delays due to local congestion at individual airports and, more important, captures the "ripple effect" that leads to the propagation of local delays throughout the network. The model operates by iterating between a stochastic and dynamic queuing engine (QE) that computes delays at individual airports and a delay propagation algorithm that updates flight schedules at all the airports in the model in response to the local delays computed by the QE.
The AND model is fast computationally, making possible the exploration of the impacts of a large number of scenarios and policies on system-wide delays. It has been fully implemented for the network of the 34 busiest airports in the continental United States. An implementation for the network of the 34 busiest airports in Europe is in progress. The model provides insights into the complex interactions through which delays propagate through the network and the often-counterintuitive consequences of these interactions. (joint work with PhD student Nikolas Pyrgiotis)
Links
Practical information
- General public
- Free
Contact
- Prof. M. Bierlaire