Magnetic scattering: pairwise little group and pairwise helicity

Event details
Date and time |
30.11.2020
– 14:00
› 15:30
![]() |
Place and room |
Zoom
|
Online | https://epfl.zoom.us/j/86370587147 |
Speaker | Csaba Csaki (Cornell U.) |
Category | Conferences - Seminars |
I discuss how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. I will discuss the general construction of such states. The resulting "pairwise helicity" is identified with the quantized "cross product" of charges e1 g2- e2 g1 for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind of pairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S-matrix elements, as well as the full partial wave decomposition for the 2 -> 2 fermion-monopole S-matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. Our construction provides a significant new achievement for the on-shell program, succeeding where the Lagrangian description has so far failed.
Recordings will be available at: https://tube.switch.ch/channels/1c2d594d
Practical information
- General public
- Free
Organizer
- Prof. Riccardo Rattazzi, Dr. Angelo Esposito
Contact
- Dr. Angelo Esposito