MechE Colloquium: Geometric Excursions in Computational Design and Manufacturing
Event details
Date | 20.11.2018 |
Hour | 12:15 › 13:15 |
Speaker | Prof. Horea Ilies, Computational Design Lab, University of Connecticut |
Location | |
Category | Conferences - Seminars |
Abstract:
We’ve always seemed to be able to fabricate physical artifacts before being able to formally describe what we do and how we do it. Geometry has historically, and naturally, played a key role in the development of new abstractions used to build formal models of physical artifacts and of the associated design and fabrication processes. However, these formal models as well as the associated computational tools are still playing catch up with manufacturing. For example, even as the enthusiasm for 3D printing continues to build, the computational support for this technology is not adequate. In this talk, I will review some of our recent efforts in developing valuable solutions to complex (geometric) problems in computational design and manufacturing, ranging from printability analysis in robotic 3D printing to interactive haptic assembly of complex shapes, and systematic design methods for controllable nano-machines.
Bio:
Horea Ilies is a Professor and Department Head of Mechanical Engineering at the University of Connecticut with a secondary appointment in Computer Science. He holds a Ph.D. degree in Mechanical Engineering from University of Wisconsin – Madison, and received M.S. degrees in Mechanics and ME from Michigan State University, and Technical University of Cluj, Romania. He has several years of industrial experience with Ford Motor Company in research, manufacturing, and product design and development activities. His current research interests center on theoretical and computational aspects for systematic design and manufacturing of engineered systems. Dr. Ilies has received the NSF CAREER award in 2007, as well as several Best Paper awards, and he is an elected member of Connecticut Academy of Science and Engineering (CASE).
We’ve always seemed to be able to fabricate physical artifacts before being able to formally describe what we do and how we do it. Geometry has historically, and naturally, played a key role in the development of new abstractions used to build formal models of physical artifacts and of the associated design and fabrication processes. However, these formal models as well as the associated computational tools are still playing catch up with manufacturing. For example, even as the enthusiasm for 3D printing continues to build, the computational support for this technology is not adequate. In this talk, I will review some of our recent efforts in developing valuable solutions to complex (geometric) problems in computational design and manufacturing, ranging from printability analysis in robotic 3D printing to interactive haptic assembly of complex shapes, and systematic design methods for controllable nano-machines.
Bio:
Horea Ilies is a Professor and Department Head of Mechanical Engineering at the University of Connecticut with a secondary appointment in Computer Science. He holds a Ph.D. degree in Mechanical Engineering from University of Wisconsin – Madison, and received M.S. degrees in Mechanics and ME from Michigan State University, and Technical University of Cluj, Romania. He has several years of industrial experience with Ford Motor Company in research, manufacturing, and product design and development activities. His current research interests center on theoretical and computational aspects for systematic design and manufacturing of engineered systems. Dr. Ilies has received the NSF CAREER award in 2007, as well as several Best Paper awards, and he is an elected member of Connecticut Academy of Science and Engineering (CASE).
Practical information
- General public
- Free