New Research Challenges in Industrial and Residential Microgrids

Thumbnail

Event details

Date 20.10.2017
Hour 10:1511:00
Speaker Josep M. Guerrero, Department of Energy Technology, Aalborg Universitet
Location
Category Conferences - Seminars

A microgrid can be defined as a part of the grid with elements like distributed energy sources, power electronics converters, energy storage devices and controllable local loads that can operate autonomously in islanded mode but also interacting with the main power network in a controlled, coordinated way. Following the introduction of distributed control of these elements, cooperative control and hierarchical control schemes for coordination of power electronics converters in order to control the power flow and to enhance the power quality will be elaborated. Different technologies are combined together, such as power converters, control, communications, optimization, and so on. This way, energy can be generated and stored near to the consumption points, improving stability and reducing losses produced by large power lines. In distributed energy systems like microgrids, multi-agent systems technologies will be presented, including distributed control.

Previous experiences in the Danish electrical system like the Cell Controller project used these technologies to balance dispersed energy generation and consumption. The focus of this presentation will be on the analysis, modeling and control design of power electronics-based microgrids, as well as power electronics control and communications. Further, the interconnection of microgrid clusters will be emphasized as an important step towards utilization of the smart grid concept. Examples of real sites including conventional islanded systems installed in islands and rural remote areas will be shown. Finally, low-voltage distribution systems and DC microgrids for residential applications and homes will be introduced. New worldwide projects to develop technologies for low voltage DC distribution systems will be shown, such as dc shipboard systems, dc datacenters, and dc ev charging stations.

Bio: Josep M. Guerrero (S’01-M’04-SM’08-FM’15) received the B.S. degree in telecommunications engineering, the M.S. degree in electronics engineering, and the Ph.D. degree in power electronics from the Technical University of Catalonia, Barcelona, in 1997, 2000 and 2003, respectively. Since 2011, he has been a Full Professor with the Department of Energy Technology, Aalborg University, Denmark, where he is responsible for the Microgrid Research Program (www.microgrids.et.aau.dk). From 2012 he is a guest Professor at the Chinese Academy of Science and the Nanjing University of Aeronautics and Astronautics; from 2014 he is chair Professor in Shandong University; from 2015 he is a distinguished guest Professor in Hunan University; and from 2016 he is a visiting professor fellow at Aston University, UK, and a guest Professor at the Nanjing University of Posts and Telecommunications.

His research interests are oriented to different microgrid aspects, including power electronics, distributed energy-storage systems, hierarchical and cooperative control, energy management systems, smart metering and the internet of things for AC/DC microgrid clusters and islanded minigrids; recently specially focused on maritime microgrids for electrical ships, vessels, ferries, and seaports. Prof. Guerrero is an Associate Editor for the IEEE TRANSACTIONS ON POWER ELECTRONICS, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, and the IEEE Industrial Electronics Magazine, and an Editor for the IEEE TRANSACTIONS on SMART GRID and IEEE TRANSACTIONS on ENERGY CONVERSION. He has been Guest Editor of the IEEE TRANSACTIONS ON POWER ELECTRONICS Special Issues: Power Electronics for Wind Energy Conversion and Power Electronics for Microgrids; the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Special Sections: Uninterruptible Power Supplies systems, Renewable Energy Systems, Distributed Generation and Microgrids, and Industrial Applications and Implementation Issues of the Kalman Filter; the IEEE TRANSACTIONS on SMART GRID Special Issues: Smart DC Distribution Systems and Power Quality in Smart Grids; the IEEE TRANSACTIONS on ENERGY CONVERSION Special Issue on Energy Conversion in Next-generation Electric Ships. He was the chair of the Renewable Energy Systems Technical Committee of the IEEE Industrial Electronics Society. He received the best paper award of the IEEE Transactions on Energy Conversion for the period 2014-2015, and the best paper prize of IEEE-PES in 2015. As well, he received the best paper award of the Journal of Power Electronics in 2016. In 2014, 2015, and 2016 he was awarded by Thomson Reuters as Highly Cited Researcher, and in 2015 he was elevated as IEEE Fellow for his contributions on “distributed power systems and microgrids.”