The Barr-Beck Theorem in Symplectic Geometry

Event details
Date | 03.05.2022 |
Hour | 10:15 › 11:15 |
Speaker | Nate Bottman, Max-Planck-Institut für Mathematik |
Location | |
Category | Conferences - Seminars |
Event Language | English |
The Barr-Beck theorem gives conditions under which an adjunction F -| G is monadic. Monadicity, in turn, means that the category on the right can be computed in terms of the data of F and its endomorphism GF. I will present joint work-in-progress with Abouzaid, in which we consider this theorem in the case of the functors between Fuk(M1) and Fuk(M2) associated to a Lagrangian correspondence L12 and its transpose. These functors are often adjoint, and under the hypothesis that a certain map to symplectic cohomology hits the unit, the hypotheses of Barr-Beck are satisfied. This can be interpreted as an extension of Abouzaid's generation criterion, and we hope that it will be a useful tool in the computation of Fukaya categories.
Practical information
- Expert
- Free