Bayesian regression discontinuity design with unknown cutoff

Thumbnail

Event details

Date 02.05.2025
Hour 14:1515:15
Speaker Stéphanie van der Pas, Amsterdam UMC
Location
Category Conferences - Seminars
Event Language English

The regression discontinuity design (RDD) is a quasi-experimental approach used to estimate the causal effects of an intervention assigned based on a cutoff criterion. RDD exploits the idea that close to the cutoff units below and above are similar; hence, they can be meaningfully compared. Consequently, the causal effect can be estimated only locally at the cutoff point. This makes the cutoff point an essential element of RDD. However, especially in medical applications, the exact cutoff location may not always be disclosed to the researcher, and even when it is, the actual location may deviate from the official one. As we illustrate on the application of RDD to the HIV treatment eligibility data, estimating the causal effect at an incorrect cutoff point leads to meaningless results. The method we present, LoTTA (Local Trimmed Taylor Approximation), can be applied both as an estimation and validation tool in RDD. We use a Bayesian approach to incorporate prior knowledge and uncertainty about the cutoff location in the causal effect estimation. At the same time, LoTTA is fitted globally to the whole data, whereas RDD is a local, boundary point estimation problem. In this work we address a natural question that arises: how to make Bayesian inference more local to render a meaningful and powerful estimate of the treatment effect?

Practical information

  • Informed public
  • Free

Organizer

  • Myrto Limnios

Contact

  • Maroussia Schaffner

Share