BMI Seminar // Mark M. Churchland - From spikes to factors: understanding large-scale neural computations

Thumbnail

Event details

Date 06.04.2023
Hour 14:0015:00
Speaker Mark M. Churchland, Columbia University, New York, USA
Location Online
Category Conferences - Seminars
Event Language English
Exceptionally on Thursday at 2 PM!

It is widely accepted that human cognition is the product of spiking neurons. Yet even for basic cognitive functions, such as the ability to make decisions or prepare and execute a voluntary movement, the gap between spikes and computation is vast. Only for very simple circuits and reflexes can one explain computations neuron-by-neuron and spike-by-spike. This approach becomes infeasible when neurons are numerous the flow of information is recurrent. To understand computation, one thus requires appropriate abstractions. An increasingly common abstraction is the neural ‘factor’. Factors are central to many explanations in systems neuroscience. Factors provide a framework for describing computational mechanism, and offer a bridge between data and concrete models. Yet there remains some discomfort with this abstraction, and with any attempt to provide mechanistic explanations above that of spikes, neurons, cell-types, and other comfortingly concrete entities. I will explain why, for many networks of spiking neurons, factors are not only a well-defined abstraction, but are critical to understanding computation mechanistically. Indeed, factors are as real as other abstractions we now accept: pressure, temperature, conductance, and even the action potential itself. I use recent empirical results to illustrate how factor-based hypotheses have become essential to the forming and testing of scientific hypotheses. I will also show how embracing factor-level descriptions affords remarkable power when decoding neural activity for neural engineering purposes.
 

Links

Practical information

  • Informed public
  • Free

Organizer

  • SV BMI Host: A. Mathis

Share