Distributed Optimization via the Alternating Direction Method of Multipliers

Thumbnail

Event details

Date 12.07.2013
Hour 10:1511:30
Speaker Prof. Stephen P. Boyd, Stanford University
Location
Category Conferences - Seminars
Abstract :
Problems in areas such as machine learning and dynamic optimization on a large network lead to extremely large convex optimization problems, with problem data stored in a decentralized way, and processing elements distributed across a network. We argue that the alternating direction method of multipliers is well suited to such problems. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l_1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to statistical and machine learning problems such as the lasso and support vector machines, and to dynamic energy management problems arising in the smart grid.

Bio : Stephen P. Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering in the Information Systems Laboratory at Stanford University. He has courtesy appointments in the Department of Management Science and Engineering and the Department of Computer Science, and is member of the Institute for Computational and Mathematical Engineering. His current research focus is on convex optimization applications in control, signal processing, and circuit design.

Practical information

  • Informed public
  • Free
  • This event is internal

Contact

  • Dominique Bonvin

Share