Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles

Thumbnail

Event details

Date 24.03.2014
Hour 13:15
Speaker Laurent Bellaiche, University of Arkansas, USA
Location
Category Conferences - Seminars
Relaxor ferroelectrics are characterized by some striking anomalous properties (see, e.g., Refs [1-21] and references  therein).    For  instance,  they  adopt  a  peak  in  their  ac  dielectric  response-versus-temperature function while they remain macroscopically paraelectric and cubic down to the lowest temperatures [1]. Furthermore, this dielectric response deviates from the ``traditional'' Curie-Weiss law [22] for temperatures lower than the so-called Burns temperature [2]. Other examples of anomalous properties include the plateau observed  in  their  static,  dc  dielectric  response  at  low  temperature  [23,24],  and  the  unusual  temperature behavior [16] of the Edwards-Anderson parameter [25]. Determining the origin of these intriguing effects has been a challenge to scientists for more than half a century. Moreover, many other questions remain opened for discussion.  Examples  of  such  questions  are:  what  do  the  different  critical  temperatures  usually  found  in relaxors  correspond  to?  Do  polar  nanoregions  really  exist  in  relaxors?  If  yes,  do  they  only  form  inside chemically-ordered regions? Is it necessary that antiferroelectricity develops in order for the relaxor behavior to occur? Are random fields and random strains really the mechanisms responsible for relaxor behavior? If not, what are these mechanisms?

Motivated to resolve such questions and to better understand relaxors, we decided to study disordered Ba(Zr0.5Ti0.5)O3  (BZT) solid solutions, via the development and use of a first-principles-based effective Hamiltonian. Note that BZT is also fascinating because, in addition to be a relaxor within some compositional range, its parent compounds are rather different, namely BaZrO3 is paraelectric while BaTiO3 is a typical ferroelectric.

Interestingly,  our ab-initio-based  calculations  not only reproduce  the anomalous  features of relaxors but also offer a deep microscopic insight into BZT [26,27,28]. Such insight allows to successfully answer the aforementioned questions, and will be discussed in detail during this talk.

This work is mostly supported by ONR Grants N00014-11-1-0384, N00014-12-1-1034 and N00014-08-1-
0915. We also acknowledge the ARO grant W911NF-12-1-0085, NSF grant DMR-1066158, and Department of  Energy,  Office  of  Basic  Energy  Sciences,  under  contract  ER-46612  for  discussions  with  scientists sponsored by these grants. Some computations  were also made possible thanks to the MRI grant 0722625 from  NSF,  the  ONR  grant  N00014-07-1-0825  (DURIP)  and  a  Challenge  grant  from  the  Department  of Defense.

References:
[1] Cross, L.E., Ferroelectrics 151, 305 (1994).
[2] Burns, G.  and Dacol, F.H., Phys. Rev. B 28, 2527 (1983).
[3] Smolensky, G. A. et al. Ferroelectrics and Related Materials (Gordon and Breach, New York, 1981). [4] Westphal V., Kleemann, W. and Glinchuk, M.D, Phys. Rev. Lett. 68, 847 (1992).
[5] Tagantsev A.K. and Glazounov, E.Z., Phys. Rev. B 57, 18 (1998). [6] Pirc, R. and Blinc, R., Phys. Rev. B 60, 13470 (1999).
[7] Jeong, I.-K. et al. Phys. Rev. Lett. 94, 147602 (2005).
[8] Bai, Y. and Jin, L., J. Phys. D: Appl. Phys. 41, 152008 (2008). [9] Vogel, H., Phys. Z. 22, 645 (1921).
[10] Fulcher, G. S., J. Am. Ceram. Soc. 8, 339 (1925).
[11] Dkhil, B. et al, Phys. Rev. B 80, 064103 (2009).
[12] Svitelskiy, O. et al, Phys. Rev. B 72, 172106 (2005).
[13] Tinte, S., Burton, B. P., Cockayne, E. and Waghmare U., Phys. Rev. Lett. 97, 137601 (2006). [14] Ishchuk, V.M., Baumer, V. N. and  Sobolev, V. L., J. Phys.: Condens. Matter 17, L177 (2005). [15] Takesue, N, Fujii, Y., Ichihara, M. and Chen, H., Phys. Rev. Lett. 82, 3709 (1999).
[16] Blinc, R. et al, Phys. Rev. B 63, 024104 (2000).
[17] Vugmeister, B. E. and Rabitz H., Phys. Rev. B 57, 7581 (1998).
[18] Viehland, D., Jang, S.J., Cross, L.E. and Wuttig, M., J. Appl. Phys. 68, 2916 (1990).
[19] Colla, E.V., Koroleva, E. Y., Okuneva, N.M. and Vakhrushev, S.B., Phys. Rev. Lett. 74, 1681 (1995). [20] Grinberg, I., Juhas, P., Davies, P. K. and Rappe, A. M., Phys. Rev. Lett. 99, 267603 (2007).
[21] Al-Zein, A., Hlinka, J., Rouquette, J. and Hehlen, B., Phys Rev Lett. 105, 017601 (2010). [22] Kittel, C. Introduction to Solid State Physics 7th ed. (1996).
[23] Kutnjak, Z. et al, Phys. Rev. B 59, 294 (1999).
[24] Levstik, A., Kutnjak, Z., Filipic, C. and Pirc, R., Phys. Rev. B 57, 11204 (1998). [25] Edwards, S. F. and Anderson, P. W., J. Phys. F 5, 965 (1975).
[26] A. R. Akbarzadeh,  S. Prosandeev,  E. J. Walter, A. Al-Barakaty  and L. Bellaiche,  Phys. Rev. Lett. 108,
257601 (2012).
[27] S. Prosandeev,  D. Wang, A. R. Akbarzadeh,  B. Dkhil and L. Bellaiche,  Phys. Rev. Lett., 110, 207601 (2013).
[28] S. Prosandeev, D. Wang and L. Bellaiche, Phys. Rev. Lett., 111, 247602 (2013).

Bio: Professor Bellaiche earned his doctorate from the University of Paris in 1994. From 1994 to 1995 he was a teaching and research associate at the University of Paris, which he left to join the National Renewable Energy Laboratory in Colorado as a post-doctoral fellow. Before coming to the university, he worked as a research associate at Rutgers University in New Jersey.

His primary research interests are to reveal the properties of ferroelectric systems at the nanoscale level, in general, and to understand how and why they differ from the corresponding bulks, in particular. He thinks such research can lead to smart cards with higher storage, ultrasound machines with sharper resolutions and sonar-listening devices that can scan greater distances.

Links

Practical information

  • General public
  • Free

Organizer

  • IMX Seminar Series

Event broadcasted in

Share