Conferences - Seminars

  Monday 19 November 2018 14:15 - 15:30 BC 420

IC Colloquium: Deconstructing the Blockchain to Approach Physical Limits

By: David TSE - Stanford University
Video of his talk

The concept of a blockchain was invented by Satoshi Nakamoto to maintain a distributed ledger for an electronic payment system, Bitcoin.  In addition to its security, important performance measures of a blockchain protocol are its transaction throughput, confirmation latency and confirmation reliability. These measures are limited by two underlying physical network attributes: communication capacity and speed-of-light propagation delay. Existing systems operate far away from these physical limits. In this work we introduce Prism, a new blockchain protocol, which can provably achieve 1) security against up to 50% adversarial hashing power; 2) optimal throughput up to the capacity C of the network; 3) confirmation latency for honest transactions proportional to the propagation delay D, with confirmation error probability exponentially small in the bandwidth-delay product CD ; 4) eventual total ordering of all transactions. Our approach to the design of this protocol is based on deconstructing the blockchain into its basic functionalities and systematically scaling up these functionalities to approach their physical limits.
This is joint work with Vivek Bagaria, Sreeram Kannan, Giulia Fanti and Pramod Viswanath. The full paper can be found at

David Tse received the B.A.Sc. degree in systems design engineering from University of Waterloo in 1989, and the M.S. and Ph.D. degrees in electrical engineering from Massachusetts Institute of Technology in 1991 and 1994 respectively. From 1995 to 2014, he was on the faculty of the University of California at Berkeley. He is currently the Thomas Kailath and Guanghan Xu Professor at Stanford University. He received the Claude E. Shannon Award in 2017 and was elected member of the U.S. National Academy of Engineering in 2018. Previously, he received a NSF CAREER award in 1998, the Erlang Prize from the INFORMS Applied Probability Society in 2000 and the Frederick Emmons Terman Award from the American Society for Engineering Education in 2009. He is a coauthor, with Pramod Viswanath, of the text Fundamentals of Wireless Communication, which has been used in over 60 institutions around the world. He received best paper awards from IEEE Information Theory, Communications and Signal Processing societies, and is the inventor of the proportional-fair scheduling algorithm used in all third and fourth-generation cellular systems.

More information

Contact Host: Matthias Grossglauser

Accessibility General public

Admittance Free

This event is internal