Majorization Techniques for Entropy Bounds


Event details

Date 15.06.2023
Hour 15:0017:00
Speaker Anuj Kumar Yadav
Category Conferences - Seminars
EDIC candidacy exam
Exam president: Prof. Emre Telatar
Thesis advisor: Prof. Michael Gastpar
Thesis co-advisor: Prof. Yanina Shkel
Co-examiner: Prof. Negar Kiyavash

Majorization is a well-established mathematical concept
that allows us to compare the relative magnitudes of two
probability mass functions (PMFs). It serves as an ordering
relation, that enables us to determine the dominance relationship
between the PMFs. In this report, we will show that the
majorization partial order forms a lattice, indeed it is a complete
lattice. Moreover, we will delve into the fascinating properties of
entropy on the majorization lattice. Additionally, we will explore
how these properties find applications

Background papers
1. F. Cicalese and U. Vaccaro, "Supermodularity and subadditivity properties of the entropy on the majorization lattice," in IEEE Transactions on Information Theory, vol. 48, no. 4, pp. 933-938, April 2002, DOI: 10.1109/18.992785. [ Link: ]
2. I. Sason,  "Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression”.  Entropy 201820, 896. DOI: 10.3390/e20120896 . [Link:]
3. F. Cicalese, L. Gargano and U. Vaccaro, "An Information Theoretic Approach to Probability Mass Function Truncation," 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019, pp. 702-706, DOI: 10.1109/ISIT.2019.8849355. [ Link:]

Practical information

  • General public
  • Free


EDIC candidacy exam