MEMS-based Radio

Event details
Date | 04.11.2013 |
Hour | 11:20 › 11:40 |
Speaker | Prof. Christian Enz (EPFL/IMT) |
Location | |
Category | Conferences - Seminars |
EPFL/IMT - Peking University workshop on MEMS and related technologies
Transceivers for wireless sensor networks (WSN) and wireless body area networks (WBAN) require both extreme miniaturization and ultra-low-power dissipation in order to be seamlessly integrated virtually everywhere and enable ubiquitous connectivity among persons, objects, machines and the environment. The miniaturization challenge can be addressed with a combination of system-on-chip (SoC) and system-in-package (SiP) approaches to build an ultra-compact transceiver. The confined space is also limiting the available energy, which raises several design and system issues that could severely affect the radio robustness to interferers, the link budget and the autonomy. This talk presents how innovative narrowband radio architectures devised to take advantage and circumvent the limitations of a few well-chosen MEMS devices can address the above issues and go beyond the existing solutions both in terms of miniaturization and power dissipation reduction.
About the speaker :
Chistian Enz, PhD, Swiss Federal Institute of Technology (EPFL), 1989. He is currently Professor at EPFL and Director of the Institute of Microengineering (IMT) and head of the Integrated Circuits Lab (ICLAB). Until April 2013 he was VP at the Swiss Center for Electronics and Microtechnology (CSEM) in Neuchâtel, Switzerland where he was heading the Integrated and Wireless Systems Division. Prior to joining CSEM, he was Principal Senior Engineer at Conexant (formerly Rockwell Semiconductor Systems), Newport Beach, CA, where he was responsible for the modeling and characterization of MOS transistors for RF applications. His technical interests and expertise are in the field of ultralow-power analog and RF IC design, wireless sensor networks and semiconductor device modeling. Together with E. Vittoz and F. Krummenacher he is the developer of the EKV MOS transistor model and the author of the book "Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design" (Wiley, 2006). He is the author and co-author of more than 150 scientific papers and has contributed to numerous conference presentations and advanced engineering courses.
Transceivers for wireless sensor networks (WSN) and wireless body area networks (WBAN) require both extreme miniaturization and ultra-low-power dissipation in order to be seamlessly integrated virtually everywhere and enable ubiquitous connectivity among persons, objects, machines and the environment. The miniaturization challenge can be addressed with a combination of system-on-chip (SoC) and system-in-package (SiP) approaches to build an ultra-compact transceiver. The confined space is also limiting the available energy, which raises several design and system issues that could severely affect the radio robustness to interferers, the link budget and the autonomy. This talk presents how innovative narrowband radio architectures devised to take advantage and circumvent the limitations of a few well-chosen MEMS devices can address the above issues and go beyond the existing solutions both in terms of miniaturization and power dissipation reduction.
About the speaker :
Chistian Enz, PhD, Swiss Federal Institute of Technology (EPFL), 1989. He is currently Professor at EPFL and Director of the Institute of Microengineering (IMT) and head of the Integrated Circuits Lab (ICLAB). Until April 2013 he was VP at the Swiss Center for Electronics and Microtechnology (CSEM) in Neuchâtel, Switzerland where he was heading the Integrated and Wireless Systems Division. Prior to joining CSEM, he was Principal Senior Engineer at Conexant (formerly Rockwell Semiconductor Systems), Newport Beach, CA, where he was responsible for the modeling and characterization of MOS transistors for RF applications. His technical interests and expertise are in the field of ultralow-power analog and RF IC design, wireless sensor networks and semiconductor device modeling. Together with E. Vittoz and F. Krummenacher he is the developer of the EKV MOS transistor model and the author of the book "Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design" (Wiley, 2006). He is the author and co-author of more than 150 scientific papers and has contributed to numerous conference presentations and advanced engineering courses.
Links
Practical information
- Informed public
- Registration required
- This event is internal
Organizer
- EPFL / IMT