TOWARDS UNIVERSALLY PROGRAMMABLE CHIP-SCALE THZ SOURCE, SENSORS AND SYSTEMS: BRIDGING THE THZ AND APPLICATION GAP IN THE NEXT DECADE

Thumbnail

Event details

Date 16.09.2021
Hour 17:0018:00
Speaker Prof Kaushik Sengupta, Princeton University Department of Electrical Engineering
Location Online
Category Conferences - Seminars
Event Language English

Silicon-based Terahertz systems is a field that is only about a decade old. In this time, we have seen a phenomenal growth of silicon systems operating at THz frequencies for a wide range of applications in sensing, imaging and communication. It can be argued that both the ‘THz gap’ and the ‘technology and applications gap’ is closing in meaningful ways in the THz range. Technologies beyond 100 GHz focusing on sensing, imaging and wireless back-haul links are getting attractive as we enter into a new area of highly dense network of autonomous systems requiring ultra-high speed and reliable links.
In order to move beyond this inflection point as Moore’s law continue to slow, I will discuss why we need to look beyond the classical ‘device’-level metrics of efficiency and sensitivity of THz sources and detectors towards holistic ‘system’ level properties such as scalability and programmability. Such properties are critically important for applications in sensing and imaging, as evidenced across sensor fusion technologies across mmWave, IR and optical frequencies. The ultimate programmability in THz sources and sensors is one that can synthesize or receive THz fields with arbitrary configuration and spectrum. In this talk, I will highlight approaches that cut across electromagnetics, circuits, systems and signal processing, to allow for such reconfigurability in THz signal synthesis and sensing, yet realized with devices that are themselves not very efficient. Particularly, we will demonstrate approaches to THz CMOS sensors reconfigurable across the three field properties of spectrum (100 GHz-1000 GHz), beam pattern and polarization, programmable THz metasurfaces with CMOS tiling, and enabling dynamic spectrum shaping and physically secure sub-THz links. In the end, I will comment on what could be the major directions for the field in the coming decade.

Practical information

  • General public
  • Free

Organizer

  • IEEE Switzerland Chapter on AP/MTT/EMC

Tags

THZ SOURCE Programmable THz metasurfaces

Event broadcasted in

Share