Go to main site

Memento

Arithmetic of zero-cycles on products of Kummer varieties and K3 surfaces

Thumbnail

Event details

Date and time 14.11.2018 14:0015:00  
Place and room
Speaker Francesca Balestrieri (Max Planck Institute, Bonn)
Category Conferences - Seminars

The following is joint work with Rachel Newton. In the spirit of work by Yongqi Liang, we relate the arithmetic of rational points to that of zero-cycles for the class of Kummer varieties over number fields. In particular, if X is any Kummer variety over a number field k, we show that if the Brauer-Manin obstruction is the only obstruction to the existence of rational points on X over all finite extensions of k, then the Brauer-Manin obstruction is the only obstruction to the existence of a zero-cycle of any odd degree on X. Building on this result and on some other recent results by Ieronymou, Skorobogatov and Zarhin, we further prove a similar Liang-type result for products of Kummer varieties and K3 surfaces over k.

Practical information

  • Informed public
  • Free

Organizer

  • Zsolt Patakfalvi

Contact

  • Monique Kiener

Event broadcasted in

Share

Login