CECAM Workshop:"Accelerating Improvements in Density Functional Theory"

Thumbnail

Event details

Date 21.08.2023 25.08.2023
Hour 08:3012:15
Location
Category Conferences - Seminars
Event Language English

You can apply to participate and find all the relevant information (speakers, abstracts, program,...) on the event website: https://www.cecam.org/workshop-details/1197

Description:
Density functional theory (DFT) is a method for solving the electronic structure problem defined by the Schrödinger equation of interacting electrons [1]. It has become an extremely widespread technique in the physical, biological, and materials sciences and it contributes significantly to the world’s overall computational expenses [2, 3, 4].  Its most used implementation relies on the solution of the Kohn-Sham (KS) equations [5]. While DFT is in principle exact, the exchange-correlation (XC) energy must be approximated. High-quality approximations determine the ability of DFT for providing useful predictions of physical phenomena.
As key topic in our workshop, we will address recent progress on XC approximations for ground-state DFT [6, 7, 8] and time-dependent DFT [9, 10, 11]. This includes recent meta-generalized-gradient approximations (meta-GGAs) [12, 13, 14], hybrid [15, 16, 17, 18], local hybrid [19], and range-separated hybrid functionals [20, 21, 22], as well as methods for non-collinear magnetism [23, 24] and dispersion interactions [25, 26, 27].
One of the leading methods for constructing XC approximations relies on known constraints on the unknown exact XC functional [28], which will be another central topic of our workshop. These include the adiabatic connection [29], self-interaction freedom [30], piecewise linearity [31], discontinuities [32, 33, 34], delocalization error [35, 36], ensembles [37, 38, 39, 40, 41, 42], asymptotic behavior [43], integer preference [44], zero-force theorem, memory effects [45]. 
Furthermore, we will cover recent developments for XC approximations beyond the density and its gradients such as the conditional probability densities [46, 47], orbital densities [48], pair densities, and other quantities.
Applying DFT to systems of ever-increasing size is limited by the formally cubic scaling of the KS equations. Circumventing this computational bottleneck is an active area of research and is tackled by orbital-free DFT  [49], linear-scaling algorithms [50], and stochastic methods [51].
Finally, formal developments in DFT are also driven by related methods such as many-body perturbation theory [52], wavefunction theory, and embedding methods [53, 54, 55].
Additionally, our workshop will cover two rapidly emerging topics: Employing machine learning for improving and accelerating DFT calculations are active lines of research [56, 57, 58]. 
Likewise, utilizing DFT in the warm-dense-matter (WDM) regime [59, 60, 61] is an emerging field enabling novel applications in the astrophysical domain (planetary cores, brown dwarfs, white dwarfs, and neutron star atmospheres) and supporting progress towards inertial confinement fusion. However, the unique temperature-pressure phase space of WDM poses significant challenges for first principles methods [62, 63, 64, 65, 66, 67, 68, 69], which will be addressed in our workshop.
References
[1] J. Perdew, Size-Consistency, Self-Interaction Correction, and Derivative Discontinuity in Density Functional Theory, 1990
[2] L. Reining, V. Olevano, A. Rubio, G. Onida, Phys. Rev. Lett., 88, 066404 (2002)
[3] R. Baer, D. Neuhauser, E. Rabani, Phys. Rev. Lett., 111, 106402 (2013)
[4] W. Kohn, Phys. Rev. Lett., 76, 3168-3171 (1996)
[5] V. Lignères, E. Carter, An Introduction to Orbital-Free Density Functional Theory, 2005
[6] N. Nguyen, N. Colonna, A. Ferretti, N. Marzari, Phys. Rev. X, 8, 021051 (2018)
[7] J. Kocák, E. Kraisler, A. Schild, J. Phys. Chem. Lett., 12, 3204-3209 (2021)
[8] R. McCarty, D. Perchak, R. Pederson, R. Evans, Y. Qiu, S. White, K. Burke, Phys. Rev. Lett., 125, 266401 (2020)
[9] N. Maitra, K. Burke, C. Woodward, Phys. Rev. Lett., 89, 023002 (2002)
[10] S. Lee, M. Welborn, F. Manby, T. Miller, Acc. Chem. Res., 52, 1359-1368 (2019)
[11] L. Kronik, S. Kümmel, Phys. Chem. Chem. Phys., 22, 16467-16481 (2020)
[12] F. Cernatic, B. Senjean, V. Robert, E. Fromager, Top. Curr. Chem. (Z)., 380, 4 (2021)
[13] E. Kraisler, L. Kronik, Phys. Rev. Lett., 110, 126403 (2013)
[14] R. van Leeuwen, Density Functional Approach to the Many-Body Problem: Key Concepts and Exact Functionals, 2003
[15] E. Gross, L. Oliveira, W. Kohn, Phys. Rev. A, 37, 2805-2808 (1988)
[16] E. Lieb, Int. J. Quantum Chem., 24, 243-277 (1983)
[17] A. Theophilou, J. Phys. C: Solid State Phys., 12, 5419-5430 (1979)
[18] K. Bryenton, A. Adeleke, S. Dale, E. Johnson, WIREs. Comput. Mol. Sci., (2022)
[19] S. Pittalis, C. Proetto, A. Floris, A. Sanna, C. Bersier, K. Burke, E. Gross, Phys. Rev. Lett., 107, 163001 (2011)
[20] Z. Moldabekov, T. Dornheim, J. Vorberger, A. Cangi, Phys. Rev. B, 105, 035134 (2022)
[21] Z. Moldabekov, T. Dornheim, A. Cangi, Sci. Rep., 12, 1093 (2022)
[22] Z. Moldabekov, T. Dornheim, M. Böhme, J. Vorberger, A. Cangi, J. Chem. Phys., 155, 124116 (2021)
[23] K. Ramakrishna, A. Cangi, T. Dornheim, A. Baczewski, J. Vorberger, Phys. Rev. B, 103, 125118 (2021)
[24] T. Dornheim, A. Cangi, K. Ramakrishna, M. Böhme, S. Tanaka, J. Vorberger, Phys. Rev. Lett., 125, 235001 (2020)
[25] K. Burke, J. Smith, P. Grabowski, A. Pribram-Jones, Phys. Rev. B, 93, 195132 (2016)
[26] A. Pribram-Jones, K. Burke, Phys. Rev. B, 93, 205140 (2016)
[27] A. Pribram-Jones, P. Grabowski, K. Burke, Phys. Rev. Lett., 116, 233001 (2016)
[28] A. Cohen, P. Mori-Sánchez, W. Yang, Science, 321, 792-794 (2008)
[29] A. Pribram-Jones, S. Pittalis, E. Gross, K. Burke, Thermal Density Functional Theory in Context, 2014
[30] Frontiers and Challenges in Warm Dense Matter, (Springer International Publishing, Cham, 2014)
[31] R. Pederson, B. Kalita, K. Burke, Nat. Rev. Phys., 4, 357-358 (2022)
[32] L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev. Materials, 6, 040301 (2022)
[33] O. von Lilienfeld, K. Burke, Nat. Commun., 11, 4895 (2020)
[34] P. Elliott, K. Burke, M. Cohen, A. Wasserman, Phys. Rev. A, 82, 024501 (2010)
[35] M. Bensberg, J. Neugebauer, Phys. Chem. Chem. Phys., 22, 26093-26103 (2020)
[36] E. Runge, E. Gross, Phys. Rev. Lett., 52, 997-1000 (1984)
[37] V. Atalla, M. Yoon, F. Caruso, P. Rinke, M. Scheffler, Phys. Rev. B, 88, 165122 (2013)
[38] A. Becke, The Journal of Chemical Physics, 98, 1372-1377 (1993)
[39] A. Becke, The Journal of Chemical Physics, 98, 5648-5652 (1993)
[40] J. Furness, A. Kaplan, J. Ning, J. Perdew, J. Sun, J. Chem. Phys., 156, 034109 (2022)
[41] J. Sun, A. Ruzsinszky, J. Perdew, Phys. Rev. Lett., 115, 036402 (2015)
[42] J. Tao, J. Perdew, V. Staroverov, G. Scuseria, Phys. Rev. Lett., 91, 146401 (2003)
[43] G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys., 74, 601-659 (2002)
[44] X. Li, N. Govind, C. Isborn, A. DePrince, K. Lopata, Chem. Rev., 120, 9951-9993 (2020)
[45] V. Atalla, I. Zhang, O. Hofmann, X. Ren, P. Rinke, M. Scheffler, Phys. Rev. B, 94, 035140 (2016)
[46] M. Medvedev, I. Bushmarinov, J. Sun, J. Perdew, K. Lyssenko, Science, 355, 49-52 (2017)
[47] A. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev., 112, 289-320 (2011)
[48] J. Perdew, A. Ruzsinszky, L. Constantin, J. Sun, G. Csonka, J. Chem. Theory Comput., 5, 902-908 (2009)
[49] W. Kohn, L. Sham, Phys. Rev., 140, A1133-A1138 (1965)
[50] N. Marzari, A. Ferretti, C. Wolverton, Nat. Mater., 20, 736-749 (2021)
[51] A. Pribram-Jones, D. Gross, K. Burke, Annu. Rev. Phys. Chem., 66, 283-304 (2015)
[52] K. Burke, J. Chem. Phys., 136, 150901 (2012)
[53] A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 102, 073005 (2009)
[54] E. Kraisler, M. Hodgson, E. Gross, J. Chem. Theory Comput., 17, 1390-1407 (2021)
[55] S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, E. Gross, Phys. Rev. Lett., 104, 236801 (2010)
[56] P. Mori-Sánchez, A. Cohen, W. Yang, Phys. Rev. Lett., 102, 066403 (2009)
[57] J. Perdew, R. Parr, M. Levy, J. Balduz, Phys. Rev. Lett., 49, 1691-1694 (1982)
[58] J. Perdew, A. Zunger, Phys. Rev. B, 23, 5048-5079 (1981)
[59] J. Harris, Phys. Rev. A, 29, 1648-1659 (1984)
[60] J. Perdew, S. Kurth, Density Functionals for Non-relativistic Coulomb Systems in the New Century, 2003
[61] S. Grimme, WIREs. Comput. Mol. Sci., 1, 211-228 (2011)
[62] P. Hohenberg, W. Kohn, Phys. Rev., 136, B864-B871 (1964)
[63] M. Dion, H. Rydberg, E. Schröder, D. Langreth, B. Lundqvist, Phys. Rev. Lett., 92, 246401 (2004)
[64] F. Eich, E. Gross, Phys. Rev. Lett., 111, 156401 (2013)
[65] S. Sharma, J. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E. Gross, Phys. Rev. Lett., 98, 196405 (2007)
[66] R. Baer, E. Livshits, U. Salzner, Annu. Rev. Phys. Chem., 61, 85-109 (2010)
[67] H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, The Journal of Chemical Physics, 115, 3540-3544 (2001)
[68] J. Toulouse, F. Colonna, A. Savin, Phys. Rev. A, 70, 062505 (2004)
[69] T. Maier, A. Arbuznikov, M. Kaupp, WIREs. Comput. Mol. Sci., 9, (2018)

Practical information

  • Informed public
  • Registration required

Organizer

  • Kieron Burke (UC Irvine), Attila Cangi (Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf), Hardy Gross (The Hebrew University of Jerusalem), Eli Kraisler (Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Israel)

Contact

  • Aude Merola, CECAM Events & Communication Manager

Event broadcasted in

Share