Intersection cohomology for the moduli of sheaves and Gopakumar-Vafa theory

Thumbnail

Event details

Date 11.05.2021
Hour 16:0017:30
Speaker Junliang Shen (MIT)
Location Online
Category Conferences - Seminars

We explore some surprising symmetries for intersection cohomology of certain moduli of 1-dimensional sheaves and moduli of Higgs bundles, motivated by Gopakumar-Vafa theory concerning enumerative geometry for Calabi-Yau 3-folds. More precisely, we show that, for these moduli spaces, the intersection cohomology is independent of the choice of the Euler characteristic. This confirms a conjecture of Bousseau for P^2, and proves a conjecture of Toda in the case of local toric Calabi-Yau 3-folds. In the proof, a generalized version of Ngô's support theorem refining the decomposition theorem plays a crucial role. Based on joint work with Davesh Maulik.

Practical information

  • Informed public
  • Free

Organizer

  • Dimitri Wyss

Contact

  • Monique Kiener  (Veuillez demander le mot de passe si vous êtes intéressé(e)s)

Event broadcasted in

Share