Talk – From microscopic dynamics to dominant fluctuations to complex emergent behaviors in self-organizing matter

Thumbnail

Event details

Date 12.06.2025
Hour 17:0018:00
Speaker Prof. Giovanni M. Pavan
Location
Category Conferences - Seminars
Event Language English

Nature uses self-assembly to generate innately dynamic complex molecular systems. Learning how to rationally design artificial systems with similar behaviors[1] would be a breakthrough. But the microscopic details of their dynamic behavior are difficult to ascertain. Molecular models,[2,3] simulations[4,5] and machine learning[6,7] are fundamental to achieve such ambitious goal.
In this talk, I show examples of how the intrinsic dynamics of self-assembling systems determine the collective ensemble properties emerging within them. I will show our efforts to unravel the intricate dynamical communication networks present in complex molecular and supramolecular systems,[8-9] and for tracking dominant fluctuations that are key for the collective properties that emerge within them.[8-13] The data-driven methods that we are developing to this end are general,[10-13] and can be applied also to study experimentally resolved trajectories of micro- and macroscopic complex dynamical systems whose physics is unknown a priori.[13,14] This opens interesting questions on, e.g., at what level/scales do complex behaviors emerge in self-organizing systems,[15] which may be relevant in many fields. The results that we are obtaining are challenging, in general, how we look at a variety of phenomena and problems central in materials science.[8-17]

 
1. T. Aida, E. W. Meijer, S. I. Stupp; Science, 2012, 335, 813
2. D. Bochicchio, G. M. Pavan; ACS Nano, 2017, 1, 1000
3. A. L. de Marco, D. Bochicchio, A. Gardin, G. Doni, G. M. Pavan; ACS Nano, 2021, 15, 14229
4. D. Bochicchio, M. Salvalaglio, G. M. Pavan; Nature Commun., 2017, 8, 147
5. L. Leanza, C. Perego, L. Pesce, M. von Delius, M. Salvalaglio, G. M. Pavan; Chem. Sci. 2023, 14, 6716
6. A. Gardin, C. Perego, G. Doni, G. M. Pavan; Commun. Chem., 2022, 5, 82
7. M. Crippa, A. Cardellini, M. Cioni, G. Csányi, G. M. Pavan; Mach. Learn. Sci. Technol., 2023, 4, 045044
8. M. Crippa, C. Perego, A. L. de Marco, G. M. Pavan; Nature Commun., 2022, 13, 2162
9. C. Lionello, C. Perego, G. M. Pavan.; ACS Nano, 2023, 17, 275
10. M. Crippa, A. Cardellini, C. Caruso, G. M. Pavan; PNAS, 2023, 120, e2300565120
11. M. Becchi, F. Fantolino, G. M. Pavan; PNAS, 2024, 121, e2403771121
12. M. Becchi & G.M. Pavan; arXiv 2025, DOI:10.48550/arXiv.2504.12990
13. D. Doria, S. Martino, M. Becchi & G. M. Pavan; arXiv 2024, DOI:10.48550/arXiv.2412.13741
14. C. Caruso, Crippa, Cardellini, Cioni, Perrone, Delle Piane, G. M. Pavan; PNAS Nexus 2025, 4(2), pgaf038
15. M. Crippa, C. Perego, G. M. Pavan; Nature Commun. 2025, 10.1038/s41467-025-025-60150-4 (in press)
16. M. Cioni, D. Polino, D. Rapetti, L. Pesce, M. Delle Piane; J. Chem Phys., 2023, 158, 124701
17. Perrone, Cioni, Delle Piane & G.M. Pavan; J. Chem. Phys. 2025, accepted (in press), DOI:10.48550/arXiv.2410.20999)

Practical information

  • Informed public
  • Free

Contact

  • holger.frauenrath@epfl.ch, sophia.thiele@epfl.ch

Share