CIS - Colloquium - by Dr. Petar Veličković

Thumbnail

Event details

Date 31.05.2023
Hour 11:0012:00
Speaker Dr. Petar Veličković
Location Online
Category Conferences - Seminars
Event Language English
Title: Reasoning Algorithmically: from Toy Experiments to AGI Modules

Abstract: Neural networks that are able to reliably execute algorithmic computation may hold transformative potential to both machine learning and theoretical computer science. On one hand, they could enable the kind of extrapolative generalisation scarcely seen with deep learning models. On another, they may allow for running classical algorithms on inputs previously considered inaccessible to them.
Over the past few years, the pace of development in this area has gradually become intense. As someone who has been very active in its latest incarnation, I have witnessed these concepts grow from isolated 'toy experiments', through NeurIPS spotlights, all the way to helping detect patterns in complicated mathematical objects (published on the cover of Nature) and supporting the development of generalist reasoning agents.
In this talk, I will give my personal account of this journey, and especially how our own interpretation of this methodology, and understanding of its potential, changed with time. It should be of interest to a general audience interested in graphs, (classical) algorithms, reasoning, and building intelligent systems.

Bio: https://petar-v.com/
I’m Petar, a Staff Research Scientist at DeepMind, Affiliated Lecturer at the University of Cambridge, and an Associate of Clare Hall, Cambridge. I hold a PhD in Computer Science from the University of Cambridge (Trinity College), obtained under the supervision of Pietro Liò. My research concerns geometric deep learning—devising neural network architectures that respect the invariances and symmetries in data (a topic I’ve co-written a proto-book about). For my contributions, I am recognised as an ELLIS Scholar in the Geometric Deep Learning Program. Particularly, I focus on graph representation learning and its applications in algorithmic reasoning (featured in VentureBeat). I am the first author of Graph Attention Networks—a popular convolutional layer for graphs—and Deep Graph Infomax—a popular self-supervised learning pipeline for graphs (featured in ZDNet). My research has been used in substantially improving travel-time predictions in Google Maps (featured in the CNBC, Endgadget, VentureBeat, CNET, the Verge and ZDNet), and guiding intuition of mathematicians towards new top-tier theorems and conjectures (featured in Nature, Science, Quanta Magazine, New Scientist, The Independent, Sky News, The Sunday Times, la Repubblica and The Conversation).

The Center for Intelligent Systems at EPFL (CIS) is a collaboration among IC, ENAC, SB; SV and STI that brings together researchers working on different aspects of Intelligent Systems. In June 2020, CIS has launched its CIS Colloquia featuring invited notable speakers.
More info

Open to all – Talk followed by a standing lunch. Registration required
 

Links

Practical information

  • General public
  • Free

Organizer

  • CIS

Contact

Tags

CISSBSTISVICENACApprentissage automatique Intelligence artificielle Robotique Vision par ordinateur Artificial intelligence AI Robotics Computer vision

Share